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Abstract. It is proved that the h-transform of the killed process for one-
dimensional diffusions with respect to the scale function is weakly continuous
with respect to the starting point. A similar result is obtained for its bridges.

1. Introduction

Let M = {X, (Px)x≥0} be the canonical representation of a one-dimensional
diffusion process, where we assume that 0 is an instantaneously reflecting boundary
as well as a regular recurrent state. We write S for the scale function of M , with
S(0) = 0 and S(∞) = ∞, m for the speed measure and G = d

dm
d
dS

for the canonical
form of the infinitesimal generator of M . Following [1], we adopt the canonical path
space as the set of real-valued continuous paths w which are defined on [0, ζ(w)] with
lifetime ζ(w) ∈ (0,∞) or on [0,∞) with ζ(w) = ∞. Let X = (Xt, t ≥ 0) denote the
coordinate process, (Ft, t ≥ 0) the natural filtration and Hx = inf{t : Xt = x}. Let
n denote the Itô measure of M normalized by n(Hx < ζ) = 1/S(x) for all x > 0.

We may define M↑ = {X, (P ↑
x )x≥0} as follows:

P ↑
x (A; t < ζ) =

Ex[1AS(Xt); t < H0]

S(x)
(x > 0)(1.1)

and

P ↑
0 (A; t < ζ) = n[1AS(Xt); t < ζ](1.2)

for A ∈ Ft and t > 0. (Note that M↑ is not conservative when m(∞) < ∞; see
[10].) The process M↑ = {X, (P ↑

x )x≥0} appears in certain representations of the
Itô measure and in conditioning to avoid zero; see [8], [7], [9] and [10]. A natural
question arises: does the following weak convergence hold?

P ↑
x

w
−→ P ↑

0 as x ↓ 0.(1.3)

We also study the M↑-bridges. We denote by P ↑,u
x,y the law of the M↑-bridge of

duration u, starting at x and ending at y, which may be defined via h-transforms
(see [5] and [2]) as follows:

P ↑,u
x,y (A) = E↑

x

[
1A
p↑u−t(Xt, y)

p↑u(x, y)
; t < ζ

]
(x, y ≥ 0),(1.4)
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for A ∈ Ft and 0 < t < u, where p↑u(x, y) denotes the transition density of M ↑

with respect to its speed measure. We may now raise a natural question: does the
following weak convergence hold?

P ↑,u
x,y

w
−→ P ↑,u

0,0 as x, y ↓ 0.(1.5)

The statements (1.3) and (1.5) of weak convergence have been taken for granted
in [7] and [9]. The aim of this paper is to give proofs for (1.3) and (1.5). Note that
similar problems have been discussed in different settings in [4] and [2].

The organization of the paper is as follows. In Section 2, we recall basic facts
about M↑ and its bridges. In Section 3, we prove weak convergence results for these
processes.

2. Notation and basic facts

We need several notation and basic facts about M ↑ and its bridges; The proofs
of all the assertions in this section can be found in [8].

We write M̂ = {X, (P̂x)x≥0} for the process obtained by killing M at H0, i.e.,

P̂x(A; t < ζ) = Px(A; t < H0)(2.1)

forA ∈ Ft and t > 0. There exists a continuous density of the transition probability:

P̂x(Xt ∈ dy; t < ζ) = p̂t(x, y)m(dy).(2.2)

We may choose

m↑(dy) = (S(y))2m(dy), S↑(x) = −
1

S(x)
.(2.3)

as the speed measure m↑ and the scale function S↑ for M↑, respectively. There
exists a continuous density of the transition probability:

P ↑
x (Xt ∈ dy; t < ζ) = p↑t (x, y)m

↑(dy),(2.4)

where the densities p↑t (x, y) and p̂t(x, y) are connected by the relation

p↑t (x, y) =
p̂t(x, y)

S(x)S(y)
, x, y > 0.(2.5)

Note that p↑t (x, y) may be continuously extended for x, y ≥ 0 for all t > 0. We have
the Chapman–Kolmogorov identity:

p↑t+s(x, z) =

∫ ∞

0

p↑t (x, y)p
↑
s(y, z)m

↑(dy), t, s > 0, x, z ≥ 0.(2.6)

The boundary values of p↑t (x, y) for x = 0 or y = 0 play the following roles. The
law of the lifetime of a generic excursion is given as

n(ζ ∈ dt) = p↑t (0, 0)dt.(2.7)

If we set

fx0(t) := p↑t (0, x)S(x) = p↑t (x, 0)S(x) = lim
y↓0

p̂t(x, y)

S(y)
, x > 0.(2.8)

Then fx0(t) is a density of the hitting time of 0:

Px(H0 ∈ dt) = fx0(t)dt(2.9)
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and at the same time it is a density of the entrance law of the Itô measure:

n(Xt ∈ dx; t < ζ) = fx0(t)m(dx).(2.10)

We make a remark on connection between M ↑-bridges and M̂-bridges. We de-

note by P̂ ux,y for x, y > 0 the law of the M̂ -bridge of duration u, starting at x and
ending at y, i.e.,

P̂ ux,y(A) = Êx

[
1A
p̂u−t(Xt, y)

p̂u(x, y)
; t < ζ

]
(2.11)

for A ∈ Ft and 0 < t < u. It is now obvious by definition that

P̂ ux,y = P ↑,u
x,y (x, y > 0).(2.12)

3. Weak convergence results

For 0 < u ≤ ∞, let C([0, u)) denote the space of continuous functions on [0, u)
equipped with the topology of compact uniform convergence. For probability mea-

sures on C([0, u)), we write Pn
w

−→ P if Pn converges weakly to P , while we write

Pn
f.d.
−→ P if the finite-dimensional distributions of Pn converges weakly to those of

P . It is well-known that the following conditions are equivalent:

(a) Pn
w

−→ P ;

(b) Pn
f.d.
−→ P and {Pn} is tight;

(c) Pn ◦ (X |[0,t))
−1 w

−→ P ◦ (X |[0,t))
−1 for all t ∈ [0, u).

For tightness, we utilize [6, Theorem VI.16], which asserts that, a sequence
{X,Pn} of canonical processes on C([0,∞)) is tight if the following Aldous condition

is satisfied: for any t0 > 0,

X(ρn + δn) −X(ρn) → 0 in probability(3.1)

holds for all sequence {δn} of positive numbers converging to zero and all sequence
{ρn} of stopping times taking values in [0, t0].

We have defined P ↑
x for x > 0 and P ↑

0 in manners which are different from each
other. As it was stated in [7] and [9] without proof, we may thus concern continuity
of P ↑

x at x = 0.

Theorem 1. P ↑
x

w
−→ P ↑

0 as x ↓ 0.

Proof. Let {xn} be an arbitrary sequence such that xn ↓ 0. By the strong Markov
property of {X, (P ↑

x )x≥0}, we have

E↑
xn

[F (Xt : t ≥ 0)] = E↑
0

[
F (Xt+Hxn

: t ≥ 0)
]

(3.2)

for all bounded continuous functional F on C([0,∞)). We thus see that P ↑
xn

w
−→ P ↑

0

if and only if P ↑
0 ◦ (Xn)−1 w

−→ P ↑
0 , where Xn

t = Xt+Hxn
.

Let 0 < t1 < · · · < tm and let f1, . . . , fm be bounded continuous functions. Since

E↑
0

[
m∏

k=1

fk(X
n
tk

)

]
= E↑

0

[
m∏

k=1

fk(Xtk+Hxn
)

]
(3.3)

and since Hxn
↓ H0, P

↑
0 -a.s., we obtain P ↑

0 ◦ (Xn)−1 f.d.
−→ P ↑

0 by the dominated
convergence theorem.
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For any ε > 0, we have

P ↑
0

(
|Xn

ρn+δn
−Xn

ρn
| > ε

)
= P ↑

0

(
|Xρn+δn+Hxn

−Xρn+Hxn
| > ε

)
.(3.4)

Since t 7→ Xt is uniformly continuous on compact intervals P ↑
0 -a.s., we obtain that

the Aldous condition is satisfied. �

Remark 1. As another proof Theorem 1 can be deduced from a recently ob-
tained general theorem of Dereich–Döring–Kyprianou [3, Proposition 7]. Our pro-
cess {X, (P ↑

x )x≥0} trivially satisfies all its assumptions except the following:

lim
ε↓0

lim sup
x↓0

E↑
x[Hε] = 0.(3.5)

Let us verify that (3.5) is satisfied. Note that we have

E↑
x[e

−λHε ] =
R↑

λ(x, ε)

R↑
λ(ε, ε)

=
ψλ(x)/S(x)

ψλ(ε)/S(ε)
, λ > 0, 0 < x < ε,(3.6)

where the function R↑

λ(x, y) stands for the resolvent density of {X, (P ↑
x )x≥0} with

respect to m↑(dy), and ψλ(x) for the non-negative increasing function satisfying

ψλ(x) = S(x) + λ

∫

(0,x]

(S(x) − S(y))ψλ(y)m(dy).(3.7)

Note that the second identity of (3.6) comes from [8, (3.7) and (3.33)] ([8, (3.7)]
must be corrected as G(λ, x, y) = ψλ(x)gλ(y) for 0 < x ≤ y < l). We thus obtain

E↑
x[Hε] = lim

λ↓0

1

λ
E↑
x[1 − e−λHε ] = lim

λ↓0

ψλ(ε)
S(ε) − ψλ(x)

S(x)

λ · ψλ(ε)
S(ε)

(3.8)

=

∫

(0,ε]

S(ε) − S(y)

S(ε)
S(y)m(dy) −

∫

(0,x]

S(x) − S(y)

S(x)
S(y)m(dy),(3.9)

which yields (3.5) by the fact that S is continuous and S(0) = 0.

We now concern continuity of P ↑,u
x,y at (x, y) with xy = 0.

Theorem 2. It holds that P ↑,u
x,y

w
−→ P ↑,u

x,0 as y ↓ 0 for x > 0, P ↑,u
x,y

w
−→ P ↑,u

0,y as x ↓ 0

for y > 0 and P ↑,u
x,y

w
−→ P ↑,u

0,0 as x, y ↓ 0.

Proof. We only prove the last claim; the other two claims can be proved similary.
Let {xn} and {yn} be arbitrary sequences such that xn ↓ 0 and yn ↓ 0. Let

t ∈ [0, u) be fixed. By (1.4) and by the strong Markov property of {X, (P ↑
x )x≥0},

we have

E↑,u
xn,yn

[F (Xs : s ∈ [0, t))] =E↑
xn

[
p↑u−t(Xt, yn)

p↑u(xn, yn)
F (Xs : s ∈ [0, t))

]
(3.10)

=E↑
0

[
p↑u−t(Xt+Hxn

, yn)

p↑u(xn, yn)
F (Xs+Hxn

: s ∈ [0, t))

]
(3.11)

and

E↑,u
0,0 [F (Xs : s ∈ [0, t))] =E↑

0

[
p↑u−t(Xt, 0)

p↑u(0, 0)
F (Xs : s ∈ [0, t))

]
(3.12)
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for all bounded continuous functional F on C([0, t)). Let us define probability
measures P tn and P t on C([0,∞)) by

Etn[F (Xs : s ≥ 0)] =E↑
0

[
p↑u−t(Xt+Hxn

, yn)

p↑u(xn, yn)
F (Xs+Hxn

: s ≥ 0)

]
(3.13)

and

Et[F (Xs : s ≥ 0)] =E↑
0

[
p↑u−t(Xt, 0)

p↑u(0, 0)
F (Xs : s ≥ 0)

]
.(3.14)

We thus see that our desired convergence P ↑,u
xn,yn

w
−→ P ↑,u

0,0 as probability measures

on C([0, u)) is implied by the convergence P tn
w

−→ P t as probability measures on
C([0,∞)) for all t ∈ [0, u).

Let us prove that

p↑u−t(Xt+Hxn
, yn)

p↑u(xn, yn)
→

p↑u−t(Xt, 0)

p↑u(0, 0)
in L1(P ↑

0 ).(3.15)

Since Hxn
↓ H0, P

↑
0 -a.s. and since p↑u−t(x, y) is jointly continuous in x and y, we see

that the P ↑
0 -a.s. convergence in (3.15) holds. Since all the expectations equal to one

by the Chapman–Kolmogorov identity, we obtain the L1-convergence by Scheffé’s
lemma.

Let 0 < t1 < · · · < tm and let f1, . . . , fm be continuous functions with compact
support. Note that we have

Etn

[
m∏

k=1

fk(Xtk )

]
= E↑

0

[
p↑u−t(Xt+Hxn

, yn)

p↑u(xn, yn)

m∏

k=1

fk(Xtk+Hxn
)

]
.(3.16)

Since
∏m
k=1 fk(Xtk+Hxn

) is uniformly bounded and convergesP ↑
0 -a.s. to

∏m
k=1 fk(Xtk ),

and since we have the L1-convergence (3.15), we obtain P tn
f.d.
−→ P t.

For tightness, let us verify the Aldous condition. For ε > 0, we need to prove

lim
n→∞

E↑
0

[
p↑u−t(Xt+Hxn

, yn)

p↑u(xn, yn)
; |Xρn+δn+Hxn

−Xρn+Hxn
| > ε

]
= 0.(3.17)

Since t 7→ Xt is uniformly continuous on compact intervals P ↑
0 -a.s., we see that

lim
n→∞

E↑
0

[
p↑u−t(Xt, 0)

p↑u(0, 0)
; |Xρn+δn+Hxn

−Xρn+Hxn
| > ε

]
= 0.(3.18)

Combining this convergence together with the L1-convergence (3.15), we obtain
(3.17). The proof is now complete. �
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