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ABSTRACT

Background: The adverse health effects of Asian dust (AD) on the respiratory system of children are unclear. We
hypothesized that AD events may lead to increased visits by children to emergency medical centers due to bronchial
asthma and respiratory diseases, including bronchial asthma.
Methods: We used anonymized data on children receiving primary emergency treatment at Nagasaki Municipal
Primary Emergency Medical Center, Japan between March 2010 and September 2013. We used Light Detection and
Ranging (LIDAR) data to assess AD exposure and performed time-stratified case-crossover analyses to examine the
association between AD exposure and emergency department visits. The main analysis was done with data collected
from March through May each year.
Results: The total number of emergency department visits during the study period was 756 for bronchial asthma
and 5421 for respiratory diseases, and the number of “AD days” was 47. In school children, AD events at lag day 3
and lag day 4 were associated with increased emergency department visits due to bronchial asthma, with odds ratios
of 1.837 (95% confidence interval [CI], 1.212–2.786) and 1.829 (95% CI, 1.179–2.806), respectively. AD events
were significantly associated with respiratory diseases among preschool children at lag day 0, lag day 1, and lag day
2, with odds ratios of 1.244 (95% CI, 1.128–1.373), 1.314 (95% CI, 1.189–1.452), and 1.273 (95% CI, 1.152–1.408),
respectively. These associations were also significant when the results were adjusted for meteorological variables and
other air pollutants.
Conclusions: The study findings suggested that AD exposure increases emergency department visits by children.
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INTRODUCTION

Asian dust (AD) is a natural phenomenon in which wind
carries dust over large distances from the Yellow River basin
and deserts in northern China and Mongolia. It is now regarded

as a worldwide environmental problem caused by manmade
deforestation, soil degradation, and desertification.1–3

AD reaches Japan throughout the year, but the amount
increases from February and peaks in April.4 AD is a common
problem throughout Northeast Asia, but the type and degree of
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damage it causes may vary, depending on the distance from
the source of the dust.1 In Japan, AD most often affects
western Japan. Nagasaki Municipal Primary Emergency
Medical (NMPEM) Center is located in the center of the
city and is the primary night-time and holiday emergency
hospital for children living in the Nagasaki area. Children
appear to be more vulnerable than adults, in terms of
both susceptibility and response to environmental changes,
including air pollution.5–7

Although studies on the effects of AD on the respiratory
system in children have been carried out in Taiwan,
China, and Korea,8–13 the results have been contradictory.
Some studies reported an increased risk of clinic visits8 and
hospitalization for asthma,14 whereas another study reported a
negative association with emergency asthma hospitalization.15

We speculated that the effects of AD may vary between
preschool and school children because of differences in their
daily activities. However, there is very little evidence to
support this. In addition, if AD does indeed affect the
respiratory system of children, the dose-response relationship
needs to be investigated. Recent epidemiological studies from
Korea and Japan have measured levels of AD using Light
Detection and Ranging (LIDAR).14,16,17 LIDAR is a type of
radar that uses laser beams instead of radio waves. The laser
beams emitted from the ground are scattered by fine particles
in the air, and, by measuring the scattered laser light, operators
can determine the vertical distribution of dust particle concen-
tration and changes over time.18 Such measurements provide
reliable quantitative data on AD levels in the atmosphere.

The objective of this study was to examine data from the
NMPEM Center to identify any relationship between AD and
emergency department visits by children.

METHODS

Study area
Nagasaki Prefecture borders Saga Prefecture to the east, but it
is otherwise surrounded by the East China Sea (Figure 1). The
prefecture’s capital is Nagasaki City. The NMPEM Center
serves the whole of Nagasaki City and two neighboring towns
(Togitsu and Nagayo in Nishisonogi District). In 2013, the
total population of this area was approximately 500 000, with
about 25 000 children aged 0–5 years and about 46 000
children aged 6–15 years.19 Approximately 90% of the
patients who access the medical center live in the above-
mentioned area, according to unpublished information from
the center. The center offers emergency services for children 7
days per week from 20:00 to 06:00. Several pediatricians
work in shifts to provide these services.

Collection of data on emergency department visits
We obtained unlinkable anonymized data (research ID number
date of visits, date of birth, diagnosis, and treatment) on all
children aged 0–15 years who received primary emergency
treatment at the Center between March 2010 and September
2013. We created two diagnostic categories: 1) bronchial
asthma and 2) respiratory diseases, including bronchial
asthma, bronchitis, pharyngitis, and common cold.

Nagasaki City

Togitsu Town
Nagayo Town

Omura city

Figure 1. Map of Japan (left) and Nagasaki City (right)
shows Nagasaki Prefecture (left); shows Nagasaki Municipal Primary Emergency Medical Center (right);
shows LIDAR in Omura City (right); shows four air pollution monitoring stations in Nagasaki city (right);
shows Nagasaki Marine Observatory.

LIDAR, light detection and ranging.
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In order to focus on the effects of AD, we excluded patients
diagnosed with specific respiratory pathogens, such as
influenza viruses, respiratory syncytial virus, or mycoplasma
infections.

Measurement of AD
To assess exposure to AD during the study period, we used
LIDAR data obtained from an installation in Omura City
(Figure 1), which is approximately 30 km from Nagasaki City.
LIDAR utilizes polarized laser light to recognize shape
differences and can distinguish AD particles from other
air pollutants, which are generally spherical. If the lower
atmosphere is well mixed, the concentration of AD on the
ground is similar to that between 120m and 270m above
ground, the lowest level for which LIDAR data are available.18

The National Institute for Environmental Studies LIDAR
network can estimate the dust extinction coefficients of non-
spherical and spherical components.20 LIDAR measurements
were compiled as total 24-hour data (midnight to midnight).
AD extinction coefficients larger than 1/km and spherical
extinction coefficients larger than 2/km were excluded,
because these data may be influenced by meteorological
factors, such as cloud, fog, rain, and snow.20

In our study, we defined “AD days” as when all of the
following criteria were met21:
1. The daily maximum suspended particulate matter (SPM)

concentration was over 50 µg/m3.
2. The daily maximum AD extinction coefficient as

measured by LIDAR was more than 0.05/km.
3. The correlation coefficient between the hourly AD

extinction coefficient and hourly SPM concentration was
a fixed value.

For SPM concentrations, we used the daily average of
hourly measurements made by four air pollution monitoring
stations. SPM is defined under the Japanese Air Quality
Standard as any particle with an upper 100% cut-off point of
10 µm in aerodynamic diameter.22

Other air pollutants and meteorological data
Data on other air pollutants (sulfur dioxide [SO2], nitrogen
dioxide [NO2], and photochemical oxidants [Ox]) were
collected from four air pollution monitoring stations in
Nagasaki City. Daily average concentrations of SO2 and
NO2 were calculated from hourly concentrations measured at
each station. Ox is defined as mixtures of ozone and other
secondary oxidants generated by photochemical reactions and
is considered to be a proxy for ozone. Maximum hourly
concentrations of Ox measured at each station were used.
Data based on fewer than 20 hourly measurements on any one
day were excluded.15,20

Daily temperature and relative humidity data in Nagasaki
City were obtained from the Nagasaki Marine Observatory of
the Japanese Meteorological Agency. We calculated the daily
average temperature and relative humidity from data collected

hourly at Nagasaki Marine Observatory (between 00:00
and 23:00), and recorded the maximum and minimum
temperatures.

Statistical analysis
We used the Mann-Whitney U test or Student’s t-tests to
compare AD extinction coefficients, spherical extinction
coefficients, SPM, other air pollutants and meteorological
data on AD days and non-AD days.
A time-stratified case-crossover analysis was used to

examine the relationship between AD and emergency
department visits due to bronchial asthma and respiratory
diseases. In the same way as in a matched case-control
analysis, this analysis assigned the day on which a patient
visited the clinic with bronchial asthma or respiratory disease
as the case day, and comparisons were made with control days
chosen on the same day of the week earlier or later in the same
month of the same year.23,24 The advantage of this design is
that it controls for time-invariant personal factors, the effects
of long-term trends, seasonality, and the day of the week. The
strength of the association between AD days and emergency
clinic visits was shown by the odds ratios (ORs) and 95%
confidence intervals (CIs) of the conditional logistic models.
P values of less than 0.05 were considered to indicate
statistical significance.
Following the Japanese Pediatric Guideline for the

Treatment and Management of Asthma 2012, we classified
three age categories: under 2 years old, 2 through 5 years old,
and 6 through 15 years old25; however, because we found that
the results for the first two groups were similar, we combined
them in the subsequent analysis. Thus, the preschool children
group consisted of patients aged 0 through 5 years, and the
school children group consisted of those aged 6 through 15
years. We analyzed combined data for boys and girls, because
the associations between AD and emergency department visits
did not differ by sex.
In addition to AD days, we added temperature and relative

humidity as co-variables,20 along with SO2, NO2, and Ox
concentrations, and the spherical extinction coefficients (these
variables were average on the case day, lag day 1, and lag day
2). We constructed three adjusted models. In the basic model,
we adjusted for temperature and relative humidity. In the
single-pollutant model, we adjusted for one of the air pollutants
(SO2, NO2, or Ox), in addition to the variables in the basic
model. In the multi-pollutant model, we adjusted for two of the
air pollutants, in addition to the variables in the basic model.
Because the effects of AD can persist over several days,

we examined the effects with several lag times; the case day
(lag day 0), lag day 1, lag day 2, lag day 3, lag day 4, and lag
day 5 as a single lag model (the model included only one
exposure variable). We also examined the lagged cumulative
effects from lag day 0 to day 1 (designated lag 01), lag day 0
to day 2 (lag 02), lag day 0 to day 3 (lag 03), lag day 0 to day
4 (lag 04), and lag day 0 to day 5 (lag 05).
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In the basic model, we used not only the binomial index of
AD but also the AD extinction coefficients, with reference to
the methods of Ueda et al.26 We classified results into three
categories: Non-AD days (extinction coefficient <0.047/km),
moderate AD days (extinction coefficient 0.047–0.065/km),
and heavy AD days (extinction coefficient ≥0.066/km),
according to the median (0.047/km) and 75th percentile
(0.066/km) value of the AD extinction coefficients.

In addition, several sensitivity analyses were performed.
First, because airway inflammation and sensitivity to environ-
mental stimuli may persist after an initial attack, we carried
out further analyses after excluding visits within 4 weeks of
the first visit. Second, we conducted analyses using data for
the whole year rather than just those for March through May.

All analyses were performed with STATA ver. 12.1
(StataCorp, College Station, TX, USA).

Ethical considerations
This study was a retrospective observational study using
unlinkable anonymized data. It was approved by the Ethics
Committee of Nagasaki University Hospital (Approval
No. 13082663) and Toho University School of Medicine
(Approval No. 25100).

RESULTS

AD days
LIDAR measurements showed that the total number of AD
days during the study period (March 2010 through September
2013) was 63 (Figure 2). The largest number of AD days was
observed in 2010, and most (47/63) occurred in spring (March
to May) each year, although they were also occasionally
observed in November and December. Therefore, most of our
analyses were based on data collected in March through May.

Primary emergency department visits to Nagasaki
Municipal Primary Emergency Medical Center
During the 3.5-year study period (March 2010 through
September 2013) there were 43 892 emergency department
visits, of which 34 170 were made by patients aged 15 years
or below (18 805 boys and 15 365 girls). Of these, 9937
were made between March and May; 756 involved
bronchial asthma (mean age of the patients, 3.78 years)
and 5421 were due to respiratory diseases (mean age, 3.45
years) (Table 1). Boys and preschool children made up the
majority in both diagnostic categories. The largest number
of visits due to bronchial asthma occurred in May 2010,
and the smallest in March 2012; May 2011 saw the largest
number of visits due to respiratory diseases, and March 2010
saw the smallest.

AD, other air pollutants, and meteorological data
We compared the levels of AD, other air pollutants, and
meteorological data on AD days and non-AD days from
March through May, 2010–2013 (Table 2). The mean AD
coefficient on AD days (0.07/km) was significantly higher
than that on non-AD days (0.03/km). There were differences
in the concentrations of other air pollutants and meteoro-
logical variables (except NO2 and relative humidity) on AD
days and non-AD days.

Association between AD and emergency department
visits
The crude ORs by age group for emergency department visits
on AD days due to bronchial asthma and respiratory diseases
are shown in Figure 3.
In all children, AD events at lag day 2, lag day 3, and lag

day 4 were associated with increased emergency department
visits due to bronchial asthma, with ORs of 1.343 (95% CI,
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Figure 2. Number of Asian dust days from March 2010 through September 2013.
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1.067–1.690), 1.318 (95% CI, 1.047–1.660), and 1.344
(95% CI, 1.071–1.687), respectively. The association was
particularly prominent in school children, with ORs of 1.837
(95% CI, 1.212–2.786) for lag day 3 and 1.820 (95% CI,
1.179–2.808) for lag day 4. In preschool children, the crude
ORs were around 1.1 for lag day 2 through lag day 5, without
statistical significance.

As for respiratory diseases, AD events at lag day 0, lag day
1, and lag day 2 were significantly associated with emergency
department visits by all children with ORs of 1.182 (95% CI,
1.084–1.288), 1.277 (95% CI, 1.169–1.393), and 1.262 (95%
CI, 1.156–1.377), respectively. ORs for lag 01 and lag 02
were also increased. Unlike with bronchial asthma, however,
the association was seemed stronger in preschool children
than in school children, with ORs of 1.244 (95% CI,
1.128–1.373) for lag day 0, 1.314 (95% CI, 1.189–1.452)
for lag day 1, and 1.273 (95% CI, 1.152–1.408) for lag day 2,

respectively. In schoolchildren, there was no statistically
significant association except for lag day 2 (crude OR 1.227;
95% CI, 1.026–1.467).
We further adjusted for meteorological data and other air

pollutants in our basic, single-pollutant, and multi-pollutant
models. We also adjusted for spherical extinction coefficients
in addition to the covariates in the basic model. These
adjustments did not change the results substantially. In
Table 3, we present the adjusted ORs of the association
between AD days and emergency department visits due to
bronchial asthma in school children, because a statistically
significant association was observed in the crude analysis.
Likewise, we present the adjusted ORs of the association
between AD days and visits due to respiratory diseases in
preschool children in Table 4. Although adjustment for
covariates slightly attenuated the ORs, the results were
again similar to those obtained using the basic model.

Table 1. Number of emergency department visits (March to May)

Bronchial asthma Respiratory diseases

All Children
0–15 years old

(n = 756)

Preschool Children
0–5 years old

(n = 551)

School Children
6–15 years old

(n = 205)

All Children
0–15 years old

(n = 5421)

Preschool Children
0–5 years old
(n = 4070)

School Children
6–15 years old

(n = 1351)

Age, years
Mean 3.78 1.91 8.82 3.45 1.5 9.35
Median 3 2 9 2 1 9

Sex
Male 474 337 137 2942 2198 744
Female 282 214 68 2479 1872 607

Year

2010 214 159 55 1205 975 230
2011 197 138 59 1485 1111 374
2012 156 112 44 1343 956 387
2013 189 142 47 1388 1028 360

Month
March 212 154 58 1626 1150 476
April 250 182 68 1749 1340 409
May 294 215 79 2046 1580 466

Table 2. Summary of data on Asian dust, other air pollutants, and meteorological factors (March 2010–May 2013)

Non-Asian-dust days Asian-dust days

P valuea,bNumber
of days

Mean SD
25th

percentile
Median

75th
percentile

Number
of days

Mean SD
25th

percentile
Median

75th
percentile

Asian dust extinction
coefficients, /km

320 0.03 0.03 0.01 0.02 0.03 47 0.07 0.08 0.03 0.05 0.07 <0.01a

Spherical extinction
coefficients, /km

320 0.13 0.11 0.05 0.10 0.16 47 0.19 0.13 0.09 0.16 0.24 <0.01a

SO2, ppb 321 1.52 0.77 1.00 1.30 1.80 47 1.98 0.97 1.20 1.60 2.50 <0.01a

NO2, ppb 321 7.58 2.28 6.00 7.40 9.00 47 8.11 2.60 6.60 7.70 9.40 0.25a

Ox, ppb 321 42.98 8.99 38.40 43.40 48.70 47 46.74 8.99 41.50 46.20 53.60 0.015a

SPM, µg/m3 321 23.95 11.74 16.00 21.60 29.30 47 53.14 33.39 34.30 44.60 56.80 <0.01a

Average Temperature, °C 321 14.78 4.4 11.5 14.9 18.6 47 17.4 3.9 15.4 18.0 20.3 <0.01a

Maximum Temperature, °C 321 18.88 4.7 15.3 19.1 22.6 47 22.1 4.2 19.5 22.4 25.6 <0.01a

Minimum Temperature, °C 321 11.13 4.7 7.5 10.8 15.0 47 13.1 4.2 10.5 13.9 16.6 <0.01a

Humidity, % 321 67.49 13.3 58.0 68.0 76.0 47 67.2 8.4 62.0 68.0 74.0 0.56b

SD, standard deviation; SPM, small particulate matter.
P value for aMann-Whitney U test and bt-test.
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We additionally performed a dose-response analysis of the
basic model, classifying AD days using the AD extinction
coefficients. In the case of bronchial asthma, the ORs were
also statistically significant for lag day 3 or lag day 4
(eTable 1). For respiratory diseases, the ORs at lag day 0, lag
day 1, and lag day 2 were elevated (eTable 2).

We also carried out a sensitivity analysis in which we
excluded visits within 4 weeks of the initial visit. This gave us
larger adjusted ORs than the previous results (eTable 3). We
also compared whole-year data with those obtained between
March and May; the ORs were lower with the whole-year data
(eTable 4).

DISCUSSION

In this study, we found that exposure to AD led to increased
emergency department visits by children. The association
might vary between school and preschool children, though
we could not detect a statistical interaction due to the small
sample size. The association between AD exposure and
increased emergency department visits due to bronchial
asthma was might be stronger in school children than in
preschool children, and the effect of exposure was manifested
in a delayed fashion.
AD particles contain rock-forming minerals, such as quartz

and feldspar, and argillites, such as mica, kaolinite, and green
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Figure 3. Crude associations between Asian dust and emergency department visits due to bronchial asthma (A) and
respiratory diseases (B) by age group (vertical bar represents 95% confidence interval).

Table 3. Association between Asian dust and emergency department visits by bronchial asthma among school children in the
basic, single-pollutant, and multi-pollutant models

Basic model
Single-pollutant model (Basic model+single-pollutant)
Adding to basic model, one air pollutant was adjusted

Multi-pollutant model (Single-pollutant model+other pollutant)
Adding to basic model, two air pollutants were adjusted

Adding to
basic model

Adjusted by
temperature+humidity

SO2 NO2 Ox SO2+NO2 SO2+Ox NO2+Ox
Spherical Extinction

Coefficients
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Lag 0 1.291 (0.850–1.961) 1.173 (0.760–1.811) 1.298 (0.854–1.974) 1.150 (0.738–1.790) 1.164 (0.754–1.798) 1.131 (0.725–1.765) 1.127 (0.724–1.757) 1.343 (0.867–2.081)
Lag 1 1.599 (1.032–2.478) 1.446 (0.911–2.294) 1.634 (1.048–2.546) 1.454 (0.916–2.307) 1.459 (0.918–2.316) 1.409 (0.883–2.250) 1.461 (0.921–2.317) 1.701 (1.080–2.681)
Lag 2 1.394 (0.891–2.182) 1.206 (0.740–1.964) 1.465 (0.915–2.344) 1.233 (0.765–1.990) 1.265 (0.770–2.080) 1.169 (0.714–1.914) 1.297 (0.798–2.110) 1.436 (0.898–2.298)
Lag 3 1.787 (1.174–2.721) 1.675 (1.088–2.579) 1.853 (1.205–2.848) 1.670 (1.080–2.581) 1.745 (1.127–2.701) 1.644 (1.061–2.547) 1.727 (1.113–2.680) 1.845 (1.204–2.826)
Lag 4 1.807 (1.163–2.809) 1.749 (1.121–2.730) 1.831 (1.175–2.852) 1.693 (1.076–2.666) 1.790 (1.145–2.799) 1.717 (1.088–2.710) 1.703 (1.082–2.680) 1.831 (1.173–2.857)
Lag 5 0.894 (0.550–1.453) 0.885 (0.542–1.442) 0.896 (0.551–1.458) 0.877 (0.538–1.430) 0.901 (0.552–1.469) 0.877 (0.538–1.432) 0.891 (0.547–1.451) 0.895 (0.550–1.457)

Lag 01 1.329 (0.915–1.930) 1.202 (0.809–1.786) 1.342 (0.922–1.955) 1.195 (0.800–1.787) 1.198 (0.805–1.781) 1.164 (0.775–1.748) 1.180 (0.789–1.765) 1.395 (0.947–2.056)
Lag 02 1.136 (0.794–1.625) 0.979 (0.659–1.454) 1.153 (0.800–1.663) 0.976 (0.655–1.455) 0.990 (0.666–1.471) 0.930 (0.617–1.401) 0.979 (0.656–1.459) 1.171 (0.804–1.705)
Lag 03 1.173 (0.840–1.639) 1.036 (0.718–1.485) 1.195 (0.848–1.684) 1.021 (0.699–1.491) 1.054 (0.730–1.523) 0.984 (0.668–1.450) 1.026 (0.702–1.500) 1.217 (0.858–1.726)
Lag 04 1.131 (0.822–1.557) 1.012 (0.716–1.431) 1.146 (0.828–1.587) 0.998 (0.699–1.423) 1.025 (0.725–1.449) 0.967 (0.672–1.389) 1.000 (0.701–1.426) 1.175 (0.844–1.635)
Lag 05 1.020 (0.739–1.408) 0.897 (0.631–1.276) 1.029 (0.741–1.429) 0.889 (0.623–1.269) 0.910 (0.640–1.295) 0.854 (0.592–1.231) 0.895 (0.627–1.278) 1.053 (0.756–1.467)

CI, confidence interval; OR, odds ratio.
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mudstones. However, they also have sulfur oxidants, nitrogen
oxidants, ammonium, and microorganisms attached to them,
and these may have adverse health effects, including allergic
reactions27 and inflammation of the bronchi.28 In Taiwan, Yu
et al reported that the relative rate of clinic visits by children
for respiratory diseases decreased significantly (by 0.74 to
0.99 times) in most districts during AD-storm periods, while it
rose by 1.01 to 1.11 times in more than half of the districts
during the period following AD storm, especially in school
children.9 In contrast, Ueda et al reported no significant
association between AD exposure and asthma hospitalization
among children in Fukuoka, Japan.15

A possible explanation for our findings of a stronger
association between AD exposure and emergency department
visits due to bronchial asthma in school children than
preschoolers is that the former participate in more outdoor
activities and subsequently have greater exposure. Bronchial
asthma is also more easily diagnosed in school children, and it
is sometimes indistinguishable from other respiratory diseases
in preschool children, such as bronchiolitis. Furthermore,
preschool children with bronchial asthma might be under
more careful management by their parents than school
children.

Our study also revealed a delayed effect of AD exposure,
with the strongest effect observed 3 or 4 days after exposure.
This is consistent with some earlier findings.29,30 Yang et al
reported that the effects of dust storms on admissions for
asthma were most prominent 2 days after the event; however,
this result was not statistically significant.29 Meng et al
reported that dust events were significantly associated with
total respiratory hospitalizations 3 days later in both boys
and girls.30 This delayed effect may be due to physiological
reasons; the respiratory function of school children is more
mature than that of preschool children, so the older children
can tolerate asthmatic symptoms to a greater extent. Another
explanation may be delayed emergency department visits, as
school children may not visit on the day when they notice

the symptoms because they do not want to miss school.
Moreover, cough or wheeze and dyspnea with bronchial
asthma are likely to worsen at night time.
As for the association between AD exposure and respiratory

diseases, this was stronger in preschool children than in school
children, and the effects were immediate. Although this
association has been reported previously, the findings have
been inconsistent in terms of susceptibility by age group and
lag period. A study in Taipei showed that the rate of clinic
visits for respiratory diseases during the weeks following AD
events increased by 2.54% in preschool children and 5.03%
in school children.8 In another study, post-AD days 1 through
4 saw significantly higher mean numbers of pneumonia
admissions than non-AD days.11 Yu et al reported a
significantly increased risk of respiratory diseases in the
week after AD, especially in school children. The largest
percentage change in preschool children was at lag day 2 and
lag day 3 (2.12% and 2.19%, respectively), and the largest
change in school children was at lag day 3 (3.17%).10

The stronger association between AD exposure and
respiratory diseases in preschool children than in school
children observed in our study may be explained by the
under-developed respiratory system in preschool children
and difficulty in making differential diagnosis of wheezing
illnesses, including bronchiolitis and other respiratory
diseases, as well as bronchial asthma.
One of the strengths of the present study was the use of

LIDAR to assess AD exposure. In Japan, AD days are
generally assessed on the basis of visual observations by the
Japan Meteorological Agency. These observations are done
every hour, and an AD day is recorded when AD is observed
for at least 1 hour on that day.31 In contrast, LIDAR
measurements allow the quantitative evaluation of the level
of AD particles as a dust extinction coefficient.18 However,
no cutoff point has been established to distinguish between
AD days and non-AD days. Kanatani et al used a 24-hour
average dust extinction coefficient of 0.1/km or more to

Table 4. Association between Asian dust and emergency department visits by respiratory diseases among preschool children
in the basic, single-pollutant, and multi-pollutant models

Basic model
Single-pollutant model (Basic model+single pollutant)
Adding to basic model, one air pollutant was adjusted

Multi-pollutant model (Single-pollutant model+other pollutant)
Adding to basic model, two air pollutants were adjusted

Adding to
basic model

Adjusted by
temperature+humidity

SO2 NO2 Ox SO2+NO2 SO2+Ox NO2+Ox
Spherical Extinction

Coefficients
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Lag 0 1.245 (1.129–1.374) 1.217 (1.099–1.347) 1.255 (1.137–1.385) 1.256 (1.129–1.396) 1.216 (1.099–1.347) 1.242 (1.117–1.382) 1.250 (1.124–1.390) 1.335 (1.202–1.483)
Lag 1 1.312 (1.186–1.451) 1.284 (1.156–1.426) 1.334 (1.204–1.477) 1.337 (1.198–1.492) 1.295 (1.165–1.439) 1.320 (1.182–1.475) 1.339 (1.200–1.495) 1.420 (1.276–1.580)
Lag 2 1.272 (1.148–1.410) 1.242 (1.117–1.382) 1.310 (1.178–1.456) 1.281 (1.148–1.429) 1.273 (1.143–1.418) 1.264 (1.132–1.411) 1.301 (1.165–1.453) 1.335 (1.201–1.484)
Lag 3 1.090 (0.980–1.213) 1.069 (0.960–1.190) 1.103 (0.990–1.229) 1.080 (0.969–1.204) 1.085 (0.973–1.209) 1.072 (0.961–1.195) 1.090 (0.977–1.216) 1.102 (0.990–1.227)
Lag 4 0.991 (0.891–1.102) 0.985 (0.885–1.095) 0.996 (0.895–1.108) 0.982 (0.882–1.094) 0.994 (0.893–1.106) 0.986 (0.885–1.098) 0.986 (0.886–1.098) 0.997 (0.896–1.109)
Lag 5 0.789 (0.708–0.880) 0.792 (0.710–0.884) 0.791 (0.710–0.883) 0.791 (0.709–0.882) 0.799 (0.716–0.892) 0.792 (0.710–0.884) 0.795 (0.713–0.887) 0.785 (0.704–0.875)

Lag 01 1.235 (1.132–1.348) 1.210 (1.103–1.327) 1.249 (1.144–1.364) 1.258 (1.142–1.386) 1.213 (1.106–1.330) 1.242 (1.126–1.369) 1.256 (1.140–1.383) 1.320 (1.203–1.448)
Lag 02 1.144 (1.054–1.241) 1.111 (1.018–1.214) 1.161 (1.068–1.262) 1.153 (1.050–1.265) 1.120 (1.025–1.223) 1.133 (1.030–1.245) 1.155 (1.052–1.267) 1.210 (1.109–1.321)
Lag 03 1.062 (0.983–1.147) 1.024 (0.943–1.112) 1.074 (0.993–1.163) 1.049 (0.962–1.145) 1.032 (0.950–1.122) 1.031 (0.943–1.126) 1.052 (0.964–1.148) 1.101 (1.015–1.194)
Lag 04 1.052 (0.978–1.132) 1.019 (0.943–1.102) 1.063 (0.987–1.145) 1.039 (0.959–1.127) 1.027 (0.950–1.110) 1.025 (0.944–1.112) 1.042 (0.961–1.130) 1.082 (1.002–1.168)
Lag 05 1.003 (0.934–1.078) 0.970 (0.899–1.046) 1.012 (0.940–1.089) 0.985 (0.912–1.064) 0.978 (0.906–1.055) 0.969 (0.896–1.049) 0.990 (0.916–1.070) 1.020 (0.947–1.098)

CI, confidence interval; OR, odds ratio.
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define mild AD days.14 Ueda et al went further to define mild
AD (dust extinction coefficient ≤0.066/km), moderate AD
(0.066/km–0.105/km), and heavy AD days (>0.105/km).26

Establishing a proper definition of AD days is warranted in the
future.

The high regional representativeness of our study is another
strength. The NMPEM Center is the only hospital in the
study area that children can visit during the night, and
approximately 90% of patients who access this center live
in the covered area. However, we could not obtain patients’
residential address because of laws governing the protection
of personal information.

Time-stratified case-crossover analysis obviates the need to
consider potential confounding by sex, age, and daily habits,
which do not change over short periods, and also controls for
the effects of long-term trends, seasonality, and the day of the
week. However, a potential limitation of our study is that
inflammation of the bronchi may continue for several days to
several weeks after exposure, and inflammation makes the
bronchi more vulnerable to environmental changes; therefore,
those children with bronchial inflammation are more likely to
revisit medical centers. To adjust for this, we repeated our
analyses after excluding visits within 4 weeks of the initial
visit and found that the results were substantially unchanged.
In the sensitivity analysis, we compared the ORs in the whole
year with those obtained between March and May, and found
that the former was lower than the latter. Because most of
the AD comes in the spring, we thought that the addition
of seasons other than spring into the analysis would only
attenuate the association between AD and outcomes.

Another potential limitation is a misclassification of
exposure. LIDAR cannot measure the vertical distribution of
AD any lower than 120 meters above the ground, so we
cannot discount the possibility that the concentrations of
particles our subjects actually inhaled were different from
those measured. Nor did we obtain information on the
patients’ daily activities, so we could not take these into
consideration. As for the horizontal distribution of AD, the
LIDAR we used was located in Omura City, which is
approximately 30 km from the center of Nagasaki City.
However, we believe that any resulting misclassification
would have been non-differential and would have made the
observed association between AD exposure and outcomes
weaker than the true association. Misclassification of the
outcomes is also possible. Had the emergency physicians
known that AD was on its way, it could have led to an
information bias. However, if the elevated ORs were due only
to such bias, the results would have been similar between
preschool and school children, which was not the case.
Another possible limitation we should mention is that,
although the emergency medical center is open from 20:00
until 06:00, we did not obtain the exact times of patients’
visits. This could also have led to outcome misclassification,
but because any such misclassification was independent of

exposure, it would have been non-differential. In addition,
when comparing our results with those from other countries,
we have to consider the differences in diameter and the
chemical composition of AD and in the attached metals.28

Conclusions
Our study showed that exposure to AD was associated with
increased emergency department visits due to bronchial
asthma in school children and with increased visits due to
respiratory diseases in preschool children.
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