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Abstract 

Flexible Job-shop Scheduling Problem (fJSP) is a typical and important scheduling problem in Flexible Manufacturing 
System (FMS). The fJSP is an extended version of Job-shop Scheduling (JSP) that is NP hard problem. Due to it according with 
the real production system, we adopt a hybrid evolutionary computation algorithm to solve the fJSP problems. Among them, the 
Bayesian Optimization Algorithm (BOA) is introduced to the characteristics of scheduling and uncertainty characteristics of the 
time in the fJSP. On this basis, we propose a distributed evolutionary algorithm and parameter adaptive mechanism. Finally, 
through experiments, we conclude that the proposed hybrid evolutionary algorithm based on BOA with grouping mechanism get 
better solution than original algorithm and improve robustness of algorithm. Meanwhile, the paper also have objective 
perspective, that is we can group the data different from each other, make the whole population into sub-populations, and then 
make the experiment separately on different and parallel machines in distributed environment, so that not only optimizes the best 
solution, but also enhance the efficiency and shortened the time. 
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1. Introduction 

In today’s society, the scheduling models often need to adapt to different application requirements, and designing 
the scheduling model one by one for each customer’s demands is clearly unrealistic, so the highly flexible 
scheduling is particularly important. In this paper, we introduce a fJSP (flexible Job-shop Scheduling Problem) 
model to simulate the automatic scheduling for a flexible manufacturing model. The fJSP as an extension of Job-
shop Scheduling Problem (JSP) is a typical combinatorial optimization problem and it is a NP-hard problem under 
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the constraint of priorities and resources (Lawler, 1993; Gen & Cheng, 2000; Gen, Gao & Lin, 2009). Meanwhile, it 
has the characteristics of resources non-uniqueness: for an operation, it can choose the machine in available set to 
complete. For a traditional JSP (tJSP), researchers often propose the following assumption: for an operation, 
machine and processing time are fixed. With the development, multi-purpose equipment is replacing traditional 
equipment in order to increase efficiency and decrease cost in manufacturing. Therefore, considering the fJSP 
research is closer to the actual production mode. 

Recently, Xing provided an effective integration between Ant Colony Optimization (ACO) models and applies 
the existing knowledge to guide the current heuristic searching, and indicates that the proposed algorithm is effective 
(Xing, et al, 2010). Zhang proposed algorithm with Global Selection (GS) and Local Selection (LS) routines 
designed to generate high-quality initial population in the initialization stage for minimizing makespan (Zhang, 
2011). Nouri, et al proposed a combined genetic algorithm and tabu search with a scheduler agent applying a 
Neighborhood-based Genetic Algorithm (NGA) to guide the research in promising regions (Nouri, et al, 2015). 
Chang and Liu proposed a Hybrid Genetic Algorithm (HGA) for solving the distributed and flexible job-shop 
scheduling problem (DfJSP) and demonstrated the effectiveness of the algorithm through the experiment (Chang & 
Liu, 2015). All best solutions by above algorithms are generated by repeated iteration, but not learning from a 
learning criterion and existing research only considered the processing time and processing sequences, however, 
does not take process machine resources of multiple factors into account. So it is lack of related research for 
flexibility and the effectiveness analysis of the scheduling; design of optimization method, especially for the craft 
flexibility route and machine optional of flexible scheduling problem.  

In this paper, we propose a hybrid evolutionary algorithm with Bayesian Network (BN) to solve S-fJSP that 
aims to minimize the makespan of processing time. We choose the Particle Swarm Optimization (PSO) proposed by 
(Kennedy & Eberhart, 1995) as the basic algorithm and group the chromosomes randomly at first. Generate the 
candidate network by PSO and choose the best BN that is closest to the real structure with the maximum likelihood 
function. Then, group the chromosomes again according to the BN structure. Do same operations mentioned above 
every m generations. Among the generations, adapt the parameters of PSO in the process adaptively to ensure to get 
better solutions. Section 2 introduces formulating process of fJSP model; Section 3 proposes the hybrid evolutionary 
algorithm with BN; Section 4 provides the detailed numerical experiment and result; finally, Section 5 gives the 
conclusion of the whole paper. 

2. Modeling of fJSP 

For the fJSP model, different operations of different tasks are processed on different machines, the processing 
time of each operation is fixed, and the machine for one operation is only one at one time. In fact, the fJSP model is 
an extension of JSP, so we can describe the formulation process as follows: 

(1) Machine allocation: choose a machine for each operation from the available machine set. 
(2) Operation sequence: all necessary operations for completing the jobs which satisfying the precedence 

constraints.  
(3) Sequencing robustness: a best solution is not sensitive to data. 
In the fJSP, each job i consists of ni operations (Oi1,Oi2,…,Oini). For each operation Oik, processing machine must 

be from the machine set Aik. The operations must be completed in sequence for one job.  
The symbols used in the S-fJSP are defined as follows: 
Indices: 

i, h: job index, i, h = 1,2.,…,n 
j: machine index, j = 1,2,…,m
k, g: operation index, k,  g= 1,2,…, ni

Parameters: 
n: total number of jobs 
m: total number of machines 
ni: total number of operations of  job i 
tikj: processing time of kth operation of job i  

Decision variables: 
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cik: completed time of Oik
xikj: machine j is selected for Oik 

The objective function is to minimize the makespan and the mathematical programming model of the fJSP 
formulated as follows: 
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The constraints (2) - (3) represent the operating sequence constraint. The constraint (4) guarantees machine 
allocation that for each operation can only process on one machine from machine set at one time. The constraints (5) 
- (6) are nonnegative or 0 – 1 binary variable which are restrictions on decision variables, respectively.  

3. Hybrid Evolutionary Algorithm 

3.1 PSO-based HEA Procedure 
Genetic algorithm (GA) and PSO are typical Evolutionary Algorithm (EA). PSO uses real-number decoding 

method while GA uses 0-1 decoding method, this makes PSO has larger solution space and larger probability to get 
a best solution. Here is the proposed HEA based on PSO with several distributed sub-populations and BN in Fig. 1. 

procedure: Hybrid Evolution Algorithm 
input: problem data, parameters 
output: best solution of S-fJSP  
begin 
          t  0; 
          initialize population p(t) by random solution candidates satisfying the constraints; 
          get sub-p(t) by randomly grouping; 
          g(t)  0; 
          while (not meeting termination condition) 
                  evaluate p(t) by PSO with grouping mechanism and parameters adaptive; 
                  get the training data set Data from each sub-p(t); 
                  g(t)  g(t+1); 
                  keep best solution of population gbest(t) and personal best pbest(t); 
                  if (g(t) meets condition) 
                            select the best BN structure by Data; 
                            readjust the grouping by BN structure for each sub-p(t); 
                            g(t)  0; 
         end
         output best solution of S-fJSP gbest(t)
end;

Fig.1. Pseudo-code for Hybrid Evolution Algorithm 
When compared to GA, PSO has stronger searching ability for avoiding getting into local optimal solutions 

(Kennedy, 2010). So, the proposed algorithm chooses PSO as the basic algorithm, then starts with giving the value 
randomly to each gene of the chromosomes to form a number of initial chromosome population. Grouping the 
population randomly by given number of sub-populations which means how many genes one group has. Then, we 
use the cooperative optimization framework to evaluate each sub-population until the generation reaches a given 
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number in advance. After that, we use PSO with two parts which one part presents input sequence of data and the 
other part provides the values to confirm the network structure. Finally we find out the best network, which is 
closest to the real structure, by using the maximum likelihood evaluation function. Now, change the grouping 
strategy with this network structure and restart the process, which mentioned above, until the generation reaches the 
max generation given in advance.  

PSO uses the following formulas to update velocity and position in each generation t, respectively. The initial 
values set randomly. The  presents inertia weight, rand1 and rand2 are random value within [0,1]. The bigger  
presents affecting by chromosome’s own value; the smaller  presents affecting by population’s social factor. The 
adaptation of parameters used in PSO is adapted according to the methods studied in the paper (Yang, Tang & Yao, 
2008). 
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3.2 Bayesian Network Structure Learning  

Bayesian Network is a typical probabilistic graphical model and it has two parts: nodes and edges which nodes 
present the variables and the edges between variables present the causal relationship, and it was proved that it is a 
directed acyclic graph (DAG) (Friedman, 1997). A simple BN is shown in Fig.2 (b), it presents the network has 3 
variables, x1 depends on x2, x3 depends on x1 and x2. Due to the operations of S-fJSP have incidence relation between 
each other, so the algorithm proposes to use BN to find the incidence relation and group the operations according to 
the network structure. Because we have reason to believe that grouping by BN can get better solutions than grouping 
randomly. However, the structure learning of BN is a NP hard problem (Chickering, 1994), so we choose a simple 
structure learning method.  

Initialization a population with two parts: variable sequence and variable value by PSO for generate candidate 
network structures for each one group. We give an example with 3 variables one group in figure 2. We can get 
variable sequence: x2-> x1-> x3, then get the BN structure by compare the values between variables. If the value of xi

is bigger than the value of xj, add the edge from xi to xj, otherwise, take no actions. Each generation can get one 
network structure, after m generation, we can m candidate networks. 

     
Fig. 2. (a) chromosome for learning BN structure; (b) BN structure example 

3.3 Getting Training Data from the changing of Chromosomes 

          
Fig.3. (a) chromosome of solution of S-fJSP; (b) dataset to evaluate the candidate networks 

Now, we record down the change of each gene of solution chromosomes between the current generation and last 
generation. If the gene becomes bigger, then records 1, becomes smaller or keeps invariant, records 0. Then we can 
get the network structure evaluation training data set, shown in Figure 3. After evaluating the network structure, we 
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can find a best network with maximum likelihood score. Then, we readjust the grouping that put the discrete point 
into the other groups randomly. 

4. Numerical Experiment and Result 

In order to verify the effectiveness of the proposed algorithm in this paper, we do experiment under certain 
environment. Compare the hybrid cooperative algorithm with Bayesian grouping (CCBhEA) with a classic genetic 
algorithm (GA), a binary genetic algorithm (Binary GA), particle swarm optimization (PSO), differential evolution 
(DE) algorithm, cooperative coevolution group (CCPSO), and particle swarm algorithm with adaptive grouping 
differential evolution algorithm (SaNSDE). The experiment repeats 30 times, get the mean value. Test machine is 
Intel(R) Core(TM) i3-2120 CPU @3.3GHZ, 4GB. 

 
Table 1 Experimental parameters Settings 

 5*5 10*10 15*15 20*20 
Pop. size 10 10 50 100 

Crossover prob. 0.5 0.5 0.5 0.5 
Mutation prob. 0.5 0.5 0.5 0.5 

End con. Evolved Indiv=5000 Evolved Indiv=5000 Evolved Indiv=5000 Evolved Indiv=10000 
group size 10 10 20 40 

BayesChInter. 5 5 5 5 
BayesPSOInter 500 500 1000 5000 
BayesPSOPop 10 10 20 50 

 
Table 2 Experimental results under uncertain 

 
 
Table 2 shows the experimental results of 4 scales of problems under uncertain, we use a different color to 
label each the best of each attribute, we can find that, CCBhEA has better performance for different scales of 
problems. Meanwhile, we do experiments for different algorithms to get the convergence of different, the 
result is shown in Figure 2. The compared algorithm reference (Della et.al, 1995, Sinha et.al, 2003, Kenddy 
et.al, 1995, Li et.al, 2012, Yang et.al, 2008). 

  GA Binary GA DE PSO SaNSDE CCPSO CCBhEA 
 max 332.0 367.0 344.0 314.0 334.0 339.0 289.0 
 min 252.0 236.0 276.0 245.0 269.0 212.0 157.0 

5*5 mean 291.5 305.76 314.1 273.43 310.66 279.866 217.2 
 variance 573.25 1068.44 318.75 831.64 203.2 708.0488 774.35 
 meanTime 37960.5 101558.08 27964.17 17935.07 42886.177 39735.37 483662.26 
 max 868.0 891.0 876.0 857.0 869.0 854.0 801.0 
 min 689.0 706.0 755.0 742.0 746.0 694.0 569.0 

10*10 mean 778.4 834.06 809.9 748.966 805.7 766.86 696.1 
 variance 2028.10 1905.72 907.29 468.4322 1102.74 2105.64 3148.75 
 meanTime 134732 634998.01 119094.75 68724.85 132903.60 184064.67 4417871.8 
 max 1383.0 1481.0 1354.0 1406.0 1322.0 1388.0 1317.0 
 min 1238.0 1227.0 1284.0 1209.0 1231.0 1074.0 979.0 

15*15 mean 1301.5 1365.8 1316.06 1277.4 1238.166 1232.7 1132.63 
 variance 1242.71 3612.49 304.46 1886.37 548.595 4389.41 5596.76 
 meanTime 56829.7 1.36E7 2415844.5 1227041.4 2457802.63 5812630.7 8.99E7 
 max 1932.0 1945.0. 1853.0 1820.0 1860.0 1902.0 1759.0 
 min 1711.0 1869.2 1730.0 1784.0 1706.0 1677.0 1372.0 

20*20 mean 1832.46 1869.2666 1816.96 1794.83 1778.533 1774.96 1555.06 
 variance 2841.64 2370.02 705.09 216.672 1170.51 4211.4 6958.72 
 meanTime 1.49E7 1.00E8 1.43E7 7375768.1 1.49E7 1.77E7 1.189E9 
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5. Conclusion  

We proposed an effective hybrid evolutionary algorithm (HEA) to solve the Flexible Job-shop Scheduling 
Problem (fJSP) in which it is based on Particle Swarm Optimization (PSO) with real-number encoding as the basic 
algorithm to increase the search space and avoid getting into local optimum solutions. Then, we used Bayesian 
Network (BN) structure to find out the relationship between the variables and according to the relationship to 
regroup, at the same time, using parameter adaptive mechanism to dynamic adjust parameters of PSO, minimize the 
makespan of fJSP within a reasonable amount of calculating time. The proposed algorithm can get better solutions 
and increase the robustness. Meanwhile, in our future work, numerical experiments will be processed by group 
under the distributed environment for each sub-population of the different and parallel processing, so that not only 
optimize the optimal solution, but also shorten the time more efficiency.  

 

 

Figure 2 Algorithm convergence 
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