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We explore the Euclidean supersymmetric solutions admitting the self-dual gauge field in the framework 
of N = 2 minimal gauged supergravity in four dimensions. According to the classification scheme 
utilizing the spinorial geometry or the bilinears of Killing spinors, the general solution preserves one 
quarter of supersymmetry and is described by the Przanowski–Tod class with the self-dual Weyl tensor. 
We demonstrate that there exists an additional Killing spinor, provided the Przanowski–Tod metric admits 
a Killing vector that commutes with the principal one. The proof proceeds by recasting the metric into 
another Przanowski–Tod form. This formalism enables us to show that the self-dual Reissner–Nordström–
Taub–NUT–AdS metric possesses a second Killing spinor, which has been missed over many years. We 
also address the supersymmetry when the Przanowski–Tod space is conformal to each of the self-dual 
ambi-toric Kähler metrics. It turns out that three classes of solutions are all reduced to the self-dual 
Carter family, by virtue of the nondegenerate Killing–Yano tensor.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The localization technique [1,2] in supersymmetric gauge theo-
ries defined on a curved Riemannian background provides a pow-
erful tool to implement exact non-perturbative calculations, such 
as the expectation value of a Wilson loop and the partition func-
tions. The localization principle therefore is a valuable quantitative 
instrument to explore the strongly coupled regime, as worked out 
in N = 2 supersymmetric gauge theories in three dimensions [3,4]. 
In line with this progress, there has been an increasing interest 
in the study of gravitational solutions with Euclidean signature in 
dual gravity theories. Some gravitational dual solutions were stud-
ied in detail and exploited to reproduce elegantly the field theory 
results. See e.g., [5–8] and references cited therein.

On account of the G-structure restriction coming from the 
Killing spinor, the corresponding supersymmetric solutions to the 
four-dimensional Euclidean gauged supergravity can be classified 
in a systematic manner [9–11] (see also [12]). For the minimal 
gauged supergravity in four dimensions, it turned out that the sys-
tem reduces to the nonlinear equations for two variables on the 
three-dimensional curved space, and the general solution preserves 
one quarter of supersymmetry, provided the Killing spinor takes 
the same form as in the Lorentzian counterpart. Among them, an 
interesting subclass arises when the gauge field is self-dual, for 
which the general metric is described by the Einstein space with 
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a self-dual Weyl curvature found by Przanowski [13] and Tod [14]. 
The Einstein metrics with a self-dual Weyl tensor have been stud-
ied in a variety of contexts including twistor spaces and gravita-
tional instantons.

The Przanowski–Tod metric is conformal to the scalar-flat Käh-
ler space found by LeBrun [15]. The solution allows a Killing vector 
which preserves the integrable complex structure and is specified 
by a single function obeying the continuous Toda equation. De-
spite the fact that the governing system is remarkably simplified 
compared to Einstein’s equations, finding the exact solutions to 
the nonlinear Toda equation is still a formidable task, which is 
a main obstacle to the comprehensive survey of supersymmetric 
solutions. Furthermore, we do not know a priori what kind of so-
lution to the continuous Toda equation provides the gravitational 
solution of mathematical and physical interest. An astute strategy 
to evade these difficulties is to find the coordinate transformation 
which converts the solutions of interest into the Przanowski–Tod 
form. In the recent joint work with Houri [16], the present au-
thor worked out the necessary and sufficient conditions for the 
Euclidean supersymmetry of the most general Petrov-D solution 
found by Plebański and Demiański [17]. Ref. [16] proved that 
the self-dual Plebański–Demiański solution admits two indepen-
dent Killing spinors, whereas the non-self dual solution admits 
a single Killing spinor. The method embraced there was to cast 
the Plebański–Demiański metric into two different Przanowski–
Tod forms, by making full use of the Killing–Yano tensor found 
in [18] and the ambi-Kähler property [19]. This was the first work 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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that demonstrated explicitly that the self-dual solution admits the 
enhancement of super and hidden symmetries, compared to the 
non-self-dual counterparts.

Nevertheless, ref. [16] left several issues open to debate. Since 
the nondegeneracy of the Killing–Yano tensor has been postu-
lated in [16], it has remained unclear if the self-dual Reissner–
Nordström–Taub–NUT–AdS solution, in which the Killing–Yano 
tensor is degenerate, allows a second Killing spinor. In addition, 
the Killing–Yano tensor for the self-dual Plebański–Demiański so-
lution was constructed based on the Petrov-D property. This makes 
it obscure whether the presence of the second Killing spinor for 
the self-dual metric is generic or specific to the algebraically spe-
cial solutions. To address these unsettled issues is one of the main 
purposes of the present article.

For the Euclidean Reissner–Nordström–Taub–NUT–AdS solution, 
one may be tempted to hope that the Killing spinor equation might 
be integrated directly, since the solution enjoys a number of sym-
metries. In the self-dual case, however, one immediately encoun-
ters serious difficulties in this approach. As pointed out in [16], 
the first integrability condition of the Killing spinor necessarily 
acquires two zero eigenvalues. This fact forbids us to extract a use-
ful projection operator for integration. Furthermore, the self-dual 
gauge field appearing in the Killing spinor equation disagrees in 
general with the self-dual limit of the gauge field of non-self-dual 
solutions [8,16]. It follows that one cannot work out the (non)ex-
istence of Killing spinors, as far as one is adhering to the self-dual 
limit of the non-self-dual gravitational solutions. This problem has 
plagued previous studies and some confusions have prevailed as to 
the correct fraction of preserved supersymmetry of the self-dual 
solutions.

In this paper, we undertake the elaborated analysis on the su-
persymmetry of the Przanowski–Tod metric in the framework of 
N = 2 minimal gauged supergravity. A key ingredient here is the 
additional Killing vector which is linearly independent of the prin-
cipal Killing vector. When the Przanowski–Tod space is indepen-
dent of the coordinate y (see equation (2.5) below), it follows that 
the metric can be brought into the Calderbank–Pedersen form [20], 
as first demonstrated in [21]. We show that the Przanowski–
Tod metric allows a one-parameter family of different descrip-
tion. Since any Przanowski–Tod metric admits a Killing spinor of 
one quarter of supersymmetry, this means that two independent 
Killing spinors exist. This is to be contrasted with the conven-
tional supersymmetry enhancement, because the gauge field in the 
Killing spinor equation is distinct in the present setting from the 
original one and is also characterized by a single parameter.

The remainder of the paper constitutes as follows. The next sec-
tion presents a simple formulation how the self-dual Przanowski–
Tod metric admits the second independent Killing spinor. In sec-
tion 3, we use this framework to establish that the self-dual 
Reissner–Nordström–Taub–NUT–AdS solution admits one more 
Killing spinor, in contrast to the claim in the literature that this 
metric preserves only one quarter or none of supersymmetry. In 
section 4, supersymmetry of three classes of the conformal ambi-
Kähler metrics is explored. In the self-dual case, all three classes 
of the conformal ambi-toric Kähler metrics are degenerate into 
the self-dual Carter family [22], on account of the existence of 
the nondegenerate Killing–Yano tensor in each class. We draw our 
conclusions in the final section 5 with several future prospects.

2. Supersymmetry of the self-dual solution

Let us consider the Euclidean Einstein–Maxwell system with a 
negative cosmological constant, whose action is given by

S = −1

2

∫
(R + 6�−2) � 1 − 2F ∧ �F . (2.1)
Here � denotes the (Euclidean) AdS radius with its reciprocal be-
ing the gauge coupling constant. F is the U(1) field strength cor-
responding to the graviphoton and can be locally expressed by 
F = dA. The gravitational solution is said to preserve supersymme-
try, provided it admits a nontrivial spinor ε obeying the 1st-order 
differential equations

∇̂με ≡
(

∇μ + i

4
Fνργ νργμ + 1

2�
γμ − i

�
Aμ

)
ε = 0 . (2.2)

ε is the Spin(4) Dirac spinor and γμ defines the Clifford algebra 
{γμ, γν} = 2gμν . The general supersymmetric solutions have been 
classified systematically in [10,16] and preserve at least one quar-
ter of supersymmetry when A and � are both real.

Let us focus hereafter on the case in which the Maxwell field is 
self-dual

F = �F . (2.3)

In this case, the metric is Einstein Rμν = −3�−2 gμν because the 
stress-energy tensor vanishes identically, i.e., F denotes an instan-
ton. The general analysis in [9,16] reveals that the local metric of 
supersymmetric solutions with a self-dual gauge field can be writ-
ten in the Przanowski–Tod form [13,14]

ds2 = �2

z2
dŝ2

LeBrun , (2.4)

where

dŝ2
LeBrun = H−1(dt + ω)2 + H[dz2 + eu(dx2 + dy2)] , (2.5)

and1

H = 1 − 1

2
zuz , (2.6)

dω = Hxdy ∧ dz − H ydx ∧ dz + (eu H)zdx ∧ dy . (2.7)

Here and throughout the paper, we use the notation ux = ∂u/∂x
etc to denote the partial differentiation. The solution is indepen-
dent of t and entirely controlled by a single function u = u(x, y, z)
satisfying the continuous Toda equation

uxx + u yy + (eu)zz = 0 . (2.8)

The integrability d2ω = 0 in (2.7) is satisfied by the Toda equation 
(2.8). The Przanowski–Tod metric is complex and hermitian, and 
its Weyl tensor is self-dual

Cμνρσ = 1

2
εμντλCτλ

ρσ . (2.9)

The self-duality of the Weyl tensor comes from the constraints 
of supersymmetry. The four-dimensional Einstein manifold with 
a self-dual Weyl tensor possesses a quaternionic Kähler struc-
ture [23].

Let us digress a bit here and devote ourselves to the con-
formally transformed metric dŝ2

LeBrun = (z/�)2ds2. This metric de-
scribes the LeBrun space [15], which is the scalar-flat Kähler mani-
fold with an anti-self-dual Kähler form 
̂ = (dt +ω) ∧dz− Heudx ∧
dy. Here the hat notation is intended to highlight the quantities 
defined on the LeBrun space and therefore their indices are raised 
and lowered by the LeBrun metric and its inverse. The coordinate 
z plays the role of the conformal factor, as well as the moment 
map of the LeBrun space. The Ricci form R̂μν = 1

2 
̂ρσ R̂ρσ
μν of 

the LeBrun space is locally expressed by R̂ = dP̂ , where

1 Since the length scale � has been factored out in (2.4), the expressions (2.6), 
(2.7) are obtained by simply setting � = −1/2 in [9,14].
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P̂ = uz

2H
(dt + ω) + 1

2
(−u ydx + uxdy) . (2.10)

(2.7) assures that the Kähler form 
̂ is covariantly constant 
and (2.8) imposes the self-duality of the Weyl curvature2 which 
amounts to the vanishing of the scalar curvature R̂ = 0. For the 
LeBrun space, H and u are independent functions, thereby H need 
not satisfy (2.6). The governing equation for H is obtained by the 
integrability d2ω = 0, yielding

Hxx + H yy + (eu H)zz = 0 . (2.11)

Let us now turn our attention back to the Killing spinor of 
the Przanowski–Tod space. The gauge field appearing in the Killing 
spinor is given by [8,10,16]

A = − �

2
P̂ , (2.12)

where P̂ is the Ricci form gauge potential (2.10) of the LeBrun 
space. Namely, A denotes a connection on the spinc bundle of the 
Kähler manifold [8]. Taking the orthonormal frame

e1 = �

z
H−1/2(dt + ω) , e4 = �

z
H1/2dz ,

e2 = �

z
H1/2eu/2dx , e3 = �

z
H1/2eu/2dy , (2.13)

and inserting (2.12) into (2.2), the Killing spinor equation is inte-
grated to give [8,16]

ε = 1

4

√
�

z
(1 − iH−1/2γ 1)(1 − iγ 23)(1 + γ5)ε0 , (2.14)

where γ5 = γ1234 and ε0 is a constant Dirac spinor. Because of the 
two independent projection operators in (2.14), the Przanowski–
Tod space preserves at least one quarter of supersymmetry. The bi-
linear vector V μ = iε†γ5γ

με = (∂/∂t)μ defines a principal Killing 
vector which keeps invariant the metric LV gμν = 0 and the com-
plex structure LV J = 0.

As shown in [16], the matrices [∇̂μ, ∇̂ν ] are proportional to 
(1 − γ5) for the self-dual solutions of the Killing spinor (2.2). 
This means that det[∇̂μ, ∇̂ν ] necessarily admit at least two zero 
eigenvalues. This fact is indicative of the feature that half of the 
supersymmetry is preserved. However, the integrability is only a 
necessary condition [24], so that the mere requirement of the in-
tegrability condition is a lack of mathematical rigor. In order to 
verify the enhanced supersymmetry robustly, one has to construct 
explicit Killing spinors.

Suppose that the Przanowski–Tod metric admits another lin-
early independent Killing spinor ε̃ . Then, its bilinear vector field 
Ṽ μ = iε̃†γ5γ

με̃ is also a Killing vector which is linearly indepen-
dent of V μ = iε†γ5γ

με . It turns out that there exist two different 
ways of writing the metric into the Przanowski–Tod forms. Observe 
that these bilinear Killing vectors are not necessarily commutative 
with each other, as one can infer from the maximally supersym-
metric AdS2 × S2 solution in Lorentzian ungauged supergravity.

In order to capture the essence of the idea, we shall concen-
trate here on the simple case in which the metric (2.4) admits 
another Killing vector of the form ∂/∂ y. In this case, one can set 
ω = ω0(x, z)dy without losing any generality, and (2.7) now sim-
plifies to (ω0)z = −Hx and (ω0)x = (eu H)z . It turns out that the 
conformal Kähler structure must be toric. As shown in [21], this 
class of solutions falls into the Calderbank–Pedersen family [20], 

2 In contrast, (2.6) is the condition which assures the Przanowski–Tod metric to 
be the Einstein space. Note also that the self-duality conditions (2.3), (2.9) are con-
formally invariant and therefore valid for both metrics.
which stands for the most general Einstein metric with the self-
dual Weyl tensor possessing two linearly independent commuting 
Killing vector fields. We shall show shortly that this case indeed 
admits the second independent Killing spinor and includes a num-
ber of mathematically interesting geometries.

If the second Killing spinor ε̃ exists in this class of metrics, its 
bilinear Killing vector Ṽ μ = iε̃γ5γ

με̃ must be built out of ∂/∂t
and ∂/∂ y as

Ṽ = c1
∂

∂t
+ c2

∂

∂ y
, (2.15)

where c1 and c2 are constants. Here, we wish to find the co-
ordinate transformation (t, x, y, z) �→ (t̃, ̃x, ỹ, ̃z) which brings the 
metric (2.4) into another Przanowski–Tod form

ds2 = �2

z̃2

[
H̃−1(dt̃ + ω̃)2 + H̃{dz̃2 + eũ(dx̃2 + d ỹ2)}

]
, (2.16)

with Ṽ = ∂/∂ t̃ . Here, H̃ , ω̃ and ũ should satisfy equations of the 
‘tilded’ Toda system (2.6), (2.7), (2.8).

A key observation to obtain the suitable transformation is the 
twistor tensor which is present in Einstein spaces with the self-
dual Weyl curvature [14]

k = 1

2
(dṼ � − �dṼ �) , (2.17)

where Ṽ � is a one-form dual to the Killing vector Ṽ (2.15). The 
two-form k is anti-self-dual and satisfies the conformal Killing–
Yano equation [14]. The desired conformal factor z̃ is then found 
to be

z̃ = 2√
kμνkμν

= 2z

h(x, z)
, (2.18)

where h(x, z) ≡
√

4c2
2eu + (2c1 + 2c2ω0 − c2zux)2. After some ma-

nipulations, we find that the rest of the coordinate transformations 
is given by

t̃ = c1t + c2 y

c2
1 + c2

2

, ỹ = −c2t + c1 y ,

dx̃ = 2c2
2eu H + (c1 + c2ω0)(2c1 + 2c2ω0 − c2zux)

h(x, z)
dx

+ c2z[(c1 + c2ω0)uz + c2 Hux]
h(x, z)

dz , (2.19)

where the integrability d2 x̃ = 0 in (2.19) is assured by the Toda 
system (2.6), (2.7), (2.8), which therefore guarantees the local ex-
istence of the coordinate x̃. With the above new coordinates, one 
can bring the Przanowski–Tod metric (2.4) into another canonical 
form (2.16) with

H̃ = Hh(x, z)2

4[(c1 + c2ω0)2 + c2
2eu H2] ,

ω̃ = (c2
1 − c2

2)ω0 + c1c2(ω
2
0 − 1 + eu H2)

(c2
1 + c2

2)[(c1 + c2ω0)2 + c2
2eu H2] d ỹ , (2.20)

eũ = 16eu

h(x, z)4
.

Some tedious but straightforward computations show that H̃ , ω̃
and ũ satisfy the ‘tilded’ Toda system (2.6), (2.7), (2.8). It turns out 
that the Killing spinor equation can be integrated in the new co-
ordinate system (t̃, ̃x, ỹ, ̃z) and the solution ε̃ takes the form (2.14)
in the tilded frame with the gauge field
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Ã = −�[c2ux H + uz(c1 + c2ω0)]
2Hh(x, z)

(dt + ω0dy) (2.21)

+ �[2c2(eu)z − ux(2c1 + 2c2ω0 − c2zux)]
4h(x, z)

dy .

Since this Killing spinor ε̃ is obviously independent of the first, this 
shows that there appears another supersymmetry generated by ε̃ . 
The explicit coordinate transformations (2.18), (2.19) represent the 
main result in this section. This argument does not depend on the 
degeneracy of the Killing–Yano tensor nor the Petrov-D property, 
extending substantially the analysis given in [16]. Following the 
terminology in [14], the above coordinate transformations inter-
change the role of class A and B which distinguish the solutions of 
the Przanowski master equation [13].

Ref. [11] analyzed the condition under which the Euclidean 
supersymmetry is enhanced by focusing on the integrability 
of the Killing spinor equation. They concluded that the half-
supersymmetric self-dual solutions are exhausted by the one for 
which the Toda equation is separable with respect to the coor-
dinates (x, y) and z (see (4.33) in [11]). Their analysis in [11] is 
consistent with the present result, since in the present case the 
instanton given in (2.12) is inequivalent to the ‘tilded’ one (2.21). 
This possibility has not been examined in [11]. Examples consid-
ered in the following two sections manifest this feature and the 
Toda equation is not of the separable form.

3. Reissner–Nordström–Taub–NUT–AdS solution

Exploiting the algorithm given in the previous section, we can 
show the existence of the two independent Killing spinors in the 
self-dual Euclidean Reissner–Nordström–Taub–NUT–AdS solution. 
The non-self-dual Euclidean Reissner–Nordström–Taub–NUT–AdS 
solution reads

ds2 = �(r)

R(r)2
(dτ − 2nvdφ)2

+ R(r)2
[

dr2

�(r)
+ dv2

1 − v2
+ (1 − v2)dφ2

]
, (3.1)

A = qer − nqm

R(r)2
dτ + qm(r2 + n2) − 2nqer

R(r)2
vdφ , (3.2)

with

R(r) =
√

r2 − n2 , (3.3)

�(r) = R(r)4

�2
+

(
1 − 4n2

�2

)
(r2 + n2) − 2mr + q2

m − q2
e .

The coordinate cos θ = −v denotes the usual azimuthal angle and 
φ is 2π periodic. The solution admits U(2) = U(1) × SU(2) sym-
metry and is specified by four parameters: the mass m, the NUT 
charge n, the electric charge qe and the magnetic charge qm . Tak-
ing the orientation dτ ∧dr ∧dv ∧dφ to be positive, the gauge-field 
is self-dual F = �F when

qe = qm . (3.4)

The self-duality of the Weyl tensor (2.9) boils down to

qe = qm , m = n − 4n3

�2
. (3.5)

When (3.5) is fulfilled, the largest root of gtt = 0 is r = n(> 0), at 
which the regularity of the metric requires τ to have a period 8πn.

The metric (3.1) follows from the appropriate scaling limit of 
the general Plebański–Demiański solution [17]. The necessary and 
sufficient conditions under which the Plebański–Demiański solu-
tion (including the C-metric and the Carter family) is supersym-
metric were obtained in [25] for the Lorentzian signature. The su-
persymmetry of the Reissner–Nordström–Taub–NUT–AdS solution 
in Lorentzian signature was first addressed in [26] (see also [27,
28]). Ref. [16] studied the Euclidean supersymmetry of the general 
Plebański–Demiański solution, and showed that two independent 
Killing spinors exist in the self-dual case utilizing the nondegener-
acy of the Killing–Yano tensor. Our discussion here is insensitive to 
this property and hence applicable also to the above solution (3.1)
for which the Killing–Yano tensor is degenerate.

Following the procedure given in [12,25], we can transform the 
metric (3.1) into the Przanowski–Tod form (2.4) by the coordinate 
transformation

z = �2

r − n
, x = 1

2
log

(
1 − v

1 + v

)
,

t = τ , y = φ . (3.6)

The metric functions are then given by

H = r2 − n2

(r + n)2 + �2 − 4n2
, ω0 = −2nv ,

eu = �2(1 − v2)

(r − n)2
[(r + n)2 + �2 − 4n2] . (3.7)

One can easily verify that all equations of the Toda system (2.6), 
(2.7), (2.8) are satisfied. Equations (2.10) and (2.12) yield the in-
stanton gauge potential, which turns out to be a constant multiple 
of the self-dual limit of (3.2) up to gauge. This confirms the exis-
tence of the first Killing spinor [8,11].

To get further insight, let us define w = �2(r + n)/(r − n) and 
cast the metric (3.1) into the following form

ds2 = 4�2n2

(�2 − w)2

[
W (w)

w

(
dτ

2n
− vdφ

)2

+ wdw2

W (w)

+ w

(
dv2

1 − v2
+ (1 − v2)dφ2

)]
, (3.8)

where W (w) = �2(�2 −4n2) +2(4n2 −�2)w + w2. The metric in the 
square bracket stands for the canonical metric for the ambi-toric 
Kähler of Calabi-type [19]. It is interesting to observe that the half 
supersymmetric solutions of this kind also emerge when a single 
instanton field is not (anti-)self-dual (see (4.27) in [11]).

Since ∂/∂ y is the Killing vector for the Euclidean Reissner–
Nordström–Taub–NUT–AdS solution (3.1), another Killing spinor 
can be obtained by following the reasoning in section 2. The ex-
plicit forms of H̃, ω̃, ̃u in the new Przanowski–Tod form can be 
easily inferred by inserting (3.6), (3.7) into (2.20), whereas the 
integration of x̃ in (2.19) is a bit cumbersome but nonetheless com-
putable as

x̃ = c1

2
log

(
1 − v

1 + v

)
+ c2n log

[
D1

(r − n)2(1 − v2)

]

− αc2 sin−1

⎡
⎢⎣ c1 D2 + c2α

2(r − n)v

�

√
(c2

1 + c2
2α

2)D1

⎤
⎥⎦

+ c1

2
log

[
(D3 + c2 D2)

2 + [c2α(r − n)(1 + v)]2

(D3 − c2 D2)2 + [c2α(r − n)(1 − v)]2

]

+ 2c2n log

⎡
⎢⎣α2(r − n)(D3 − c2 D2 v)

�2
√

c2
1 + c2

2α
2 D1

⎤
⎥⎦ , (3.9)
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where α = √
�2 − 4n2 and

D1 = (r + n)2 + α2 , D2 = �2 + 2n(r − n) ,

D3 =
√

[c1(r − n) − c2 D2 v]2 + c2
2�

2 D1(1 − v2)

+ c1(r − n) . (3.10)

The instanton gauge field in the new frame reads

Ã = − (r − n)[c1 D2 + c2α
2(r − n)v]

2�(r + n)[D3 − c1(r − n)] (dτ − 2nvdφ)

− �[c1(r − n)v − c2 D2]
2[D3 − c1(r − n)] dφ, (3.11)

which disagrees with the self-dual limit of (3.2), as we underlined. 
Since the complexity of these expressions has been a main obstacle 
for integrating the Killing spinor equation in the original coordi-
nates, the Killing spinor constructed here has been missed so far. 
This illustrates the power of the general framework organized in 
section 2. From the viewpoint of three-dimensional Chern–Simons 
theories, the ratio c2/c1 corresponds to the choice of the almost 
contact structure in three sphere [5].

4. Conformal ambi-toric Kähler metrics

In this section, we study the Przanowski–Tod metric in which 
the LeBrun space is taken to the regular type ambi-toric Kähler. As 
well as illustrating our general results in section 2, this example al-
lows us to discover the unexpected hidden symmetry represented 
by the Killing–Yano tensor.

An ambi-Kähler structure comprises a pair of Kähler structures 
( ĝ±, 
̂±, Ĵ±) for which the metrics are conformally related ĝ− =
�2 ĝ+ for some function � with the opposite orientation 
̂+ ∧

̂+ = −
̂− ∧ 
̂− [19]. When these Kähler metrics are both toric, 
the analysis in [19] clarified that the ambi-toric Kähler geometries 
are either of Calabi-type or regular, and the latter class is divided 
into three varieties (hyperbolic, parabolic and elliptic types). Since 
the self-dual Reissner–Nordström–Taub–NUT–AdS solution belongs 
to the conformal Kähler of Calabi-type as verified in the previous 
section, we direct attention here toward the regular type. In terms 
of the barycentric metric ds2

c = �−1dŝ2− = �dŝ2+ of the form

ds2
c = dŝ2

2 + dq2

Q (q)
+ dp2

P (p)
, (4.1)

where P (p), Q (q) are arbitrary functions, these three subclasses of 
regular type are specified as follows. (i) Hyperbolic

dŝ2
2 = Q (q)(dτ + p2dσ)2

(q2 − p2)2
+ P (p)(dτ + q2dσ)2

(q2 − p2)2
,


̂± = d

(
dτ

q ∓ p
± pq

q ∓ p
dσ

)
, � = q − p

q + p
. (4.2)

(ii) Parabolic

dŝ2
2 = Q (q)(dτ + pdσ)2

(q − p)2
+ P (p)(dτ + qdσ)2

(q − p)2
,


̂+ = −d

(
dτ

p − q
+ p + q

2(p − q)
dσ

)
,


̂− = −d[(p + q)dτ + pqdσ ] , � = q − p . (4.3)

(iii) Elliptic (this fixes the typo in [19])

dŝ2
2 = P (p)

(q − p)2(1 + pq)2
[2qdτ + (q2 − 1)dσ ]2

+ Q (q)

2 2
[2pdτ + (p2 − 1)dσ ]2 ,
(q − p) (1 + pq)

̂+ = d

(
q + p

q − p
dτ − 1 − pq

q − p
dσ

)
,


̂− = d

(
2dτ

1 + pq
+ p + q

1 + pq
dσ

)
, � = q − p

1 + pq
. (4.4)

Here 
̂± are the Kähler forms with �̂
̂± = ±
̂± in the positive 
orientation dτ ∧ dq ∧ dp ∧ dσ . Each ambi-toric Kähler metric is en-
dowed with two commuting Killing vectors ∂/∂τ and ∂/∂σ , and 
is characterized by two structure functions. We shall show below 
that these metrics are all incorporated into the y-independent Le-
Brun metric and its conformal class admits the self-dual Einstein 
metric of the Przanowski–Tod form.

Since the general ambi-toric Kähler solutions (4.2), (4.3), (4.4)
are not self-dual nor Einstein (hence P (p), Q (q) are left undeter-
mined), there exist diverse ways of transformations from the non-
self-dual LeBrun to each ambi-toric Kähler solution (t, x, y, z) �→
(τ , q, p, σ). However, our interest here lies in the appropriate z
which gives rise to the Przanowski–Tod form via the conformal 
transformation. Hence, we present only the bottom line of z which 
indeed realizes that the metric (z/�)2dŝ2

LeBrun is self-dual and Ein-
stein. In the following analysis, we set � = 1 and try to identify 
dŝ2

LeBrun with dŝ2− = �ds2
c .

4.1. Hyperbolic type

Let us get started with the y-independent LeBrun metric (2.5). 
Performing the coordinate transformation

t = τ , y = σ + bτ , z = 1 + bpq

p + q
,

dx = 1 − bq2

Q (q)
dq − 1 − bp2

P (p)
dp , (4.5)

where b is a constant and

H = (p + q)3(q − p)

(1 − bq2)2 P (p) + (1 − bp2)2 Q (q)
, eu = P (p)Q (q)

(p + q)4
,

ω = q2(1 − bq2)P (p) + p2(1 − bp2)Q (q)

(1 − bq2)2 P (p) + (1 − bp2)2 Q (q)
dy , (4.6)

one obtains the ambi-toric Kähler metric dŝ2− = �ds2
c of hyperbolic 

type (4.2). This coordinate transformation is insensitive to the pre-
cise form of structure functions P (p) and Q (q). Now let us require 
that the conformally transformed metric ds2 = z2dŝ2− is Einstein 
and its Weyl curvature is self-dual. This restricts z to be (4.5) and 
the structure functions to take the form

P (p) = a0 + a1 p + a2 p2 + ba1 p3 + (b2a0 − 1)p4 ,

Q (q) = −a0 + a1q − a2q2 + ba1q3 + (1 − b2a0)q
4 , (4.7)

where a0,1,2 are constants. It follows that the conformal trans-
formation (2.4) gives rise to the y-independent Przanowski–Tod 
metric. An application of the result in section 2 immediately con-
cludes that the solution admits two independent Killing spinors.

The obtained self-dual Einstein metric is nothing but the Eu-
clidean Plebański–Demiański solution [16,19]. An interesting as-
pect of this solution is that it has a description in terms of 
the Carter family [22], which is a b = 0 limit of the Plebański–
Demiański solution. Consequently, an acceleration parameter b
can be gauged away by a suitable coordinate transformation 
(τ , q, p, σ) �→ (τ̃ , ̃q, p̃, σ̃ ) [16]. To show this, the Killing–Yano ten-
sor played a central role. However, the Killing–Yano tensor is 
inessential, as far as the existence of the second Killing spinor 
is concerned. The Killing spinors constructed here are exhaustive, 
since the upper bound on the number of Killing vectors in the 
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self-dual Carter metric is two [18], which are the ones built out of 
the Killing spinors ε, ̃ε .

The solution to the Toda system (4.6) is given implicitly as func-
tions of (x, z). The relation will be more manifest if one can find 
an algebraic equation of u in terms of (x, z), as discussed in [29]
for the ungauged theory. The basic idea behind this is to write 
the solution to the Toda system in terms of an axially symmet-
ric harmonic function on E3. Contrary to [29] where the harmonic 
function is given in advance, one needs to solve the inverse rela-
tions (cf., eqs. (81)–(84) in [16]) to obtain the harmonic function 
in the present case. This is not straightforward but an interesting 
direction for further understanding of self-dual solutions.

4.2. Parabolic type

Consider the LeBrun space and the following coordinate trans-
formation

z = p + q , dx = dp

P (p)
− dq

Q (q)
, t = τ , y = σ , (4.8)

with

H = q − p

P (p) + Q (q)
, eu = P (p)Q (q) ,

ω = qP (p) + p Q (q)

P (p) + Q (q)
dy . (4.9)

One thus gets the ambi-Kähler metric dŝ2− = �ds2
c of parabolic 

type. The parabolic type ambi-Kähler metric dŝ2− is also referred 
to as the orthotoric metric and attracts some attention from the 
geometric point of view, because it admits the Hamiltonian two-
form [30] and the Killing–Yano tensor with a three-form tor-
sion [31].

Imposing the Toda system to (4.8), (4.9), we find

P (p) = a0 + a1 p + a2 p2 ,

Q (q) = −a0 + (2 + a1)q − a2q2 , (4.10)

where a0,1,2 are constants, and the allowed conformal factor z is 
only (4.8). The conformal transformation (2.4) then gives rise to 
the y-independent Przanowski–Tod space and two Killing spinors 
exist.

Since the expression of (x̃, ̃z) in terms of (q, p) is fairly awk-
ward, it is desirable to find a more convenient coordinate system 
to make further progress, by choosing c1 and c2 appropriately. 
Here we observe that the following two-form is the Killing–Yano 
tensor

f = f+e1 ∧ e2 + f0(e1 ∧ e3 + e2 ∧ e4) + f−e3 ∧ e4 , (4.11)

satisfying ∇(μ fν)ρ = 0, where

f0 = −2
√

P (p)Q (q)

p + q
,

f± = q − p ± [2a0 − a1q + (2 + a1)p − 2a2 pq]
q + p

. (4.12)

Here we worked in the orthonormal frame

e1 =
√

Q (q)

q − p

dτ + pdσ

q + p
, e2 =

√
q − p

Q (q)

dq

q + p
,

e3 =
√

q − p

P (p)

dp

q + p
, e4 =

√
P (p)

q − p

dτ + qdσ

q + p
. (4.13)

According to the analysis in [32,33], the four dimensional spaces 
admitting the Killing–Yano tensor are exhausted by the Carter 
family [22] corresponding to the b = 0 limit of the Plebański–
Demiański solution. This means that a suitable change of basis 
brings the metric (4.13) into the Carter form. A key role to this 
aim is played by the Killing–Yano tensor (4.11). Since two eigen-
values of f are nondegenerate, we are able to employ them as new 
coordinates

q̃ = 1

2

(√
( f+ − f−)2 + 4 f 2

0 + f+ + f−
)

,

p̃ = 1

2

(√
( f+ − f−)2 + 4 f 2

0 − ( f+ + f−)

)
. (4.14)

Preliminary computations show that the metric (4.13) can be cast 
into the form

ds2 = Q̃ (q̃)

q̃2 − p̃2
(dτ̃ + p̃2dσ̃ )2 + (q̃2 − p̃2)

(
dq̃2

Q̃ (q̃)
+ dp̃2

P̃ (p̃)

)

+ P̃ (p̃)

q̃2 − p̃2
(dτ̃ + q̃2dσ̃ )2 , (4.15)

where

τ̃ = (1 + a1)
2 − 4a0a2

16a0
τ − 1

4
σ , σ̃ = − τ

16a0
, (4.16)

and the structure functions are given by

P̃ (p) = ã0 + ã1 p̃ + ã2 p̃2 − p̃4 ,

Q̃ (q) = −ã0 + ã1q̃ − ã2q̃2 + q̃4 , (4.17)

with

ã0 = (1 − a2
1 + 4a0a2)[(a1 + 1)(a1 + 3) − 4a0a2] ,

ã1 = 8(1 + a1) , ã2 = 2(a2
1 + 2a1 + 3 − 4a0a2) . (4.18)

This is the self-dual Carter metric (b = 0 limit of (4.7)), as we de-
sired to show. The coordinate transformation to the Carter metric 
corresponds to the choice c1 = 0, c2 = −4 in (2.19).

4.3. Elliptic type

Our last example is the elliptic type, for which the desired 
transformation from the LeBrun space is given by

z = 1 − pq + b(p + q)

1 + pq
, t = τ , y = σ − bτ ,

dx = −2p + b(p2 − 1)

2P (p)
dp + 2q + b(q2 − 1)

2Q (q)
dq , (4.19)

where b is a constant with

H = (q − p)(1 + pq)3

[2q + b(q2 − 1)]2 P (p) + [2p + b(p2 − 1)]2 Q (q)
,

eu = 4P (p)Q (q)

(1 + pq)4
, (4.20)

ω = �dy

[2q + b(q2 − 1)]2 P (p) + [2p + b(p2 − 1)]2 Q (q)
.

Here � = (q2 − 1)[2q + b(q2 − 1)]P (p) + (p2 − 1)[2p + b(p2 −
1)]Q (q). The Toda system is only compatible with (4.19) and quar-
tic functions of the form

P (p) =
4∑

j=0

a j p j , Q (q) =
4∑

j=0

(−1) j+1a4− jq
j , (4.21)

where the constants a j are subjected to the constraints
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a1 + a3 + 2b(a4 − a0) = 0 ,

a1(1 − b2) + b(a2 − 2a0) + b3(a0 − a4) = 1 . (4.22)

It follows that the elliptic type metric falls into the y-independent 
Przanowski–Tod space.

Also in this case, it turns out that the metric can be reduced to 
the self-dual Carter family. Combined with the results in [32,33], 
this can be immediately appreciated from the existence of the 
Killing–Yano tensor. Now, adopting the frame

e1 =
√

Q (q)

(q − p)(1 + pq)

2pdτ + (p2 − 1)dσ

1 − pq + b(p + q)
,

e2 =
√

(q − p)(1 + pq)

Q (q)

dq

1 − pq + b(p + q)
,

e3 =
√

(q − p)(1 + pq)

P (p)

dp

1 − pq + b(p + q)
,

e4 =
√

P (p)

(q − p)(1 + pq)

2qdτ + (q2 − 1)dσ

1 − pq + b(p + q)
, (4.23)

the Killing–Yano tensor takes exactly the same form as (4.11), 
where f0, f± are replaced in the present case by

f0 = − 2(1 + b2)
√

P (p)Q (q)

(1 + pq)[1 − pq + b(p + q)] ,

f± = q − p ± [b(1 + pq)]−1 f̃

1 − pq + b(p + q)
, (4.24)

with

f̃ = 1 − 2b2 pq + p2q2 + (1 + b2)[(1 + bp)(q − b)qa1

+ {1 + q2(1 + p2) + bp(1 − pq) + b2 pq}a3

+ 2b(1 + p2)(1 + q2)a4] . (4.25)

Choosing the eigenvalues of the Killing–Yano tensor as new coor-
dinates, one finds that the self-dual elliptic ambi-toric metric can 
be transformed in the Carter form, although we do not attempt to 
do this here.

To summarize, when three classes of regular ambi-toric Käh-
ler manifold are taken as the LeBrun space, the corresponding 
Przanowski–Tod spaces are all degenerate into the Carter form. 
Since all the three cases belong to Petrov-type D [19], only a sin-
gle eigenvalue of the Weyl tensor is independent for the self-dual 
solution, which is a principal ground for degeneracy. A somewhat 
more surprising issue is that one can write the metric into the 
Carter form. This is ascribed to the existence of the closed confor-
mal Killing–Yano tensor [32,33] corresponding to the Hodge dual 
to the Killing–Yano tensor. For the Przanowski–Tod metric of the 
form ds2 = z−2dŝ2− = (�/z)2dŝ2+ , this closed conformal Killing–
Yano tensor can be constructed out of two kinds of the degener-
ate conformal Killing–Yano tensors, i.e., (�/z)
̂+ and the twistor 
two-form (2.17). Since the former conformal Killing–Yano tensor 
is present exclusively in the ambi-Kähler geometry, a description 
in Carter form is unlikely to occur for the general y-independent 
Przanowski–Tod space.

5. Summary and closing remarks

In this paper, we have studied the Euclidean supersymmetry of 
the self-dual solutions in the framework of N = 2 minimal gauged 
supergravity in four dimensions. If the Przanowski–Tod space ad-
mits the second Killing vector of the form ∂/∂ y, there exists a one-
parameter family of writing the metric into the Przanowski–Tod 
form. This demonstrates that there exists another Killing spinor, 
whose instanton field strength is distinct from the original one. 
Our analysis was geared to providing useful tools to check the su-
persymmetry for the wide variety of self-dual solutions with two 
commuting isometries, and will be profitable when we try to ex-
plore the gauge theory in curved background.

We presumed throughout the paper that the gauge field Aμ

and the coupling constant �−1 are both real. In Euclidean signa-
ture, these restrictions are not necessary in general [9,12]. It would 
be nice if a similar mechanism works even if we relax these con-
ditions.

Using the scheme developed in section 2, we discussed the su-
persymmetry of the self-dual Reissner–Nordström–Taub–NUT–AdS 
metric. To the best of our knowledge, the Killing spinor discov-
ered here is new, although this subject has been studied for many 
decades [6,8,26,34]. We answered in the affirmative fashion that 
the Reissner–Nordström–Taub–NUT–AdS indeed has two linearly 
independent Killing spinors with a one-parameter family of field 
strength when the Weyl tensor is self-dual.

We found a curious property that three types of self-dual Ein-
stein metrics built out of the regular ambi-toric Kähler class are all 
transmuted into the self-dual Carter family, owing to the Killing–
Yano tensor. This interesting feature does not show up in the 
Lorentzian signature, because the type-D counterparts of parabolic 
and elliptic types do not exist and there is no concept of self-
duality. The ambi-toric geometry yields the independent interest 
about the base space for the supersymmetric solutions to five 
dimensional gauged supergravity [35,36]. The elliptic type ambi-
Kähler metric has not been analyzed so extensively thus far, in 
contrast to the hyperbolic and parabolic cases. It seems interesting 
to elucidate if the non-self-dual elliptic class admits some linear 
tensorial fields analogous to the Hamiltonian 2-form [30] and the 
Killing–Yano tensor possibly with a torsion [31,37]. We intend to 
pursue these issues in the near future.
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