Surface chemistry for cytosolic gene delivery and photothermal transgene expression by gold nanorods

Hirotaka Nakatsuji¹, Kelly Kawabata Galbraith², Junko Kurisu³, Hiroshi Imahori¹,³, Tatsuya Murakami³,⁴ & Mineko Kengaku²,³

Light-inducible gene regulation has great potential for remote and noninvasive control of the fate and function of target cells. One method to achieve such control is delivery of heat shock protein (HSP) promoter-driven protein expression vectors and photothermal heaters into the cells, followed by activation by illumination. In this study, we show that gold nanorods (AuNRs) functionalized with two conventional lipids, oleate and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), are capable of efficient transfection and quick photoactivation of the HSP promoter. Use of our AuNRs (DOTAP-AuNRs) was comparable to Lipofectamine 2000 in terms of transfection efficiency, while lower in cytotoxicity. Subsequent near-infrared laser (NIR) illumination of the cells transfected by DOTAP-AuNRs for 10 s induced time- and site-specific transgene expression without significant phototoxicity, to a degree similar to that of heating the entire culture dish for 30 min. Our mechanistic studies suggest that efficient transfection and quick photoactivation of the HSP promoter (HSP70b') are due to the promoted endosomal escape of DOTAP-AuNRs. We propose a novel protocol for NIR-inducible, site-directed gene expression using an unprecedented complex of the three conventional components capable of both transfection and photothermal heating.

Optical control of gene expression is an attractive strategy to study the function of genes of interest as well as to develop novel cancer therapy. One of the modalities to achieve such control is use of the photothermal effect as a trigger to activate heat shock protein (HSP) promoters. In vertebrates and invertebrates, HSP promoters are regulated by heat shock factor (HSF), a transcription factor that localizes in the cytosol in a dormant state under unstressed condition. HSF is activated in response to various cellular stresses, including heat, and induces the expression of downstream HSPs, whose functions are important for cellular defense. Therefore, activation of HSP promoter-driven gene expression by laser light is a powerful approach for spatial and temporal control of protein expression. In addition, use of a laser wavelength in the near-infrared (NIR) region (650–900 nm) for therapy may reduce the invasiveness of the photoactivation of HSP promoters, due to its reduced absorption by water and hemoglobin.

NIR activation of HSP promoters in mammalian cells have been previously reported in studies using NIR-responsive nanomaterials, such as carbon nanohorns, silica-gold nanoshells, hollow gold nanoparticles, and gold nanorods (AuNRs). In these studies, HSP promoter-driven vectors and NIR-responsive nanomaterials were separately introduced into cells, prior to NIR laser illumination for the nanomaterial-mediated photothermal heating of the cells. Among the above-mentioned nanomaterials, AuNRs have also been developed as gene delivery carriers via surface modification with cationic polymers. However, its relative transfection efficiency and feasibility as an intracellular photothermal heater have never been presented. A possible reason for the latter

¹Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. ²Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. ³Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan. ⁴Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa 5180, Imizu City, Toyama, 939-0398, Japan. Hirotaka Nakatsuji and Kelly Kawabata Galbraith contributed equally to this work. Correspondence and requests for materials should be addressed to T.M. (email: murakami@pu-toyama.ac.jp) or M.K. (email: kengaku@icems.kyoto-u.ac.jp)
may be the lack of knowledge regarding the surface chemistry of AuNRs capable of both efficient transfection and safe photoactivation. Given that the threshold temperature for HSP promoter activation and cell death is almost the same (ca. 42 °C)\(^9,^{20}\), a highly sensitive intracellular photothermal heating system is required for safe activation of HSP promoters. In this context, we previously reported that the control of the surface chemistry of AuNRs was essential to achieve safe photothermal heating of the plasma membrane over 43 °C\(^3\). In the present study, we prepared a series of surface-modified AuNRs with different cationic dispersants and found that AuNRs functionalized with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) showed comparable transfection efficiency to a commonly used transfection reagent, Lipofectamine 2000. Moreover, DOTAP-treated AuNRs (DOTAP-AuNRs) can efficiently photoactivate the concurrently transfected HSP promoter-driven vector with brief NIR illumination (10 s), without significant cytotoxicity.

Results

Preparation of AuNR/plasmid DNA complexes. As-synthesized AuNRs\(^{22}\) were first treated with oleate\(^{23}\) or poly(styrene sulfonate) (PSS)\(^{37}\), followed by one of the following cationic dispersants: DOTAP, poly(diallyldimethylammonium chloride) (PDDAC), polyethyleneimine (PEI), poly-L-lysine (PLL), or cationized HDL (catHDL) (Fig. 1a). We have previously reported that catHDL is a highly biocompatible and cell-interactive dispersant for AuNRs\(^{23}\). Oleate-treated AuNRs (oleate-AuNRs) were only used for catHDL and DOTAP, because the other cationic polyelectrolytes caused aggregation (Supplementary Fig. S1). DOTAP-AuNRs were prepared first by mixing oleate-AuNRs and DOTAP/sodium cholate micelles at a DOTAP/AuNR weight ratio of 10, followed by dialysis against PBS to remove cholate. All cationic AuNRs had intense absorption in the near infrared region, suggesting good colloidal stability in PBS (Fig. 1b). The presence of the cationic dispersant on the AuNR surface was confirmed by Zeta potential analysis (Fig. 1d) and IR spectroscopy (Supplementary Fig. S2).

Next, the pDNA-binding capacity of the cationic AuNRs was evaluated by agarose gel electrophoresis. Even in the presence of a control pDNA (pCMV-DsRed), colloidal stability was only slightly decreased for all AuNRs, except the PLL-treated AuNRs (PLL-AuNRs) (Fig. 1c). Furthermore, the amount of free pCMV-DsRed gradually decreased with increasing amount of cationic AuNRs, except in the case of catHDL-treated AuNRs (catHDL-AuNRs) (Fig. 1f, Supplementary Fig. S3), clearly demonstrating that all AuNRs other than catHDL-AuNRs showed significant DNA binding capability. At an AuNR/pDNA weight ratio of 10, more than 90% of the pCMV-DsRed added appeared to be bound to the cationic AuNRs, in all cases except the catHDL-AuNRs. Interestingly, the zeta potentials amongst the AuNR/pCMV-DsRed complexes at this ratio were dissimilar, despite using an equivalent amount of pCMV-DsRed (Fig. 1d). Only in the case of DOTAP-AuNRs, the zeta potential was significantly negatively shifted upon pCMV-DsRed binding. The reason for this apparent disparity is unclear at present, but these results may reflect possible differences in binding sites for pDNA, such as the outer surface or within the dispersant layer surrounding the AuNRs.

pDNA transfection efficiency. The transfection efficiency of AuNR/pCMV-DsRed complexes was evaluated using HEK293T cells and HeLa cells. Lipofection by Lipofectamine 2000 (LF2000) was used as a positive control. After 24 h of treatment, only DOTAP-AuNRs and PEI-treated AuNRs (PEI-AuNRs) showed significant transfection abilities in both HEK293T cells and HeLa cells, as observed by DsRed expression (Fig. 2a,b). In particular, DOTAP-AuNRs showed a comparable efficiency to LF2000 (Fig. 2b), while showing a lower cytotoxicity than LF2000 (Fig. 2c). To the best of our knowledge, this is the first demonstration that AuNRs are comparable to LF2000 in terms of pDNA transfection efficiency.

To gain insight into the mechanism of the high transfection ability of DOTAP-AuNRs, DOTAP- and PEI-AuNRs were compared from various viewpoints. Under our transfection condition (20 µg/mL AuNRs), all pCMV-DsRed added was bound to the AuNR surface (Fig. 1e). When compared by inductively coupled plasma (ICP) analysis (Supplementary Fig. S4), cells were observed to take up 20% more DOTAP-AuNRs than PEI-AuNRs, indicating higher pCMV-DsRed delivery by DOTAP-AuNRs. Next, we investigated the intracellular localization of the two AuNRs by confocal microscopy. We observed that the red fluorescence signal, indicating AuNR localization, was localized at the plasma membrane after 2 h of transfection (Fig. 2d, Supplementary Fig. S5), and then moved from the plasma membrane to the late endosomes/lysosomes (green) by 4 h of transfection in both DOTAP- and PEI-AuNR-treated cells (Fig. 2d, Supplementary Fig. S5). The colocalization ratios of the red pixels to green pixels after 4 h were calculated to be 79.0 ± 7.2% for DOTAP-AuNRs and 75.6 ± 8.2% for PEI-AuNRs (Fig. 2e). After 24 h, the DOTAP- and PEI-AuNRs appeared to have exited from the late endosomes/lysosomes and were dispersed in the cytoplasm. The colocalization ratios of the red and green fluorescence signals at 24 h decreased to 33.6 ± 8.2 and 48.1 ± 10.3% for DOTAP- and PEI-AuNRs, respectively (Fig. 2e). These results indicate that the higher transfection efficiency of DOTAP-AuNRs may be, at least in part, due to the higher cell uptake and endosomal escape. While the mechanism of the higher cell uptake of the negatively charged DOTAP complexes compared to that of the positively charged PEI complexes (Fig. 1d) remains to be elucidated, the higher endosomal escape may be explained by the ability of oleate to function as a helper lipid\(^{24}\).

To investigate whether our surface modification method using oleate and DOTAP may be applicable for other nanoparticles, we similarly treated magnetite nanoparticles. When oleate-coated magnetite nanoparticles were mixed with DOTAP at a weight ratio of 20, a stable colloidal dispersion was obtained (Supplementary Fig. S6). The transition of the zeta potential from negative to positive suggested surface modification with DOTAP (Supplementary Fig. S6). Like DOTAP-AuNRs, DOTAP-treated magnetite nanoparticles also showed higher transfection efficiency than PEI-treated magnetite nanoparticles, and was comparable to that of LF2000 (Supplementary Fig. S6). These results clearly demonstrate that our method may be generally applicable for any oleate-coated nanoparticle.

Before the laser illumination experiments, we sought to optimize the conditions for DOTAP-AuNR preparation by changing the DOTAP/AuNR weight ratio, based on transfection efficiency. At mixing ratios lower than...
Figure 1. Characterization of cationic AuNRs. (a) Schematic of preparation of cationic AuNR/pDNA complex. (b) UV-vis-NIR absorption spectra of various cationic AuNRs in PBS ([Au] = 20 µg/mL). All AuNRs have intense absorption in the NIR region, suggesting their high colloidal stability. (c) UV-vis-NIR absorption spectra of various cationic AuNRs after complexation with control plasmid DNA (pCMV-DsRed) in Opti-MEM ([Au] = 20 µg/mL). AuNR/pCMV-DsRed complexes were prepared by simply mixing AuNRs and pCMV-DsRed (w/w ratio = 10) for 20 min at room temperature. Significant broadening of the NIR plasmon peak is observed only for PLL-AuNRs. (d) Zeta potential data (mV, n = 3, average ± SD) of AuNRs before and after complexation with pCMV-DsRed in 10 mM Tris-HCl (pH 7.4). Only DOTAP-AuNRs show a large decrease in the zeta potential upon pCMV-DsRed addition. (e) Agarose gel shift assay. AuNRs were added to 10 µg/mL pCMV-DsRed solution at various w/w ratios. pCMV-DsRed was visualized by Gel Green. Numbers in the image indicate the w/w ratios of AuNRs to pCMV-DsRed. (f) Densitometric analysis of gel bands in (e). Values were calculated from the residual fluorescence intensity of free pCMV-DsRed (n = 3, average ± SD).
10, the colloidal stability and transfection efficiency of DOTAP-AuNRs were reduced (Supplementary Fig. S7). At a higher mixing ratio of 20, DOTAP-AuNRs also showed lower transfection efficiency, despite higher colloidal stability. Thus, DOTAP-AuNRs prepared at a DOTAP/AuNR weight ratio of 10 were used for the following laser illumination experiments.

Induction of protein expression by intracellular photothermal heating. We next performed photoinduced transgene expression using the DOTAP/AuNRs (Fig. 3a). We constructed a plasmid vector under the control of the human HSP70b' promoter and inserted the EGFP gene (pHSP70-EGFP). HEK293T cells cotransfected with pHSP70-EGFP and pCAG-tdTomato using LF2000 exhibited only tdTomato expression under normal conditions, while they showed a significant increase in EGFP expression following heat shock at 42 °C for 30 min or longer (Supplementary Fig. S8). Next, pHSP70-EGFP and pCMV-DsRed were cotransfected in HEK293T
cells using DOTAP-AuNRs. After 24 h, DsRed-positive cells in the targeted area (100 µm dia.) were illuminated at 780 nm using a NIR laser, and the resultant EGFP expression was evaluated after another 24 h. White broken circles indicate the illuminated area. Representative fluorescence images 24 h after illumination are shown in (b) and time lapse images after illumination are shown in (c). Scale bars = 100 µm in (b), 40 µm in (c). (d) Photoinduction efficiency for DOTAP-AuNRs (left) and LF2000 (right). Data were calculated based on the number of EGFP-positive cells/the number of DsRed positive (=photoinducible) cells within illuminated areas (n = 3, average ± SD). Data for the positive control were from cells incubated at 42 °C for 30 min (whole-cell heating). (e) Phototoxicity by intracellular photothermal heating. After illumination, cells were stained with Annexin-V and propidium iodine to detect apoptosis and necrosis, respectively. (f) Intracellular photothermal heating of AuNRs (780 nm, 6 W/mm²). The temperature around intracellular DOTAP-AuNRs was estimated utilizing the temperature dependence of Rho-PE fluorescence intensity (Fig. S9). Within a few seconds of illumination, the temperature reaches approximate 42 °C, which is the threshold temperature (42 °C) of HSP70b’ promoter activation. (g) Laser power intensity-dependence of the maximum temperature around illuminated AuNRs (n = 3, average ± SD).

Figure 3. Intracellular photothermal heating of HEK293T cells by DOTAP-AuNRs. (a) Schematic of photothermal induction of protein expression by AuNRs. HSP70b’ promoter-driven expression vector (pHSP70b) is transfected into cells by DOTAP-AuNRs and activated by brief NIR illumination. (b,c) Photoinduced EGFP expression in HEK293T cells. pHSP70-GFP and pCMV-DsRed were cotransfected by DOTAP-AuNRs. After 24 h, DsRed-positive cells were illuminated at 780 nm (6 W/mm², 10 s). White broken circles indicate the illuminated area. Representative fluorescence images 24 h after illumination are shown in (b) and time lapse images after illumination are shown in (c). Scale bars = 100 µm in (b), 40 µm in (c). (d) Photoinduction efficiency for DOTAP-AuNRs (left) and LF2000 (right). Data were calculated based on the number of EGFP-positive cells/the number of DsRed positive (=photoinducible) cells within illuminated areas (n = 3, average ± SD). Data for the positive control were from cells incubated at 42 °C for 30 min (whole-cell heating). (e) Phototoxicity by intracellular photothermal heating. After illumination, cells were stained with Annexin-V and propidium iodine to detect apoptosis and necrosis, respectively. (f) Intracellular photothermal heating of AuNRs (780 nm, 6 W/mm²). The temperature around intracellular DOTAP-AuNRs was estimated utilizing the temperature dependence of Rho-PE fluorescence intensity (Fig. S9). Within a few seconds of illumination, the temperature reaches approximate 42 °C, which is the threshold temperature (42 °C) of HSP70b’ promoter activation. (g) Laser power intensity-dependence of the maximum temperature around illuminated AuNRs (n = 3, average ± SD).
with the results in Fig. 3d, and demonstrate that intracellular photothermal heating by AuNRs is the main mechanism of HSP promoter-driven EGFP expression induction. These results clearly demonstrate that the HSP70b' promoter can be safely driven by NIR illumination of the transfected carrier AuNRs in the cells.

As a proof of concept of the time- and site-specific activation of gene expression achievable by use of our system, we next attempted to develop a new method for therapeutic gene delivery to cancer cells. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type-II transmembrane ligand that specifically induces apoptosis in many transformed cell lines by activating the death receptors DR4 and DR5, while having little effect on normal cells25, 26. We constructed an expression vector for an N’terminus-tagged eGFP-TRAIL fusion product, which has been shown to be effective in killing various tumor cell lines 27, driven by the HSP70b’ promoter (pHSP70-EGFP-TRAIL) and transfected it into HeLa cells by LF2000. HeLa cells are derived from human cervical cancer and are thus sensitive to apoptotic activity of TRAIL28. We confirmed that heat shock induced significant cell death of HeLa cells transfected with pHSP70-EGFP-TRAIL, but not those with pHSP70-EGFP (Supplementary Fig. S11). Next, pHSP70-EGFP-TRAIL was cotransfected with pCMV-DsRed using DOTAP-AuNR and photoactivated by NIR laser under a time-lapse fluorescent microscope. DsRed-positive cells in the illuminated area (200 µm dia.) progressively showed typical morphological changes of apoptotic cells within 6 h of observation (Supplementary Movie S1). We also occasionally detected similar apoptotic changes of neighboring cells (arrowhead in Fig. 4a). The cell death rate of TRAIL-expressing cells was significantly higher than control cells (Fig. 4b), demonstrating that NIR-induced transgene expression, and not photoheating itself, could induce cell death. Thus, our DOTAP-AuNRs may have potential application in the molecular therapy of cancer.

Discussion
In the present study, we achieved photoinduction of transgene expression by brief illumination for 10 s, which is quite short considering that in the case of whole-cell heating, 30 min is necessary to induce comparable photoinduction (Supplementary Fig. S8). These results suggest that there may be some differences in the sensitivity
of cells between intracellular localized heating and whole-cell heating. However, studies using similar NIR laser setups have reported that both brief (<1 s) and long (>10 min) illuminations were sufficient for activation of heat shock promoters10–12. Therefore, other experimental factors, e.g., photothermal heating conditions, may also have some effect on the duration of heating required for HSP promoter activation. One previous study utilized IR-LEGO as a source of illumination, which exploits direct heating of water molecules by 1480 nm laser illumination at >20,000 W/mm². While IR-LEGO is a powerful technique available for activation of HSP promoters, to date, its application has been limited to transgenic cold-blooded animals or plants, which precludes simple comparison with our study using mammalian cells. Andersson et al. have demonstrated that PEI-coated AuNRs can induce plasmid-based HSP promoter-driven transgene expression in mammalian cells by 800 mW pulse-laser illumination of a comparable intensity (2 s at 5–15 W/mm²) to the present study (10 s at 6 W/mm²). On the other hand, two other studies utilized relatively long illuminations to activate HSP promoters; intracellular carbon nanohorns10, silica-gold nanoshells11, and hollow gold nanoparticles11 were illuminated with a continuous-wave (CW) laser for 5 min at 5 mW/mm² for 15 min at 20 mW/mm², respectively. These experimental conditions are summarized in Table 1. Among the possible parameters that may affect the photothermal heating of the nanomaterials, laser emission mode may be excluded due to our observation of similar levels of activation by DOTAP-AuNRs illuminated by either pulsed or CW laser (Supplementary Fig. S12). Furthermore, considering that these nanomaterials have similar photothermal conversion efficiencies, it may be concluded that high laser power density is a key factor underlying the differences in reported required illumination time.

Table 1. Laser illumination parameters used in photoactivation studies with nanomaterials. 1Silica-gold nanoshell; 2Hollow gold nanoparticle.

![Laser parameter comparison table](#)

In conclusion, we have developed a new method for the surface modification of AuNRs with oleate and DOTAP, which enables simultaneous transfection of plasmid DNAs and heat-generating AuNRs at an unexpectedly high efficiency. The former function was also conferred on magnetite nanoparticles by this surface modification. This system using a new combination of three “old” components provides a unique opportunity for site-directed, light-inducible transgene expression in mammalian cells by a NIR laser, with minimal phototoxicity. By using this system, we have successfully induced cancer-cell specific apoptosis by NIR illumination-driven gene expression in vitro. It remains to be clarified to what degree of dependence heat shock pathway activation is influenced by the subcellular localization of heat generation. Further study is also needed on the delivery and photoactivation of DOTAP-AuNRs in tumor tissues in vivo. However, the precise spatiotemporal control of gene expression in mammalian cells by single transfection using DOTAP-AuNRs and NIR light will pave the way for applications in cell biology studies as well as less-invasive therapies.

Methods

General reagents were purchased from Nacalai Tesque (Kyoto, Japan). Gold(III) chloride, sodium borohydride, PSS, PDDAC, PEI, and PLL were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Silver nitrate, L(+)-ascorbic acid, sodium oleate, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sodium cholate, Gold ICP-MS Standard, and the lactate dehydrogenase (LDH) assay kit were obtained from Wako (Osaka, Japan). Rho-PE and DOTAP were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). Opti-MEM, LF2000, LysoTracker Green DND-26 (LysoTracker), and fetal bovine serum (FBS) were obtained from Life Technologies (Carlsbad, CA, USA). Escherichia coli strain BL21 was purchased from Novagen (Madison, WI, USA). Spectra/ Por Dialysis membranes (MWCO 50 kDa) were purchased from Spectrum Laboratories (Rancho Dominguez, CA, USA). NAP-5 columns were purchased from GE Healthcare UK Ltd. (Buckinghamshire, UK). Cell culture dishes and trypsin/EDTA were obtained from BD Biosciences (San Jose, CA, USA). Glass-based dishes with or
without grid lines were purchased from Matsunami Glass Co. Ltd. (Osaka, Japan). Annexin V-FITC and propidium iodide were obtained from Funakoshi (Tokyo, Japan). Cell Counting Kit-8 was obtained from Dojindo (Kumamoto, Japan).

Plasmids. pDsRed-monomer-N1 (pCMV-DsRed) was obtained from Takara Bio Inc. (Shiga, Japan). pCI-neo mammalian expression vector was obtained from Promega. (WI, USA). To generate the pHS70-pEGFP plasmid, a 450-bp DNA fragment containing the −456/−6 bp region (relative to translation start) of the human HSP70B gene HSPA6 (NCBI Accession No. DQ521571) was amplified with Asel and HinDIII restriction sites from human genomic DNA by polymerase chain reaction (PCR) using primers #1 and #2 (see Table S1). The PCR product was digested and inserted into the Asel and HinDIII sites of pEGFP-N1 (catalog 6085-1, Clontech, CA, USA). pCAG-tDTomato, encoding tDTomato under control of the CMV enhancer and chicken β-actin promoter, was constructed as previously described. Generation of the pHS70-pEGFP-TRAIL plasmid, whose expression results in a fusion protein of TRAIL tagged with EGFP at its N-terminus, was performed as follows. pHS70-EGFP was digested with BamHII and NotI to remove the EGFP and stop codon. An EGFP fragment was amplified by PCR with primers #3 and #4 from pEGFP-N1. A TRAIL fragment was amplified by primers #5 and #6 from a human cDNA library (NCBI Accession No. U37518.1). The EGFP and TRAIL fragments were inserted in frame into the digested pEGFP-N1 vector using the In-Fusion HD cloning kit (Clontech, Mountain View, CA, USA). Correct construction of all plasmids was confirmed with sequence analysis.

Preparation of AuNRs. AuNRs were prepared according to a seed-mediated growth method. The seed solution was prepared by adding 600 µL of ice-cold 0.6 mM NaBH₄ solution in 10 mL of HAuCl₄ aqueous solution (HAuCl₄, 0.01 mM; CTAB, 0.1 M). This solution was vigorously stirred at 30 °C for 30 min. The seed solution was then added to 30 mL growth solution. Synthesized AuNRs were centrifuged at 20,000 × g for 20 min and dispersed in 0.1 M CTAB solution to remove impurities.

Preparation of cationized AuNRs. Cationic polyelectrolyte-coated AuNRs were prepared by a layer-by-layer assembly method. As-prepared AuNR dispersion (0.1 mg/mL, 1 mL) was centrifuged at 20,000 × g for 20 min and dispersed in PSS solution (2 mg/mL, PSS in 6 mM NaCl, 10 mL). After stirring at room temperature for 3 h, the dispersion was centrifuged at 20,000 × g for 10 min and dispersed in deionized H₂O (1 mL). PSS-treated AuNRs (PSS-AuNRs) were centrifuged at 20,000 × g for 10 min and dispersed in each polyelectrolyte solution (2 mg/mL in 6 mM NaCl, 10 mL). Each AuNR dispersion was stirred at room temperature for 3 h to allow coating of PSS-AuNRs with the cationic polyelectrolytes, and then washed with PBS to remove free polyelectrolytes. catHDL and catHDL-AuNRs were prepared as described elsewhere. Briefly, a cationic peptide (YGRKKRRQRRR)-fused apoA-I truncate, without its first 43 amino acids of the N-terminal, and a mixture of POPC and DOTAP at a molecular ratio of 7:3 were mixed at a lipid/protein molar ratio of 250. The resulting catHDL was purified by dialysis and centrifugation. As-prepared AuNRs were treated with sodium oleate in deionized H₂O. Oleate-AuNRs were incubated at 50 °C for 1 h with catHDL at a protein/Au weight ratio of 0.4:1 to yield catHDL-AuNRs. The catHDL-AuNRs were then washed with PBS to remove free catHDL.

DOTAP-AuNRs were prepared by simply mixing oleate-AuNRs and 10 mg/mL DOTAP, which was solubilized in PBS containing 30 mg/mL sodium cholate at 37 °C for 2 h, at a weight ratio of 1:10. The mixture was dialyzed against PBS to remove sodium cholate. DOTAP-AuNRs were washed with PBS to remove any debris.

Characterization of AuNRs. UV/vis/NIR absorption spectra were measured with a JASCO V-730 spectrometer (Tokyo, Japan). The zeta potential of all AuNRs was measured in 10 mM Tris-HCl (pH 7.0) with a Malvern Zetasizer Nano Z (Worcestershire, UK).

Cell culture. Human embryonic kidney HEK293T cells and HeLa cells were maintained in DMEM supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. Cells were cultured in 5% CO₂ and 95% humidified air at 37 °C and passaged every 2–3 days.

Plasmid DNA (pDNA) transfection by cationic AuNRs. Cells were seeded in 96-well plates at 2 × 10⁴ cells/well and incubated for 24 h before transfection. AuNR/pDNA complexes were prepared in 100 µL Opti-MEM by simple mixing of 1 µg pCMV-DsRed and 10 µg of AuNRs, and incubation at room temperature for 20 min. Lipotransfection using LF2000 was performed according to the manufacturer’s protocol. LF2000 (1 µL) and pCMV-DsRed (1 µg) were mixed in 25 µL Opti-MEM at room temperature for 20 min. The mixture was diluted with cell culture media (75 µL) and added to each well without purification. After incubation for 24 h, cells were harvested with trypsin/EDTA, centrifuged, and resuspended in culture media. Transfection efficiency for resuspended cells was evaluated by a Millipore Guava easyCyte flow cytometer (MA, USA). Cell viability was evaluated using a Cell Count Kit-8 and a Molecular Devices Spectra Max M2 microplate reader (Sunnyvale, CA, USA).

Intracellular localization. Intracellular localization of AuNR/pDNA complexes was evaluated by a Fluoview FV10i confocal microscope (Olympus, Tokyo, Japan). Fluorescently labeled DOTAP-AuNRs were prepared by mixing oleate-treated AuNRs and 10 mg/mL DOTAP containing 1 mol% Rho-PE, which was solubilized in PBS containing 30 mg/mL sodium cholate at 37 °C for 2 h, at a weight ratio of 1:10. Fluorescently labeled PEI-AuNRs were prepared by mixing PEI-AuNRs and an amine-reactive fluorescent dye, Alexa Fluor 546 NHS ester (Thermo Fisher, Waltham, MA, USA), in 0.1 M sodium bicarbonate at a w/w ratio of 100:1. Free Alexa Fluor 546 NHS Ester was removed by NAP-5 columns. AuNR/pDNA complex were prepared by using cationized AuNRs and pCI-neo vector plasmid. HEK293 cells were seeded in glass-based dishes at 2 × 10⁴ cells/cm² and
treated with fluorescently labeled DOTAP-AuNR/pDNA or PEI-AuNR/pDNA complexes in the same manner as the pDNA transfection experiments described above. After 2, 4, or 24 h, the late endosomes/lysosomes were stained with LysoTracker.

Activation of gene expression by heat and light. AuNR/pDNA complexes were prepared in 100 µL Opti-MEM by mixing 1 µg of pHSP70-EGFP, 0.5 µg of pCMV-DsRed and 10 µg of AuNR solution. Cells were seeded in glass-based dishes with an imprinted grid (Iwaki, Shizuoka, Japan) at 2 × 10⁴ cells/cm². Cells were transfected with pDNAs or AuNR/pDNA complexes as described above and incubated for 24 h at 37°C. Heat shock was carried out by replacing the culture media with prewarmed (42°C) media and incubating the dishes in a CO2 incubator at 42°C for 10–60 min, as indicated. For NIR illumination, cells were washed with fresh media and a circular area approximately 200 µm in diameter was illuminated at 780 nm for 10–60 s at 50–300 mW (1.5–9 W/ mm²) using an ECLIPSE Ti epifluorescence microscope (Nikon, Tokyo, Japan) equipped with 20× objective lens (NA 0.75, Nikon), a beam expander, a Chameleon femtosecond-pulsed laser (Coherent, CA, USA), and an ORCA-flash 4.0 digital camera (HAMAMATSU, Shizuoka, Japan). Cells were fixed after 24 h incubation for evaluation of DsRed and EGFP expression in the illuminated area by an FV1000 fluorescence microscope (Olympus). For time-lapse imaging, cells were placed in an LCV100 incubator microscope (Olympus) with a 20× objective lens (NA 0.7, Olympus) immediately following illumination, and imaged at 10–15 min intervals for 18 h.

Phototoxicity assay. The cells were fixed at 24 h after NIR laser illumination and stained with annexin V-FITC and propidium iodine according to the manufacturer’s protocol. The percentages of live, early apoptotic, and late apoptotic/necrotic cells were determined by counting over 100 cells in the illuminated area.

ICP analysis of cationic AuNRs in cells. The cells were incubated for 24 h after NIR laser illumination and then scraped after washing with PBS twice. Harvested cells were incubated in aqua regia for 10 min, and dried on a block heater. The residue was dissolved in 1000 µL of 1 M HCl and Au content was quantified by a Shimadzu plasma atomic emission spectrometer ICPE-9000 (Kyoto, Japan).

Intracellular temperature measurement. DOTAP-AuNRs were fluorescently labeled with 1 w/w% Rho-PE and transfected into HEK293T cells by the protocol described above. Under illumination at 780 nm, the temperature rise around the AuNRs inside the cell was estimated by measuring the fluorescence intensity of Rho-PE using a fluorescent microscope (Eclipse Ti, Nikon). Fluorescence intensity data were converted to temperature data using a linear calibration curve obtained for a Rho-PE labeled AuNR dispersion in PBS.

References

Acknowledgements
This work was supported by the KAKENHI of the Japan Society for the Promotion of Science (JSPS) to M.K. (#16H06484) and T.M. (#15H00811), the iCeMS exploratory grant to M.K. and T.M., and by the JSPS Fellowship for Young Scientists to K.K.G. (#16J11619).

Author Contributions
H.N. and K.K.G. equally contributed to the study. H.I., T.M. and M.K. conceived and designed the experiments. H.N., K.K.G. and J.K. performed the experiments and analyzed the data. H.N., K.K.G., T.M. and M.K. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-04912-1

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017