
 Procedia Computer Science 61 (2015) 521 – 526

Available online at www.sciencedirect.com

1877-0509 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology
doi: 10.1016/j.procs.2015.09.207

ScienceDirect

Complex Adaptive Systems, Publication 5
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2015-San Jose, CA

A Bayesian Optimization-based Evolutionary Algorithm for
Flexible Job Shop Scheduling

Lu Suna, Lin Lina,b,*, Yan Wanga ,Mitsuo Genb,c and Hiroshi Kawakamid
aDalian University of Technology, 116620, China
bFuzzy ogic Systems Institute, 820-0067, Japan
cTokyo University of Science, 113-8656, Japan

dKyoto University, 606-8306, Japan

Abstract

Flexible Job-shop Scheduling Problem (fJSP) is a typical and important scheduling problem in Flexible Manufacturing
System (FMS). The fJSP is an extended version of Job-shop Scheduling (JSP) that is NP hard problem. Due to it according with
the real production system, we adopt a hybrid evolutionary computation algorithm to solve the fJSP problems. Among them, the
Bayesian Optimization Algorithm (BOA) is introduced to the characteristics of scheduling and uncertainty characteristics of the
time in the fJSP. On this basis, we propose a distributed evolutionary algorithm and parameter adaptive mechanism. Finally,
through experiments, we conclude that the proposed hybrid evolutionary algorithm based on BOA with grouping mechanism get
better solution than original algorithm and improve robustness of algorithm. Meanwhile, the paper also have objective
perspective, that is we can group the data different from each other, make the whole population into sub-populations, and then
make the experiment separately on different and parallel machines in distributed environment, so that not only optimizes the best
solution, but also enhance the efficiency and shortened the time.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology.

Keywords: Bayesian Optimization Algorithm; Flexible Job-shop Scheduling Problem; Evolutionary Algorithms

1. Introduction

In today’s society, the scheduling models often need to adapt to different application requirements, and designing
the scheduling model one by one for each customer’s demands is clearly unrealistic, so the highly flexible
scheduling is particularly important. In this paper, we introduce a fJSP (flexible Job-shop Scheduling Problem)
model to simulate the automatic scheduling for a flexible manufacturing model. The fJSP as an extension of Job-
shop Scheduling Problem (JSP) is a typical combinatorial optimization problem and it is a NP-hard problem under

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.09.207&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.09.207&domain=pdf

522 Lu Sun et al. / Procedia Computer Science 61 (2015) 521 – 526

the constraint of priorities and resources (Lawler, 1993; Gen & Cheng, 2000; Gen, Gao & Lin, 2009). Meanwhile, it
has the characteristics of resources non-uniqueness: for an operation, it can choose the machine in available set to
complete. For a traditional JSP (tJSP), researchers often propose the following assumption: for an operation,
machine and processing time are fixed. With the development, multi-purpose equipment is replacing traditional
equipment in order to increase efficiency and decrease cost in manufacturing. Therefore, considering the fJSP
research is closer to the actual production mode.

Recently, Xing provided an effective integration between Ant Colony Optimization (ACO) models and applies
the existing knowledge to guide the current heuristic searching, and indicates that the proposed algorithm is effective
(Xing, et al, 2010). Zhang proposed algorithm with Global Selection (GS) and Local Selection (LS) routines
designed to generate high-quality initial population in the initialization stage for minimizing makespan (Zhang,
2011). Nouri, et al proposed a combined genetic algorithm and tabu search with a scheduler agent applying a
Neighborhood-based Genetic Algorithm (NGA) to guide the research in promising regions (Nouri, et al, 2015).
Chang and Liu proposed a Hybrid Genetic Algorithm (HGA) for solving the distributed and flexible job-shop
scheduling problem (DfJSP) and demonstrated the effectiveness of the algorithm through the experiment (Chang &
Liu, 2015). All best solutions by above algorithms are generated by repeated iteration, but not learning from a
learning criterion and existing research only considered the processing time and processing sequences, however,
does not take process machine resources of multiple factors into account. So it is lack of related research for
flexibility and the effectiveness analysis of the scheduling; design of optimization method, especially for the craft
flexibility route and machine optional of flexible scheduling problem.

In this paper, we propose a hybrid evolutionary algorithm with Bayesian Network (BN) to solve S-fJSP that
aims to minimize the makespan of processing time. We choose the Particle Swarm Optimization (PSO) proposed by
(Kennedy & Eberhart, 1995) as the basic algorithm and group the chromosomes randomly at first. Generate the
candidate network by PSO and choose the best BN that is closest to the real structure with the maximum likelihood
function. Then, group the chromosomes again according to the BN structure. Do same operations mentioned above
every m generations. Among the generations, adapt the parameters of PSO in the process adaptively to ensure to get
better solutions. Section 2 introduces formulating process of fJSP model; Section 3 proposes the hybrid evolutionary
algorithm with BN; Section 4 provides the detailed numerical experiment and result; finally, Section 5 gives the
conclusion of the whole paper.

2. Modeling of fJSP

For the fJSP model, different operations of different tasks are processed on different machines, the processing
time of each operation is fixed, and the machine for one operation is only one at one time. In fact, the fJSP model is
an extension of JSP, so we can describe the formulation process as follows:

(1) Machine allocation: choose a machine for each operation from the available machine set.
(2) Operation sequence: all necessary operations for completing the jobs which satisfying the precedence

constraints.
(3) Sequencing robustness: a best solution is not sensitive to data.
In the fJSP, each job i consists of ni operations (Oi1,Oi2,…,Oini). For each operation Oik, processing machine must

be from the machine set Aik. The operations must be completed in sequence for one job.
The symbols used in the S-fJSP are defined as follows:
Indices:

i, h: job index, i, h = 1,2.,…,n
j: machine index, j = 1,2,…,m
k, g: operation index, k, g= 1,2,…, ni

Parameters:
n: total number of jobs
m: total number of machines
ni: total number of operations of job i
tikj: processing time of kth operation of job i

Decision variables:

523 Lu Sun et al. / Procedia Computer Science 61 (2015) 521 – 526

cik: completed time of Oik
xikj: machine j is selected for Oik

The objective function is to minimize the makespan and the mathematical programming model of the fJSP
formulated as follows:

)6(,,{0,1}
)5(,0
)4(,,,1
)3(,,,],0)[(]0)[(
)2(,,,...,2,t.s.
)1(}{maxmin

ikA

)1(

1

jkix
kic

jkix
hgjixtccxtcc

jinkxtcc
cC

ikj

ik

x ikj

ikjikjhgikhgjhgjikhg

iikjikjkiik

inniM

ikj

i

The constraints (2) - (3) represent the operating sequence constraint. The constraint (4) guarantees machine
allocation that for each operation can only process on one machine from machine set at one time. The constraints (5)
- (6) are nonnegative or 0 – 1 binary variable which are restrictions on decision variables, respectively.

3. Hybrid Evolutionary Algorithm

3.1 PSO-based HEA Procedure
Genetic algorithm (GA) and PSO are typical Evolutionary Algorithm (EA). PSO uses real-number decoding

method while GA uses 0-1 decoding method, this makes PSO has larger solution space and larger probability to get
a best solution. Here is the proposed HEA based on PSO with several distributed sub-populations and BN in Fig. 1.

procedure: Hybrid Evolution Algorithm
input: problem data, parameters
output: best solution of S-fJSP
begin
 t 0;
 initialize population p(t) by random solution candidates satisfying the constraints;
 get sub-p(t) by randomly grouping;
 g(t) 0;
 while (not meeting termination condition)
 evaluate p(t) by PSO with grouping mechanism and parameters adaptive;
 get the training data set Data from each sub-p(t);
 g(t) g(t+1);
 keep best solution of population gbest(t) and personal best pbest(t);
 if (g(t) meets condition)
 select the best BN structure by Data;
 readjust the grouping by BN structure for each sub-p(t);
 g(t) 0;
 end
 output best solution of S-fJSP gbest(t)
end;

Fig.1. Pseudo-code for Hybrid Evolution Algorithm
When compared to GA, PSO has stronger searching ability for avoiding getting into local optimal solutions

(Kennedy, 2010). So, the proposed algorithm chooses PSO as the basic algorithm, then starts with giving the value
randomly to each gene of the chromosomes to form a number of initial chromosome population. Grouping the
population randomly by given number of sub-populations which means how many genes one group has. Then, we
use the cooperative optimization framework to evaluate each sub-population until the generation reaches a given

524 Lu Sun et al. / Procedia Computer Science 61 (2015) 521 – 526

number in advance. After that, we use PSO with two parts which one part presents input sequence of data and the
other part provides the values to confirm the network structure. Finally we find out the best network, which is
closest to the real structure, by using the maximum likelihood evaluation function. Now, change the grouping
strategy with this network structure and restart the process, which mentioned above, until the generation reaches the
max generation given in advance.

PSO uses the following formulas to update velocity and position in each generation t, respectively. The initial
values set randomly. The presents inertia weight, rand1 and rand2 are random value within [0,1]. The bigger
presents affecting by chromosome’s own value; the smaller presents affecting by population’s social factor. The
adaptation of parameters used in PSO is adapted according to the methods studied in the paper (Yang, Tang & Yao,
2008).

8)1()()1(
)7()]()([)]()([)()1(2211

tvtxtx
txtprandctxtprandctvtv

iii

igbestipbestii

3.2 Bayesian Network Structure Learning

Bayesian Network is a typical probabilistic graphical model and it has two parts: nodes and edges which nodes
present the variables and the edges between variables present the causal relationship, and it was proved that it is a
directed acyclic graph (DAG) (Friedman, 1997). A simple BN is shown in Fig.2 (b), it presents the network has 3
variables, x1 depends on x2, x3 depends on x1 and x2. Due to the operations of S-fJSP have incidence relation between
each other, so the algorithm proposes to use BN to find the incidence relation and group the operations according to
the network structure. Because we have reason to believe that grouping by BN can get better solutions than grouping
randomly. However, the structure learning of BN is a NP hard problem (Chickering, 1994), so we choose a simple
structure learning method.

Initialization a population with two parts: variable sequence and variable value by PSO for generate candidate
network structures for each one group. We give an example with 3 variables one group in figure 2. We can get
variable sequence: x2-> x1-> x3, then get the BN structure by compare the values between variables. If the value of xi

is bigger than the value of xj, add the edge from xi to xj, otherwise, take no actions. Each generation can get one
network structure, after m generation, we can m candidate networks.

Fig. 2. (a) chromosome for learning BN structure; (b) BN structure example

3.3 Getting Training Data from the changing of Chromosomes

Fig.3. (a) chromosome of solution of S-fJSP; (b) dataset to evaluate the candidate networks

Now, we record down the change of each gene of solution chromosomes between the current generation and last
generation. If the gene becomes bigger, then records 1, becomes smaller or keeps invariant, records 0. Then we can
get the network structure evaluation training data set, shown in Figure 3. After evaluating the network structure, we

525 Lu Sun et al. / Procedia Computer Science 61 (2015) 521 – 526

can find a best network with maximum likelihood score. Then, we readjust the grouping that put the discrete point
into the other groups randomly.

4. Numerical Experiment and Result

In order to verify the effectiveness of the proposed algorithm in this paper, we do experiment under certain
environment. Compare the hybrid cooperative algorithm with Bayesian grouping (CCBhEA) with a classic genetic
algorithm (GA), a binary genetic algorithm (Binary GA), particle swarm optimization (PSO), differential evolution
(DE) algorithm, cooperative coevolution group (CCPSO), and particle swarm algorithm with adaptive grouping
differential evolution algorithm (SaNSDE). The experiment repeats 30 times, get the mean value. Test machine is
Intel(R) Core(TM) i3-2120 CPU @3.3GHZ, 4GB.

Table 1 Experimental parameters Settings

 5*5 10*10 15*15 20*20
Pop. size 10 10 50 100

Crossover prob. 0.5 0.5 0.5 0.5
Mutation prob. 0.5 0.5 0.5 0.5

End con. Evolved Indiv=5000 Evolved Indiv=5000 Evolved Indiv=5000 Evolved Indiv=10000
group size 10 10 20 40

BayesChInter. 5 5 5 5
BayesPSOInter 500 500 1000 5000
BayesPSOPop 10 10 20 50

Table 2 Experimental results under uncertain

Table 2 shows the experimental results of 4 scales of problems under uncertain, we use a different color to
label each the best of each attribute, we can find that, CCBhEA has better performance for different scales of
problems. Meanwhile, we do experiments for different algorithms to get the convergence of different, the
result is shown in Figure 2. The compared algorithm reference (Della et.al, 1995, Sinha et.al, 2003, Kenddy
et.al, 1995, Li et.al, 2012, Yang et.al, 2008).

 GA Binary GA DE PSO SaNSDE CCPSO CCBhEA
 max 332.0 367.0 344.0 314.0 334.0 339.0 289.0
 min 252.0 236.0 276.0 245.0 269.0 212.0 157.0

5*5 mean 291.5 305.76 314.1 273.43 310.66 279.866 217.2
 variance 573.25 1068.44 318.75 831.64 203.2 708.0488 774.35
 meanTime 37960.5 101558.08 27964.17 17935.07 42886.177 39735.37 483662.26
 max 868.0 891.0 876.0 857.0 869.0 854.0 801.0
 min 689.0 706.0 755.0 742.0 746.0 694.0 569.0

10*10 mean 778.4 834.06 809.9 748.966 805.7 766.86 696.1
 variance 2028.10 1905.72 907.29 468.4322 1102.74 2105.64 3148.75
 meanTime 134732 634998.01 119094.75 68724.85 132903.60 184064.67 4417871.8
 max 1383.0 1481.0 1354.0 1406.0 1322.0 1388.0 1317.0
 min 1238.0 1227.0 1284.0 1209.0 1231.0 1074.0 979.0

15*15 mean 1301.5 1365.8 1316.06 1277.4 1238.166 1232.7 1132.63
 variance 1242.71 3612.49 304.46 1886.37 548.595 4389.41 5596.76
 meanTime 56829.7 1.36E7 2415844.5 1227041.4 2457802.63 5812630.7 8.99E7
 max 1932.0 1945.0. 1853.0 1820.0 1860.0 1902.0 1759.0
 min 1711.0 1869.2 1730.0 1784.0 1706.0 1677.0 1372.0

20*20 mean 1832.46 1869.2666 1816.96 1794.83 1778.533 1774.96 1555.06
 variance 2841.64 2370.02 705.09 216.672 1170.51 4211.4 6958.72
 meanTime 1.49E7 1.00E8 1.43E7 7375768.1 1.49E7 1.77E7 1.189E9

526 Lu Sun et al. / Procedia Computer Science 61 (2015) 521 – 526

5. Conclusion

We proposed an effective hybrid evolutionary algorithm (HEA) to solve the Flexible Job-shop Scheduling
Problem (fJSP) in which it is based on Particle Swarm Optimization (PSO) with real-number encoding as the basic
algorithm to increase the search space and avoid getting into local optimum solutions. Then, we used Bayesian
Network (BN) structure to find out the relationship between the variables and according to the relationship to
regroup, at the same time, using parameter adaptive mechanism to dynamic adjust parameters of PSO, minimize the
makespan of fJSP within a reasonable amount of calculating time. The proposed algorithm can get better solutions
and increase the robustness. Meanwhile, in our future work, numerical experiments will be processed by group
under the distributed environment for each sub-population of the different and parallel processing, so that not only
optimize the optimal solution, but also shorten the time more efficiency.

Figure 2 Algorithm convergence

Acknowledgments

This work is partly supported by the Fundamental Research Funds for the Central Universities No. DUT15QY10,
and the Grant-in-Aid for Scientific Research (C) of Japan Society of Promotion of Science (JSPS) No. 15K00357.

References

[1] Lawler EL, Lenstra JK, Kan AHGR, Symoys D B. Sequencing and scheduling: Algorithms and complexity. Handbooks in Operations
Research and Management Science, 1993, 4: 445-522.

[2] Gen M, Cheng R. Genetic Algorithms and Engineering Optimization. John Wiley & Sons, 2000.
[3] Gen, M., Gao, J., & Lin, L. Multistage-based genetic algorithm for flexible job-shop scheduling problem. In M. Gen, D. Green, O. Katai,

B. McKay, A. Namatame, R. Sarker, et al. (Eds.), Intelligent and evolutionary systems, vol. 187, 2009:183–196, Springer, Berlin.
[4] Xing L N, Chen Y W, Wang P, Zhao QS, Xiong J. A knowledge-based ant colony optimization for flexible job shop scheduling problems.

Applied Soft Computing, 2010, 10(3): 888-896.
[5] Zhang G, Gao L, Shi Y. An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications,

2011, 38(4): 3563-3573.
[6] Nouri H E, Driss O B, Ghédira K. A Holonic Multiagent Model Based on a Combined Genetic Algorithm Tabu Search for the Flexible

Job Shop Scheduling Problem, Springer International Publishing, 2015: 43-54.
[7] Chang H.C., Liu T.K. Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms. Journal

of Intelligent Manufacturing, 2015: 1-14.
[8] Kennedy J. Particle swarm optimization, Encyclopaedia of Machine Learning. Springer US, 2010: 760-766.
[9] Yang Z, Tang K, Yao X. Self-adaptive differential evolution with neighbourhood search, Evolutionary Computation, 2008:1110-1116.
[10] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29(2-3): 131-163.
[11] Chickering D M, Geiger D, Heckerman D. Learning Bayesian networks is NP-hard. Tech. Report MSR-TR-94-17, Microsoft Res., 1994.
[12] Della Croce F, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers & Operations Research, 1995, 22(1): 15-24.
[13] Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on

Evolutionary Computation, 2003, 7(1): 83-94.
[14] Kenndy J, Eberhart R C. Particle swarm optimization, Proceedings of IEEE Inter.Conference on Neural Networks. 1995, 4: 1942-1948.
[15] Price K, Storn R M, Lampinen J A. Differential evolution: a practical approach to global optimization. Springer Sci. & Bus. Media, 2006.
[16] Li X, Yao X. Cooperatively coevolving particle swarms for large scale optimization., IEEE Transactions on Evolutionary Computation,

2012, 16(2): 210-224.
[17] Yang Z, Tang K, Yao X. Self-adaptive differential evolution with neighborhood search, Congress on Evolutionary ComputationIEEE.

I2008: 1110-1116.

