
doi: 10.1016/j.procs.2015.05.316 

OpenCL vs OpenACC:

lessons from development of lattice QCD simulation code

H. Matsufuru1, S. Aoki2, T. Aoyama3, K. Kanaya4, S. Motoki5, Y. Namekawa6,
H. Nemura6, Y. Taniguchi4, S. Ueda7, and N. Ukita6 (Bridge++ Project)

1 Computing Research Center, High Energy Accelerator Research Organization (KEK), Japan,
and Graduate University for Advanced Studies (Sokendai), Japan.

hideo.matsufuru@kek.jp
2 Yukawa Institute for Theoretical Physics, Kyoto University, Japan.

saoki@yukawa.kyoto-u.ac.jp
3 Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),

Nagoya University, Japan. aoym@kmi.nagoya-u.ac.jp
4 Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan.

{kanaya, tanigchi}@ccs.tsukuba.ac.jp
5 Computing Research Center, High Energy Accelerator Research Organization (KEK), Japan.

smotoki@post.kek.jp
6 Center for Computational Sciences, University of Tsukuba, Japan.

{namekawa, nemura, ukita}@ccs.tsukuba.ac.jp
7 Theory Center, IPNS, High Energy Accelerator Research Organization (KEK), Japan.

sueda@post.kek.jp

Abstract

OpenCL and OpenACC are generic frameworks for heterogeneous programming using CPU
and accelerator devices such as GPUs. They have contrasting features: the former explicitly
controls devices through API functions, while the latter generates such procedures along a guide
of the directives inserted by a programmer. In this paper, we apply these two frameworks to
a general-purpose code set for numerical simulations of lattice QCD, which is a computational
physics of elementary particles based on the Monte Carlo method. The fermion matrix inversion,
which is usually the most time-consuming part of the lattice QCD simulations, is offloaded to
the accelerator devices. From a viewpoint of constructing reusable components based on the
object-oriented programming and also tuning the code to achieve high performance, we discuss
feasibility of these frameworks through the practical implementations.

Keywords: Lattice gauge theory, Accelerator, OpenCL, OpenACC

Procedia Computer Science

Volume 51, 2015, Pages 1313–1322

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

1313

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.316&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.316&domain=pdf


1 Introduction

Rapid increase of computer resources has made numerical simulations powerful tools in many
fields of science. In elementary particle physics, Quantum Chromodynamics (QCD), which
describes dynamics of interaction among quarks, is a prominent example. Since an analytic
method is generally not applicable to low energy physics of QCD, numerical simulations have
been only the way of quantitative calculation for many quantities. Numerical simulations of
QCD are based on the quantum field theory on the discretized Euclidean spacetime (lattice).
This so-called lattice QCD enables numerical computation of quantum expectation values by
evaluating the path integral using a Monte Carlo method [11, 5]. With recent large compu-
tational power, the lattice QCD produces more and more precise results, and furthermore it
is extensively applied to other field theories, e.g. in search for a theory beyond the standard
model of particle physics.

Nowadays, high performance computing device has become popular. In addition to parallel
clusters, accelerator devices such as GPUs and Xeon Phi provides large computational power
with relatively low cost. It expedites application to variety of calculations. On the other hand,
development of simulation code has become more and more involved. One generally needs to
write a hybrid parallel code for multi-node and multi-thread machines. Furthermore, the code
must be modified to offload tasks of hot spots to accelerator devices. To apply to wide range
of physical models and numerical algorithms as well as hardware architecture, a code should
separate its ingredients with least interference. For example, the code specific to each hardware
must be encapsulated into small part of the program, and can be combined with any models
and algorithms.

A guideline to develop such a program is the object-oriented programming (OOP). In 2009,
we launched a project to develop a code set for lattice QCD simulations that is widely applicable
while based on uniform design policy guided by OOP [2, 13]. The code set, named Bridge++,
is written in C++. This paper concerns the design of Bridge++ to incorporate the accelerator
devices. There are several possibilities in a choice of frameworks for accelerator devices, such
as CUDA, OpenCL, and OpenACC. Since, as discussed later, one of the goals of Bridge++
is portability, the latter two are our feasible candidates. OpenCL and OpenACC is based on
different policy. OpenCL explicitly controls the devices through API functions. OpenACC is
a directive-based extension of programming language. In this paper, we apply OpenCL and
OpenACC to Bridge++ for offloading the linear equation solver to the accelerator devices.
From a point of view of constructing reusable components based on OOP, and also tuning the
code to achieve high performance, we evaluate feasibility of these two frameworks through the
practical implementations.

This paper is organized as follows. Section 2 explains a hot spot of the numerical simula-
tion of lattice QCD that is to be executed on the device. Section 3 introduces our code set
Bridge++. The way of our implementation in a context of the object-oriented construction is
described. Section 4 presents a strategy for offloading tasks of lattice simulation to accelerators.
Section 5 and Section 6 describe our implementation in OpenCL and OpenACC, respectively.
In Section 7, after summarizing our test environment, performance of these codes are reported.
Section 8 is devoted to discussion and conclusion.

2 Lattice QCD simulations

For the formulation of lattice QCD and a principle of the numerical simulation, there are many
textbooks and reviews [11, 5]. Thus we concentrate on solving a linear equation for a fermion

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1314



matrix, which is in many cases the most time consuming part in the numerical simulation.
A lattice QCD action consists of fermion (quark) fields and a gauge (gluon) field. The latter

mediates interaction between quarks and are represented by link variables, Uμ(x) ∈ SU(Nc)
(Nc = 3), where x = (x1, x2, x3, x4) stands for a lattice site and μ=1–4 is a spacetime di-
rection. In numerical simulations the size of a lattice is finite, xμ = 1, 2, . . . , Lμ. The
fermion field is represented as a complex vector on lattice sites, which carries 3 components
of color and 4 components of spinor. The fermion action is a bilinear of fermion field ψ,
SF =

∑
x,y ψ̄(x)D[U ](x, y)ψ(y), where D[U ] is a fermion operator. A Monte Carlo algorithm

is applied to generate an ensemble of the gauge field {Uμ(x)}, that requires to solve a linear
equation v = D−1b many times.

There are several fermion formulations. Each formulation has its own advantages and dis-
advantages. They may be combined with a variety of improvement procedures. As a common
feature, a fermion operator is represented with local interactions, so that the fermion matrix is
sparse. As a representative, we here consider the Wilson fermion operator,

DW (x, y) = δx,y − κ

d∑

μ=1

[
(1− γμ)Uμ(x)δx+μ̂,y + (1 + γμ)U

†
μ(x − μ̂)δx−μ̂,y

]
(1)

where x, y are lattice sites, d = 4 is the space-time dimension, μ̂ is a unit vector along the
μ-th axis. γμ is 4 × 4 matrix acting on the spin degree of freedom. κ is a parameter related
to the fermion mass. Thus DW is a 4NcLxLyLzLt dimensional complex matrix. The Wilson
fermion has several improved variants so that lattice artifact is decreased. Although the Wilson-
type operators are extensively used, it has a disadvantage that it explicitly breaks the chiral
symmetry. The chiral symmetry holds in the continuum limit for a massless fermion and plays
an important role in the dynamics of QCD. There are other fermion formulations that hold the
chiral symmetry better or exactly at the expense of higher computational cost.

Similarly, the linear equation solver algorithms also have variety. Since the fermion operator
is represented as a sparse matrix, iterative solver based on the Krylov subspace method is in
general used. According to the properties of the matrix, there are a number of algorithms
available, such as the conjugate gradient (CG) for a hermitian positive definite matrix and
bi-conjugate gradient (BiCG) for a nonhermitian matrix. Although for the Wilson fermion
operator above, the BiCGStab algorithm or its variant is usually efficient, other algorithm
might be better for other fermion formulation. In addition, for large-scale linear systems,
there are variety of improvement techniques, such as a multi-grid method. When the memory
bandwidth is a bottleneck, which is frequently the case for GPUs, a single precision solver is
often employed as a preconditioner that brings considerable speed up.

These situations indicate that general-purpose code set should be able to exchange the
fermion matrices and solver algorithms independently.

3 An object-oriented C++ code Bridge++

This paper aims at comparing OpenCL and OpenACC in applying to a general purpose code
to offload tasks to accelerator devices. To clarify the required conditions and viewpoint of
comparison, we first describe our base code named Bridge++ [2]. Bridge++ is intended to
possess the following features:

• Readability: the code structure is transparent so as to be understandable even for begin-
ners.

• Extensibility: the code is easy to be modified for testing new ideas.

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1315



Figure 1: A class diagram of solver and fermion operator which shows their relation as an
application of the bridge pattern.

• Portability: the code runs on wide range of architectures, from laptop PCs to supercom-
puters.

• High-performance: the code has sufficiently high performance for productive research.

To achieve these goals simultaneously, we make use of the insight of object-oriented program-
ming (OOP) by describing the code in C++ programming language. Bridge++ is parallelized
by MPI for nodes with distributed memory [13]. In the latest version 1.2, we started to support
the hybrid parallelization employing OpenMP as a multi-threading library.

As noted in the previous section, how to incorporate the variety of operators and algorithms
is a subject of the code design. This is unraveled by so-called ‘Bridge pattern’, one of GoF’s
design patterns [9] which is common wisdom for reuse of the code. Figure 1 displays the class
diagram of our current design. The abstract classes Solver and Fopr define the interfaces of linear
equation solvers and fermion operators, respectively. Each solver algorithm is implemented as
a subclass of Solver class, while having a member function solve() as a common interface.
Similarly, each fermion operator is implemented as a subclass of Fopr whose common interface
mult(), matrix multiplication to a vector, is called from a solver. (The overlap operator is one
of fermion formulations.) Thus solver and the fermion operator are implemented separately.
While such structure is of course made up without OOP, OOP plays a guide of finding good
design and may provide common terminology such as design patterns. The implementation
design of Bridge++ indeed significantly owes the design patterns.

The fermion matrix acts on a vector whose degree of freedom is 4NcLxLyLzLt. When
one parallelizes the system, this vector lies over multi-nodes and multi-threads. In present
implementation of Bridge++, such a vector is represented as an object of the Field class. It
encapsulates the actual data structure, though practically a contiguous array of double precision
floating-point data is assumed. For the Field class, operations corresponding to BLAS are
defined, in which inter-node and multi-thread operations are encapsulated, so that the linear
algebra is constructed using these operations.

In developing the code for offloading linear fermion solvers to accelerators, we extend the
above implementation. Although the Field class assumes double precision data, it is frequently
convenient to change the precision of data, for example in applying multi-precision linear solvers.
Thus we implement alternative field container, AField<REALTYPE>, where REALTYPE is a data
type, float or double. Corresponding solvers and fermion operators are also implemented using
C++ template.

4 Strategy to use accelerator devices

The performance of arithmetic accelerators such as GPGPUs are rapidly being improved. These
devices provide a large computational power with less cost and electricity. They have already

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1316



been widely used in lattice simulations [8, 3]. There are indeed open source libraries such as
QUDA [4] for NVIDIA GPUs which is a CUDA-based library for lattice QCD. According to our
aims, however, we develop a code for general accelerator devices so as to establish techniques
to fully make use of their performance. In addition to CUDA SDK for NVIDIA’s GPUs, there
are several programming frameworks. Among them, OpenCL and OpenACC are attracting
candidates because they can be applied to a wide range of architecture. They have contrasting
features: the former is API-based which controls the devices explicitly, like Pthread for multi-
threading, while the latter is directive-based and a compiler generates procedures that use
devices, like OpenMP. Application of OpenCL [1, 6, 7, 12] and OpenACC [10] to lattice QCD
have recently been started.

To incorporate a code to offload the tasks of lattice simulations into Bridge++, we require
that the following conditions are satisfied.

• Explicit calls of procedures to control the accelerator devices are encapsulated in a small
number of classes.

• Single and double (and perhaps other types of) precision can be treated simultaneously.

• Parameters such as lattice sizes can be changed at run-time.

• Performance is acceptably high with a small effort of tuning.

When one uses accelerator devices, the following steps are necessary to be executed.

(1) Get information of accelerators and setup environment.

(2) Setup kernel code.

(3) Allocate memory space for data on device.

(4) Transfer data from host to device.

(5) Execute kernel code.

(6) Transfer data from device to host.

(7) Free the memory space on device.

Usually steps (4) and (6) become bottlenecks, because of a narrow bandwidth between the host
and device. Thus the data transfer between host and device should be minimized as much as
possible to achieve better performance.

To represent the data on the device, we define a class AField dev<REALTYPE> that corre-
sponds to the AField<REALTYPE> class on the host. The AField dev class contains member
functions that handle the data transfer between the host and device. At the construction of
AField dev, the memory space on the device is allocated that is freed at the destruction. Lin-
ear algebraic operations corresponding to the BLAS routines are also prepared for instances of
AField dev. Thus for allocation, data transfer, vector operations, and deallocation of data are
encapsulated. Corresponding linear solver algorithms and fermion operators are defined so as
to operate on instances of AField dev class.

As common implementation to OpenCL and OpenACC, operations on each lattice site
are assigned to one thread. To optimize the data transfer between global memory and cores,
we apply so-called coalesced memory access by changing the data layout on the device from
that on the host. To reduce memory transfer, the third column of SU(3) matrix in gauge
field is not transferred from the global memory but calculated on-the-fly using the relation
v3 = (v1 × v2)

∗ where U = (v1, v2, v3) ∈ SU(3). The sustained performance demonstrated
below does not include the operations for this reconstruction. Even with this implementation,
if the arithmetic operations are well optimized, the memory transfer is the bottleneck and
determines the practical performance.

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1317



OpenCL kernels

Application

OpenCL runtime

Device Driver

Accelerator hardware

OpenCL API

OpenCL framework

OpenCL C language

Cell/B.E.FPGACPUGPU DSPXeon Phi

Bridge++ code set

Field_dev

Accelerator device

Applications (Solvers, etc.)

Fopr_dev

DeviceManager
- memory management
- resource control

OpenCL API OpenACC

Figure 2: Left panel: schematic structure of OpenCL framework. Right panel: schematic
structure of Bridge++ to handle the accelerator.

5 Implementation with OpenCL

5.1 OpenCL

OpenCL (Open Computing Language) is an open standard framework for a parallel program-
ming in heterogeneous platforms, such as CPUs, GPUs, FPGAs, and other types of processors.
The specifications are maintained by Khronos Group with contributions of hardware and soft-
ware companies. The left panel of Figure 2 shows an image of OpenCL framework. OpenCL
works on an abstract hardware layer (orange part) and controls accelerator hardware (blue part)
through it. Thus applications can be developed independently of specific architecture. This
matches our design policy with respect to portability. Nonetheless, one needs to understand
the hardware structure to fully extract the potential performance of the device.

The specification of OpenCL is composed of the run-time APIs and the OpenCL C language.
The former is used to control the devices from the host programs, and the latter is prepared for
describing the device codes. On devices, threads run in parallel executing the same program.
A thread is called work-item, and a specified number of work-items are grouped to form a
work-group. Device memory is classified into four types.

• Global memory: readable and writable from all the work-items and from the host.

• Constant memory: read-only from all work-items, readable and writable from the host.

• Local memory: shared by work-items within a work-group.

• Private memory: exclusively used by a work-item.

The total number of work-items and size of work-group are tunable parameters at run-time.

5.2 Implementation in Bridge++

Each step of the work flow in Sec. 4 can be handled through OpenCL APIs. At the initialization
step (1), one needs to obtain the information of platforms, setup contexts and command queues

at the beginning of a program. If a run-time compiler is used, as we adopt, a kernel code is
compiled at step (2). To avoid explicit appearance of these OpenCL APIs in individual classes,
we develop a DeviceManager class that encapsulates the OpenCL APIs, so as to simplify the
procedures and to switch the framework easily. The right panel of Figure 2 schematically
expresses the adopted design. This DeviceManager class also wraps management of device

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1318



memory objects and data transfer between the host and devices. Each object accesses to the
device memory through the interfaces provided by the DeviceManager class.

The device code, described in OpenCL C language, is embedded as a string object at
the compilation of Bridge++ code, and then on-line compiled at the run-time. Using this
mechanism, several parameters and functions described as macros are replaced at the run-time.
It is expected that this helps optimization. Changing the data layout is possible in this way,
by replacing the macro definition of an index, without modifying the kernel code.

The field data on device memory is handled as an object of the AField dev<REALTYPE> class.
At the construction of an instance of this class, the associated memory space on the device is
allocated through the DeviceManager class (step (4) of the workflow), and it is released at
the destruction (step (7)). This class contains methods to transfer data between the host
and the device (steps (4) and (6)). The linear-algebraic operations in analogous to the BLAS
routines (for step (5)) are prepared as methods, and the kernel codes used in these methods
are compiled and cached through the DeviceManager when the first instance is constructed.
Using this class, for example, the solver algorithms can be constructed in a general manner.
The fermion operators on device, represented as Fopr dev class in the right panel of Fig. 2), are
implemented similarly. By using these objects, applications, such as a linear equation solver,
are offloaded to the accelerator device.

6 Implementation with OpenACC

6.1 OpenACC

OpenACC is a directive-based extension of languages. The standard is defined for C/C++ and
Fortran. A user inserts directives to the code. Then a compiler analyzes them and generates the
procedures for offloading data and tasks to accelerators. Currently the standard 2.0 is available.

OpenACC assumes 3 levels in the processor: gang, worker, and vector. For example in
NVIDIA Tesla architecture, they respectively correspond to the streaming multi-processor,
warp, and thread. For C/C++, a directive is inserted to a code as pragma with a general
syntax of

#pragma acc directive-name [clauses]

Three kinds of directives are important.

• Specification of parallel region:
Two directives, kernels and parallel, are defined in OpenACC to specify which part
of the code is to be executed in parallel. While the kernels directive entrusts a compiler
with responsibility in analyzing dependencies of variables, the parallel directive implies
that owe to the user. We use the latter in our implementation.

• Memory allocation and data transfer:
data directive is a representative example. From OpenACC 2.0, enter and exit directives
are added which allocate and free a memory space on the device. Data transfer between
host and device is executed by update directive. Then before the parallel region, the
clause of data directive is always present.

• Specification of parallelized loop:
This is done by loop directive. In parallel region, this is necessary to be specified. With
a clause, one can specify which of gang, worker, and vector is assigned to the loop, and
variables that are private to the loop. Collapsing loops and specification of reduction can
also be indicated with clauses.

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1319



6.2 Implementation in Bridge++

Since the OpenACC libraries that control the devices are implicitly called from a code by
insertion of directives, we implement no class that corresponds to the DeviceManager class
for OpenCL. Instead we directly modify the code that uses devices by inserting OpenACC
directives (Cf. the right panel of Fig. 2). The steps (1) and (2) of the work flow in Sec-
tion 4 are automatically incorporated by the compiler. As in the case of OpenCL, we define
AField dev<REALTYPE> class that represents field data on the device. At the construction of an
instance of this class, the constructor allocates memory space of the device by enter directive
(step (3)). This device memory space is freed in the destructor by exit directive (step(7)).
To transfer data between the host and device, member functions are defined using the update

directive (steps (4) and (6)). This implementation enables explicit control of memory allocation
and data transfer through an abstract interface.

The kernel code to execute the step (5) is generated by a compiler at the parallel directive.
In the AField dev<REALTYPE> class, BLAS methods are implemented in this manner. Since
the data transfer is managed in a separated class by using update directive, the clause of data
directive before the parallel directive is in general present which indicates that the memory
space has already been allocated and the data is ready. The fermion matrix multiplication, the
Fopr dev class in Fig. 2, is implemented in the same way. By replacing corresponding objects
in the OpenCL version with them, the solver algorithm works without modification.

7 Performance

In this section, we report the sustained performance obtained for implementation within
Bridge++ using OpenCL and OpenACC. First we summarize our test environment in which
the following two types of accelerators are tested.

NVIDIA Tesla K40 (Kepler architecture)

• Peak performance: 4290 GFlops (float), 1430 GFlops (double)

• Global memory bandwidth: 288 GB/s

• Number of cores: 2880, 192 cores/streaming multi-processor

• CUDA 5.5

• PGI compiler 14.10 (OpenACC)

AMD Radeon HD7970 (Tahiti architecture)

• Peak performance: 3789 GFlops (float), 947 GFlops (double)

• Global memory bandwidth: 264 GB/s

• Number of cores: 2048, 64 cores/wavefront

• AMD APP SDK v.2.9

As a representative example, we implement the Wilson fermion operator defined as in Eq. (1)
and the conjugate gradient (CG) solver algorithm. The performance is measured for a multi-
plication of the Wilson operator (represented as “mult”) and for the CG solver on a 163 × 32
lattice. In the above, we use single GPU device. While we have no OpenACC environment on
our host with AMD GPU, we include the result for OpenCL in order to examine the portability
of our code.

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1320



OpenCL OpenACC
operation float double float double
NVIDIA Tesla K40:
Wilson mult 235 GFlops 121 GFlops 202 GFlops 38.4 GFlops
CG solver 161 GFlops 86.2 GFlops 126 GFlops 34.6 GFlops
AMD Radeon HD7970:
Wilson mult 228 GFlops 110 GFlops N/A N/A
CG solver 73.1 GFlops 47.7 GFlops N/A N/A

Table 1: Performance with OpenCL and OpenACC for Wilson fermion matrix mult and CG
solver on a 163 × 32 lattice.

Performance with OpenCL In Table 1, we summarize the present performance of our code
on NVIDIA and AMD GPUs. This is an update of the result reported in Ref. [12]. The run-
time parameters for thread grouping are adjusted for each device. The results of the single
precision almost twice the double precision indicate that the performance is indeed determined
by the data transfer between the device memory and cores. While the performance of the
Wilson matrix multiplication is comparable for NVIDIA and AMD GPUs, the performance of
the solver shows amplified differences. This is presumably caused by inefficient implementation
of the reduction in the inner-product. At present, the BLAS methods are implemented in the
Bridge++ code. We apply two step reduction, first reducing to a coarse-grained array and then
taking a full reduction. It is found that these reductions affect the performance significantly.
Further tuning of the code and architecture dependent optimization are underway. Adopting
public library with better implementation may improve the performance of the linear algebraic
part so as to accelerate the solver algorithm.

Performance with OpenACC In Table 1, we quote the present performance of OpenACC
implementation of Bridge++. At present the result is available only for the NVIDIA GPU. The
fermion multiplication is less efficient than the OpenCL version, in particular for the double
precision version. The latter may due to non-optimal assignment of variables to registers. By
reducing the number of local variables, the performance indeed approaches the half the values
of the float cases. More careful tuning including modification of code may be necessary to
achieve an improved performance.

8 Discussion and conclusion

We summarize advantages and disadvantages of OpenCL and OpenACC based on our experi-
ence of the implementation to lattice QCD code set Bridge++.

OpenCL requires a complicated setup, such as preparation of contexts, command queues,
as well as a compilation of kernel codes. These setups are, however, not an obstacle of further
development, once they are encapsulated in a management class. OpenCL API’s provide the
way to control devices in detail. While C++ template programming is not available in current
OpenCL C language, on-line compiler provides alternative way to achieve polymorphism. It is
also convenient in tuning the code that the memory type of a variable can be specified explicitly.

OpenACC has contrasting features to OpenCL. It is particularly effective at a start-up of
the implementation. Once entering tuning phase, however, one needs to control the behavior
of the compiler indirectly. This has made us spend more time to tune the OpenACC version

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1321



than OpenCL. Since the OpenACC compiler is rapidly becoming efficient, this tendency may
be dissolved in the near future. We also note that the present OpenACC compiler we tested
is not sufficiently mature in processing the C++ template syntax, which required us involved
coding to enable static polymorphism.

Both frameworks allow us to offload the time consuming tasks keeping the object-oriented
code structure. The interfaces implemented in Bridge++ are kept sufficiently simple so as to
avoid potential overheads. Although the performance is better with OpenCL at present, that
with OpenACC for single precision is acceptable. For the double precision case with OpenACC,
more proper tuning is required. Nonetheless, both frameworks are expected to have rooms to
improve their performance. Further tuning is ongoing, depending on each device architecture.

At this moment, we have not decided to select which of them as our base code. A practical
solution seems to be to prepare these codes for accelerator devices as libraries to extend the core
code set and to select one of them appropriately by considering the purpose and performance.
Such code design is now under investigation.

Acknowledgments

The code was developed and tested on HA-PACS at University of Tsukuba under a support
for its Interdisciplinary Computational Science Program, and workstations located at KEK
Computing Research Center. This project is supported by Joint Institute for Computational
Fundamental Science and HPCI Strategic Program Field 5 ‘The origin of matter and the uni-
verse’. This work is supported in part by JSPS Grant-in-Aid for Scientific Research (Nos.
20105005, 24540250, 25400284).

References

[1] M. Bach, V. Lindenstruth, O. Philipsen, and C. Pinke. Lattice QCD based on OpenCL. Com-
put.Phys.Commun., 184:2042–2052, 2013.

[2] Bridge++ project. http://bridge.kek.jp/Lattice-code/ . [online], 2012–2015.

[3] M.A. Clark. QCD on GPUs: cost effective supercomputing. PoS, LAT2009:003, 2009.

[4] M.A. Clark, R. Babich, K. Barros, R.C. Brower, and C. Rebbi. Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs. Comput. Phys. Commun., 181:1517–1528, 2010.

[5] T. DeGrand and C. DeTar. Lattice Methods for Quantum Chromodynamics. World Scientific Pub.,
2006.

[6] V. Demchik and N. Kolomoyets. QCDGPU: open-source package for Monte Carlo lattice simula-
tions on OpenCL-compatible multi-GPU systems. arXiv:1310.7087 [hep-lat], 2013.

[7] M. Di Pierro. QCL: OpenCL meta programming for lattice QCD. PoS, LATTICE2013:043, 2014.

[8] G. I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. Nogradi, and K. K. Szabo. Lattice QCD as a
video game. Comput.Phys.Commun., 177:631–639, 2007.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[10] P. Majumdar. Lattice Simulations using OpenACC compilers. PoS, LATTICE2013:031, 2014.

[11] I. Montvay and G. Münster. Quantum Fields on a Lattice. Cambridge Univ. Press, 1994.

[12] S. Motoki et al. Development of Lattice QCD Simulation Code Set on Accelerators. Procedia
Computer Science, 29:1701, 2014.

[13] S. Ueda et al. Bridge++: an object-oriented C++ code for lattice simulations. PoS, LAT-
TICE2013:412, 2014.

OpenCL vs OpenACC: lessons from lattice QCD H. Matsufuru for Bridge++ project

1322


