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ABSTRACT 

Micro x-ray fluorescence (micro-XRF) analysis gives elemental maps by repeating 

EDS analysis in the interesting region. However, in some cases, the obtained XRF 

images of trace elements are not clear due to high background intensity. To solve this 

problem, we applied principal component analysis (PCA) to XRF spectra to reduce the 

background intensity. We focused on the improvement of quality of XRF imaging by 

applying the PCA. Standard deviations of XRF intensities in PCA-filtered image were 



improved, leading to clear contrast of objective image on low background. Also, we 

confirmed that the spatial resolution in XRF images was improved by applying PCA. 

This improvement of XRF image was effective in the case where the XRF intensity was 

weak. 
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1. Introduction 

XRF analysis enables elemental analysis for various samples. By using the x-ray 

focusing lens, XRF analysis at the small region has been possible as well known as 

micro-XRF analysis [1, 2]. To know the elemental distributions, micro-XRF analysis is 

also applied as the sample is scanned [2]. ROI (range of interest) intensities in the x-ray 

spectra are registered at the corresponding position. Finally, we can get XRF images for 

the sample. However, when the concentration of analyzing elements is low, the created 

image is not clear due to relatively high background intensity. Therefore, the technique 

to reduce the background intensity is required. A total reflection XRF is one of such 

techniques. Also, the use of ultra-thin sample support for a small volume liquid sample 



is useful for this purpose. 

A principal component analysis (PCA) is well known statistical technique. PCA gives 

eigenvectors and score vectors for spectrum data set. That means that the spectrum data 

set is expressed as the product of the eigenvector and the corresponding score vector, 

The products showing a large contribution to data set are called as “principal 

components”. In the conventional approach, PCA is applied to bring out principal 

components and extract the important information from the original data [3, 4].  

So far, PCA has been applied to XRF analysis of various samples. The researchers at 

University of Antwerp created principal component maps derived from XRF maps [3]. 

The researchers at the University of Manchester applied the PCA to the data obtained 

for hard X-ray imaging [4]. In addition, PCA has been used for Raman imaging by 

researchers at Advanced Industrial Science and Technology (AIST) [5]. Not only 

imaging method, PCA has been applied in various spectrometry methods as traditional 

statistic technique [6, 7]. 

The researchers at Argonne National Laboratory performed micro-XRF imaging for 

biological sample (cell and bacteria) [8]. By limiting the data set with principal and 

major components, they reduced the noise levels. Then, XRF spectrum was re-created 

with the components having large eigenvalues. Finally, elemental maps were also 



re-created. They showed the advantage of eliminating the overlap with P-K from 

Au-M [8]. In the present paper, we focused on the improvement of quality of XRF 

images by applying PCA regarding the contrast of the XRF image and the spatial 

resolution. 

 

2. Experimental setup 

Figure 1 (a) shows the laboratory-made micro-XRF instrument using an x-ray 

polycapillary full lens (manufactured by X-ray Optical Systems, USA) combined with a 

fine-focused x-ray tube. The polycapillary lens gave an x-ray micro beam with a beam 

size of 10 m at a focal distance of 2 mm. An x-ray tube with Mo anode (MCBM 

50-0.6B, manufactured by rtw, Germany) was operated 50 kV and 0.5 mA. A silicon 

drift detector, (SDD, XR-100CR, manufactured by Amptek Inc., USA) was employed to 

detect x-rays. The detection area was 50 mm2, and energy resolution was 130eV at Mn 

K. A spectrum was described by 2,048 channel, in energy range of 0-20 keV. 

A small volume of the standard solution was dropped on a glass plate. The dried 

residues obtained from the 2.5 ppm solution of Fe and Cu are shown in Fig. 2. The 

sample was scanned with a step of 10 m by using the x-y stage (YM05A-R1, Kohzu 

Precision Co. Ltd., Japan). XRF analysis was performed for 1 s or 10 s at each position. 



XRF mapping was performed for an area of 500 m x 500 m.  

 

3. Principal component analysis (PCA) 

Since a sample area of 500 m x 500 m was analyzed with a step of 10 m, 2,601 (= 

51 x 51) spectra were totally obtained, as illustrated in Fig.3 (a). The spectra set were 

constructed in the order of coordinate ((1, 1), (1, 2), …, (51, 51)), which was defined as 

“matrix-A” (Fig.3 (b)). An XRF spectrum was composed of 2,048 energy channels in 

our experimental condition. Since 2,601 spectra were obtained, matrix-A was composed 

of 2,601 (columns) x 2,048(lines), as shown in Fig. 3 (b). A square matrix was created 

from data matrix-A and transposed matrix AT, leading to eigenvalues and eigenvectors, 

as shown in Fig.3(c). The first eigenvector is expressed so that dispersion of the original 

data is smallest. Eigenvalues show how the corresponding eigenvector contributes to the 

original data. As shown in Fig. 3(d), the data matrix-A can be expressed with the 

following equation (1) using the eigenvectors (p) and score vectors (t) [9-12].  

A ൌ ଵ݌ଵݐ ൅ ଶ݌ଶݐ ൅ ⋯൅  ௡    (1)݌௡ݐ

The first principal component (t1p1) gives the largest contribution an approximation 

as to how an averaged spectrum for the whole data would look [8]. It is familiar 

approach that the parts of data are extracted by taking principal components [9]. Thus, 



the raw data (matrix-A) were interpreted by adding all inner vectors of the eigenvector 

and the corresponding score vector. Figure 4 shows the contribution of the eigenvalues 

with different basic components. We can recognize that the first and second principal 

components showed a large contribution to total eigenvalues. This means XRF data can 

be expressed with these principal components. Thus, we considered that the components 

labeled with the number more than three were a kind of noise factors, leading to 

background intensities. A new spectra data, matrix-B was reconstructed using only 

principal components after eliminating small contribution. Therefore, the data matrix B 

is given by the equation (2): 

B ൌ ଵ݌ଵݐ ൅  ଶ    (2)݌ଶݐ

Finally, we can re-cerate XRF spectrum using only principal components. Of course, 

we can make ROI for the obtained spectrum. Then, XRF maps could be re-constructed 

with small background.  

 

4. Applying PCA for micro-XRF imaging 

We measured Fe XRF images for the residue made from the Fe standard solution. 

Usually, XRF image is made from strong Fe K intensity. However, weak K peak on a 

relatively large background was used for Fe map in order to investigate how PCA is 



effective for reducing the background. Experimental Fe K image is shown in Fig. 5 (a). 

As described, Fe K image is not clear due to high background. PCA was applied for 

this data set. We can choose how many principal components should be included in new 

data matrix-B. Figures 5 (b)-(f) indicate the re-created images with different numbers of 

the components from 2 to 300. As the number is increased, the re-created image (shown 

in Fig. 5 (f)) approached to the original raw map (Fig. 5 (a)). In the present case, we 

considered that two principal components was the best to express the Fe distribution 

with good quality, as shown in Fig. 5 (b). 

Figure 6 (a) shows Cu K image obtained for Cu residue with a measurement time of 

1 s per pixel, while Figs.6 (c) and (e) were Cu K images obtained with different 

measurement times of 1 s and 10 s per pixel, respectively. The XRF images in the right 

side (Figs.6 (b), (d) and (f)) were recreated from the data matix-B including 

PCA-filtered spectra. Similarly, two principal components were applied. As shown in 

Fig.6 (b), the PCA-filtered Cu K image was close to the original one (Fig.6 (a)). That 

means, PCA was not so effective in the case where the XRF intensity was strong and 

originally clear image was obtained. The raw Cu K images shown in Figs.6 (c) and (e) 

were not so clear, because of the weak intensity and relative high background intensity. 

In these cases, the PCA-filtered XRF maps were clear compared to the original maps, as 



shown in Figs. 6 (d) and (f). This is because the PCA was so effective to reduce 

background intensity. 

A scatter plot is shown in Fig.7. This was drawn by using the first and second score 

vectors. Score vectors explains the dispersion of data towards the corresponding 

eigenvectors [12]. This dispersion shows the difference of spectra, which is called as 

“principal component score”. As shown in Fig. 7, 2,601 plots obtained from the Fe dried 

residue were divided into two clusters. Figures 8 (a) and (b) explain the principal 

component scores of the corresponding spectra shown in the first (t1) or second (t2) 

score vector, respectively. These plots showed cluster 1 and 2 consisted of spectra 

including Fe peak and other peaks, respectively. According to the above results, it was 

found that scatter plots were useful to classify and understand spectra obtained by XRF 

mapping. 

Finally, we investigated how PCA was effective for improving the quality of XRF 

images, regarding the image contrast and spatial resolution. Figure 9(a) shows the Fe 

K raw image, which is the same as Fig. 5(a). The red rectangle indicates the region 

where we evaluated the spatial resolution. We longitudinally integrated the XRF 

intensity in this region. The calculated values were plotted in Fig. 9(b), where the fitted 

sigmoid curve was also shown. 10 points in blue frame in the left side were analyzed as 



background intensities, and other 10 points in green frame in the right side were 

considered as Fe K intensities. While the standard deviation (SD) for background 

intensities was 7.31, the SD for Fe K intensities was 8.39. It was found that raw XRF 

data had a wide dispersion. After the sigmoid curve in Fig. 9(b) was differentiated, the 

Gaussian curve was obtained as shown in Fig.9(c). FWHM of the differential curve in 

Fig.9(c) was 32.4 m, which was considered as a spatial resolution. 

Figure 10(a) indicates the Fe K image after PCA as shown in Fig. 5(b). A clear 

image was shown. The SDs of background intensities and Fe K intensities were 

smaller than those for raw data, and the more reliable sigmoid curve was obtained in Fig. 

10(b). The evaluated differential curve in Fig.10(c) showed a superior spatial resolution, 

which was 13.9 m.  

Table 1 shows the evaluated SD values for the Fe K and background intensities, 

obtained for raw data and PCA-filtered data. S-B ratio in Table1 indicates the ratio of 

the averaged Fe K intensity to the averaged background intensity. Both S-B ratios were 

almost the same. However, the improvement of SDs for PCA-filtered data led clear 

constant of XRF images as shown in Fig. 10(a). In addition, the spatial resolution was 

also improved after PCA as shown in Table 1. 

 



5. Conclusions 

We performed XRF mapping for the dried residues. The obtained data matrix-A set 

was analyzed by PCA, leading to principal components. We recreated PCA-filtered 

XRF images by using the new data matrix-B, which was made from only principal 

components. PCA-filtered XRF images were clear with low background intensities, 

compared to the original raw images. It was also found that improvement of XRF image 

was effective in the case where the XRF intensity was weak. SDs of XRF intensities in 

PCA-filtered image were improved, leading to clear contrast of objective image on low 

background. Also, we confirmed that the spatial resolution in XRF images was 

improved by applying PCA.  
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Captions 

Table 1 Comparison with SD, S-B ratio and spatial resolution. 

 

Figure 1 Experimental setup used micro-XRF measurements for obtaining the 

elemental map. 

 

Figure 2 Dried residues on glass plate with a volume of 5 ml of 2.5 ppm standard Fe (a) 

and Cu (b) solutions. 

 

Figure 3 (a) Elemental image created from the spectra obtained by the micro-XRF 

measurement. (b) Data matrix A (2,601 (spectra) x 2,048 (energy channels). (c) The 

square matrix created by data matrix A and transposed matrix AT.(d) Data matrix A 

resolved into 2,048 eigenvectors and score vectors. 

 

Figure 4 Eigenvalues with different components (the product of eigenvector and score 

vector). 

 

Figure 5 (a) Micro-XRF image of Fe Kb obtained for the Fe residue (Fig.2(a)), and the 

PCA-filtered images with (b) 2 components, (c) 10 components, (d) 100 components, 

(e) 200 components, and (f) 300 components. 

 

Figure 6 (a) Cu K image obtained for the Cu residue (Fig.2(b)) with a measurement 

time of 1s per pixel. Cu K images with different measurement time of 1 s (c) and 10 s 

(e) per pixel. (b), (d), (f) reconstructed images with PCA-filtered spectra. 

 

Figure 7 Scatter plot by score vector t1 and t2, which were obtained from mapping for 

Fe dried residue. 

 

Figure 8 Principal component scores of the corresponding spectra explained by score 

vector t1 (a) and t2 (b). 

 

Figure 9 (a) Raw Fe K image. (b) Fe Kintensity plots. (c) Differential curve. 

 

Figure 10 (a) PCA-filtered Fe K image. (b) Fe K intensity plots. (c) Differential 

curve. 

 



SD for Fe Kb
intensities

SD for BG
intensities

S-B ratio Spatial resolution
[mm]

Raw data 8.39 7.31 1.92 32.4

PCA-filtered data 3.46 2.31 1.85 13.9

Table 1 Comparison of SD, S-B ratio and spatial resolution.



Figure 1 Experimental setup used micro-XRF

measurements for obtaining the elemental map.



Figure 2 Dried residues on glass plate with a

volume of 5 ml of 2.5 ppm standard Fe (a) and

Cu (b) solutions.



Figure 3 (a) Elemental image created from the spectra obtained by the micro-XRF measurement. (b) Data

matrix A (2,601 (spectra) x 2,048 (energy channels). (c) The square matrix created by data matrix A and

transposed matrix AT.(d) Data matrix A resolved into 2,048 eigenvectors and score vectors.
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Figure 4 Eigenvalues with different

components (the product of eigenvector and

score vector).
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Figure 5 (a) Micro-XRF image of Fe Kb obtained for the Fe residue

(Fig.2(a)), and the PCA-filtered images with (b) 2 components, (c) 10

components, (d) 100 components, (e) 200 components, and (f) 300

components.
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Figure 6 (a) Cu Ka image obtained for the Cu redidue (Fig.2(b)) with a measurement

time of 1s per pixel. Cu Kb images with different measurement time of 1 s (c) and 10 s (e)

per pixel. (b), (d), (f) reconstructed images with PCA-filtered spectra.
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Figure 7 Scatter plot by score vector t1 and

t2, which were obtained from mapping for

Fe dried residue.



Figure 8 Principal component scores of the corresponding

spectra explained by score vector t1 (a) and t2 (b).
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Figure 9 (a) Raw Fe Kb image. (b) Fe Kb intensity plots. (c) Differential curve.
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Figure 10  (a) PCA-filtered Fe Kb image. (b) Fe Kb intensity plots. (c) Differential 

curve.
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