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Abstract 14 

The behavior of soft rock depends on the contact area between mineral particles and the 15 

tensile strength of the interparticle cementation, which are usually referred to as structures. 16 

We investigated the effects of structural decay and healing on the behavior of soft rock 17 

through monotonic and slide-hold-slide triaxial tests under the drained condition with 18 

constant effective confining pressure. We developed a constitutive model for soft rocks 19 

incorporating structural healing and decay in the context of the extended critical state theory. 20 

The model was validated via laboratory tests and captured the behavior of soft rock, 21 

including the healing and decay phenomena.  22 

 23 
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In soft rock, mineral particles consist of aggregates of microcrystals formed by ionic, atomic, 28 

or molecular bonding, and these mineral particles are usually cemented or adhered mutually 29 

at the interparticle contact interfaces [1]. Thus, the stiffness and strength of the soft rock will 30 

depend primarily on the contact area between mineral particles and the tensile strength of 31 

interparticle cementation, which are usually referred to as rock structures. 32 

The effects of the decay of the structures of soft rocks have been studied extensively. 33 

For example, the effects of the rock structures on the stress–strain characteristics have been 34 

investigated via laboratory experiments such as oedometer tests on Culebra shale [2], one-35 

dimensional compression tests on chalk [3] and tuff [4, 5], and monotonic triaxial 36 

compression tests on calcarenite and tuff [6]. Leroueil and Vaughan [7] and Kavvdas [8] 37 

discussed the effects of structures on the strength and stiffness of natural soils and weak 38 

rocks, and pointed out the similarities in behavior between natural soils and soft rocks.  39 

Shao and Henry [9] have developed an elastoplastic model for porous rocks by 40 

extending a model for sands [10], and they have predicted the behavior of porous chalk. Gens 41 

and Nova [11], Kavvdas et al. [12], Adachi and Oka [13], and Lagioia and Nova [14], among 42 

others, have also proposed constitutive models for various types of weak rocks such as 43 

mudstones, claystones, marls, shales, tuffs, weak limestones, and weak sandstones, and 44 

validated their simulation through comparison with a series of laboratory tests. The common 45 

features of the constitutive models for soft rocks are: (a) the models are formulated by 46 

extending the original models for unstructured geomaterials; (b) the structure of the weak 47 

rock is assumed to be destroyed due to the breakage of the interparticle cementation during 48 

loading. 49 

Meanwhile, Dieterich and Kilgore [15] indicated that the contact area of the solid 50 

interface increases over a period of time, and that frictional resistance arises from the 51 

development of the contact area. It is reasonable to expect that a similar mechanism exists in 52 

the contacts between the mineral particles of soft rock at a microscopic level. Thus, we 53 

presume that the structure of soft rocks will recover to some extent after the loading process. 54 
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This leads to an increase in the stiffness and strength of soft rocks during the hold phase. 55 

Though a number of models [9, 11, 12, 13, and 14] have considered the effects of structural 56 

decay, the healing effect of the structure over time has not been considered.  57 

Thus, it is crucial to consider both the effects of structural healing as well as structural 58 

decay in constitutive models, especially when estimating the long–term behavior of soft 59 

rocks. Therefore, the objective of the current study was to consider the effects of both 60 

structural healing and decay on the behavior of soft rocks. We first conducted triaxial tests on 61 

soft sedimentary rock with repeated slide-hold-slide (SHS) processes to observe the effects of 62 

structural healing and decay on the strength and stiffness of soft rock. After the slide-hold-63 

slide processes, we investigated the effect of time on the structural recovery of soft 64 

sedimentary rock. We then developed a constitutive model that considered the effects of both 65 

structural healing and decay of soft rocks. In our model, the critical state theory was extended 66 

to consider the effect of the rock structure. Moreover, the subloading surface concept [16] 67 

was incorporated into the model to appropriately consider the combined effects of density and 68 

structure. The healing and decay of the structure was modeled using a newly introduced state 69 

variable and evolution law. The model was finally validated via monotonic and slide-hold-70 

slide triaxial tests under drained condition. 71 

 72 

2. Slide-Hold-Slide Triaxial Tests 73 

We conducted consolidated, drained triaxial compression tests with multiple SHS processes 74 

on soft sedimentary rock to observe the effects of structural healing and decay on the stress–75 

strain characteristics. The tests were performed under three types of effective confining 76 

pressures, where several holding time periods were applied. The experimental results were 77 

used to develop and validate a constitutive model for describing the fluctuation of the rock 78 

structure.  79 

2.1 Test overview 80 
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The SHS triaxial tests were conducted on saturated cylindrical specimens of a pumice lapilli 81 

tuff, a type of soft volcanic sedimentary rock. The rock specimen was a porous vesicular rock 82 

primarily consisting of pyroclastic materials such as pumice. Photomicrographs of the 83 

specimen are shown in Figure 1. The modal composition of the specimen is measured by a 84 

method of point-counting and the sample consists of 85.0 % natural glassy mineral (39.0 % 85 

of Celadonite, 32.75 % of Zeolite and 12.75 % of Montmorillonite) and 15.0 % of crystal and 86 

lithic spall (7.0 % of Plagioclase, 5.75 % of Quartz and 2.25 % of Lithic). To measure the 87 

volumetric behavior of the specimens accurately, achieving the saturation of the specimens 88 

with water is essential. For this, water-soluble carbon dioxide (CO2) gas is first percolated 89 

through the sample, followed by flushing with de-aired water. Backpressure is applied to 90 

improve the saturation during the tests. 91 

The experiments were conducted using the apparatus shown in Figure 2 under 92 

consolidated, drained conditions. The temperature was kept constant at 20 °C throughout the 93 

test to ensure that thermal effect on the specimen were negligible. First, an isotropic 94 

consolidation path was applied until the predetermined effective confining stress r' of 300 95 

and 700 kPa was reached. The specimen was then sheared under drained condition with a 96 

constant effective confining pressure. The constant axial strain rate of 0.01 %/min was 97 

applied precisely by a screw jack until the post-peak phase, where the stress state approached 98 

the residual state. The holding process was then applied by maintaining a constant axial strain 99 

under various holding time periods from 60–241200 s. The holding process was always 100 

followed by the re-shearing process. 101 

 102 
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a b 103 

Figure 1: Photomicrographs of pumice lapilli tuff (magnification x15; qz: quartz, pl: 104 

plagioclase, pm: pumice, mo: Montmorillonite with Fe) (a) original image; (b) image 105 

focusing on the Fe montmorillonite. 106 

 107 

 108 

Figure 2: Triaxial testing apparatus. 109 

 110 

2.2 SHS triaxial test results 111 

Examples of the SHS triaxial test results are shown in Figures 3 and 4 with applied effective 112 

confining stresses r of 300 kPa and 700 kPa, respectively. From the stress–strain 113 

relationship in the initial stage of shearing, a relatively high stiffness was exhibited, and an 114 

apparent peak stress was observed in the beginning stage of shearing. After the peak strength, 115 
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strain softening with positive dilatancy was observed and the stress finally reached the 116 

residual strength. The specimen exhibited the typical stress–strain behavior of soft 117 

sedimentary rocks, and these results appeared consistent with previous experimental 118 

observations (e.g., Adachi and Ogawa [17]). Enlarged views of the relationship between the 119 

axial strain εa and the deviator stress ݍ ቆൌ ටଷ

ଶ
࢙: ࢙ ൌ ටଷ

ଶ
ቄ࣌: ࣌ െ ଵ

ଷ
ሺtr࣌ሻଶቅቇ during the SHS 120 

process are shown in Figures 3(b) and 4(b). During the holding process in which the axial 121 

strain is held constant, stress relaxation with a reduction of the deviator stress could be 122 

observed. In the ensuing re-sliding process, the deviator stress increased with a high stiffness, 123 

reaching a peak value and then returning to the residual value. The magnitude of the strength 124 

recovery depended on the duration of the holding process, as the higher peak strength was 125 

particularly seen after a longer holding period. According to the experimental results at 126 

different confining pressures (300 and 700 kPa), strength recoveries could be observed after 127 

some of the longer holding periods. Such strength recoveries are considered to be a result of 128 

the healing of the rock structure. An example of the specimens after the SHS triaxial shearing 129 

is shown in Figure 5, which clearly shows a shear band formation. We expected the 130 

interparticle cementation to be destroyed due to the shear band formation during the first 131 

shearing process; then the rock structure recovered with the increase in the real area of the 132 

interparticle contact surfaces. 133 

 134 

 135 

Figure 3: Stress–strain relationship in the SHS triaxial test (r = 300 kPa): (a) Overview; (b) 136 

Enlarged view. 137 
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 138 

 139 

Figure 4: Stress–strain relationship in the SHS triaxial test (r = 700 kPa): (a) Overall view; 140 

(b) Enlarged view. 141 

 142 

  143 

Figure 5: Photo of specimen after the SHS triaxial CD tests (effective confining stress r of 144 

700 kPa). 145 

 146 

3. Elastoplastic model for soft rocks considering structural healing and decay  147 

Pellegrino [6] conducted triaxial compression tests on soft rocks such as calcarenite and tuff, 148 

and indicated that the soft rocks show a typical brittle behavior (approximately linear stress–149 

strain relationship at small strains and brittle failure at large strains) at low stresses; while it 150 

shows typically ductile behavior at higher stresses (nonlinear elastoplastic behavior and 151 
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ductile failure). Novello [18] compared the behaviors of soils, soft rocks, and hard rocks in 152 

triaxial tests and argued that the brittle-ductile transition due to the increase in confining 153 

pressure in rocks was similar to the transition from overconsolidated to normally consolidated 154 

behavior in soils. Such a similarity in the behaviors of soft rocks and soils under different 155 

levels of confining pressure has also been confirmed by Hicher et al. [19]. In this regard, the 156 

critical state framework [10, 20] could be broadly applied to various geomaterials. Several 157 

extended versions of critical state models have been proposed for describing the behaviors of 158 

structured geomaterials such as structured soils [20] or soft sedimentary rocks [7]. However, 159 

the effect of healing of the rock structure has not been considered. Herein, we formulate a 160 

novel elastoplastic model based on the critical state theory [10, 20] for predicting the long-161 

term behavior of soft rocks, including the effects of healing and decay phenomena on the 162 

rock structure.  163 

First, we assumed an additive decomposition of the total strain rate tensor as 164 

ሶࢿ ൌ ࢿ ሶୣ ൅ ୮ሶࢿ #ሺ1ሻ  

where ࢿ ሶୣ  and ࢿ୮ሶ  are elastic and plastic strain rate tensors, respectively. 165 

3.1 Elastic stress–strain relationship 166 

For the elastic stress–strain relationship, we assumed a conventional, nonlinear elastic bulk 167 

modulus ܭ given by 168 

ܭ ൌ
଴ݒ
ߢ
ሺ2ሻ#′݌  

where ݒ଴ is the initial specific volume, κ is the swelling index that represents the slope of the 169 

elastic volumetric relationship in the semi-logarithmic ln p'–v plane, and p' is the mean 170 

effective stress given by ݌′ ൌ ୲୰࣌′

ଷ
, where ࣌′  is the Cauchy effective stress tensor. We 171 

assumed that Poisson’s ratio ୣߥ was constant. Thus, the rate form of the elastic relationship 172 

was given by 173 

࣌′ሶ ൌ :௘ࡰ ࢿ ሶୣ ൌ :௘ࡰ ൫ࢿሶ െ ୮ሶࢿ ൯#ሺ3ሻ  

where ࡰ௘ is the elastic stiffness tensor: 174 
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௘ࡰ ൌ ⊗૚ܭ ૚ ൅ ܩ2 ൬ࡵ െ
1
3
૚⊗ ૚൰#ሺ4ሻ  

where ܩ is the shear modulus: 175 

ܩ ൌ
ሺ1ܭ3 െ ሻୣߥ2

2ሺ1 ൅ ሻୣߥ
. #ሺ5ሻ  

3.2 Yield function for soft rocks considering structural healing and decay  176 

The critical state is the ultimate condition approached by all states of rock when the rock is 177 

sheared. The critical state line (CSL) is chosen to be linear in a semi-logarithmic compression 178 

plane, which is the specific volume v (= 1+e) versus the logarithm of the mean effective 179 

stress ln p'. Similar to the CSL, the limiting isotropic compression line (LICL) is a reference 180 

line over the CSL in the v-ln p’ plane, which any state of rock approaches under isotropic 181 

compression. A state boundary surface, which defines the upper limit of the specific volume 182 

in stress–specific volume space above which no state of soft rock can exist, has been utilized 183 

in the formulation of the critical state model [18]. This surface contains CSL and LICL in the 184 

space of v, ln p', and (), which is a function of stress ratio , (Figure 6). The specific 185 

volume vsbs on the state boundary surface, which defines the least dense state of rock at stress 186 

(p, ), is given by considering the combined effects of compression and dilation: 187 

ୱୠୱݒ ൌ ߋ	 െ ߣ ln
′݌

ୟ݌
൅ ሺ߁ െ ሻ#ሺ6ሻߟሺߞሻߋ  

where  (= q/p') is the stress ratio, ݍ is the deviator stress, pa (= 98 kPa) denotes atmospheric 188 

pressure,  is the compression index, and () is a monotonic increasing function of stress 189 

ratio η satisfying (0) = 0 on LICL and (M) = 1 on CSL. Here,  and  represent specific 190 

volumes on LICL (0 = ߟ) and CSL (ߟ = Μ) at p' = pa, respectively. Different functions of () 191 

have been used for different versions of critical state models. In the current model, () is 192 

defined in accordance with the modified Cam clay [20]: 193 

ሻߟሺߞ ൌ
ln ൜1 ൅ ቀ

ߟ
ቁߊ

ଶ
ൠ

ln 2
#ሺ7ሻ

 

where ߊ is the critical state stress ratio (= cs). 194 
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 195 

 196 

Figure 6: Specific volume of destructured soft rocks in the least dense state. 197 

 198 

The healing and decay of the rock structure could be incorporated by extending the 199 

critical state concept. In this study, the kernel concept assumed that the rock structure 200 

enlarged the possible range of the specific volume of the rock. Therefore, a state variable 201 ߖ 

was newly introduced to represent the upward shift of the state boundary surface due to 202 

structure in the p'--v space as indicated in Figure 7. From this, the state parameter ߖ was 203 

a non-negative variable defined as the volumetric distance between the state boundary 204 

surfaces for non-structured and structured states. The specific volume on the state boundary 205 

surface of structured soft rock, ݒୱୠୱ
ୱ୲୰୳ୡ୲୳୰ୣ , could thus be described in a similar way to 206 

Equation (6): 207 

ୱୠୱݒ
ୱ୲୰୳ୡ୲୳୰ୣ ൌ ߋ	 െ ߣ ln

′݌

ୟ݌
൅ ሺ߁ െ ሻߟሺߞሻߋ ൅ ሺ8ሻ#ߖ  

The upper limit of ݒୱୠୱ
ୱ୲୰୳ୡ୲୳୰ୣ under the current state (ߖ ,ߟ ,′݌) varies with structure, and a 208 

higher mean effective stress can be applied to soft rock having a higher value of the state 209 

variable ߖ  for the structures, without yielding. Besides, the structures may also impart 210 

cohesion and tensile strength to the soft rock, which can be modeled by the expansion of the 211 

yield surface toward the negative direction of mean effective stress. Such an effect can be 212 
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incorporated in a similar way as in the existing models for soft rocks, based on the critical 213 

state theory [11, 13, 14]. 214 

 215 

 216 

Figure 7: Specific volume of structured soft rocks in the least dense state via state parameter 217 

 218 .ߖ

 219 

The healing and decay phenomena in soft rocks were represented by the upward and 220 

downward movement of the state boundary surface in the volumetric plane of ln p' and v, 221 

respectively. In the case of healing, the state parameter ߖ increased, and the state boundary 222 

surface (in the v-ln p' plane) shifted upward in the direction of the specific volume to increase 223 

the upper limit of the specific volume. Assuming a deformation-dependent damage 224 

mechanism and time-dependent healing mechanism of the rock structure, the evolution of 225 ߖ 

can be given as 226 

ሶߖ

଴ݒ
ൌ െܵௗሺߖሻฮઽ௣ሶ ฮᇣᇧᇧᇧᇤᇧᇧᇧᇥ

ୢୣୡୟ୷

൅ ܵ௛ሺߖሻᇣᇤᇥ
୦ୣୟ୪୧୬୥

#ሺ9ሻ  

where ܵௗሺߖሻ and ܵ௛ሺߖሻ are functions of ߖ. The first term of Eq. (9) describes the plastic 227 

strain-driven decay of the structure. As the state parameter ߖ  decreases to zero with the 228 

plastic strain development, ܵௗሺߖሻ ൐ 0  when ߖ ൐ 0 , and ܵௗሺ0ሻ ൌ 0 . An evolution that 229 

satisfies such requirements is given by 230 
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ܵௗሺߖሻ ൌ ଶ#ሺ10ሻߖܾ  

where b is a constitutive parameter controlling the rate of decay of the structure. The second 231 

term of Eq. (9) describes the time-dependent healing of the structure, and ܵ௛ሺߖሻ is a function 232 

of ߖ  representing the healing rate of the rock structure. Though this function may be 233 

dependent on the confining pressure and other factors, a simplified expression of the healing 234 

rate is given in this study as 235 

ܵ௛ሺߖሻ ൌ
1
଴ݒ

୫ୟ୶ߖ െ ߖ
୰ୣ୤ݐ

#ሺ11ሻ  

as shown in Figure 8 (a), where ߖ୫ୟ୶ is a parameter defining the maximum value of ߖ, and 236 

 to 237 ߖ ୰ୣ୤ is a parameter having a dimension of time, which describes the convergence rate ofݐ

୫ୟ୶ߖ . We could explicitly describe the variation of the state parameter ߖ  due to time-238 

dependent healing by integrating Eq. (9) if we assumed that initially the rock had no structure 239 

ݐ) ൌ ߖ ,0 ൌ 0) and that no plastic deformation occurs ( ߝሶ௣ ൌ 0	) 240 

ߖ ൌ ୫ୟ୶ߖ ൬1 െ exp
ݐ
୰ୣ୤ݐ

൰ . #ሺ12ሻ  

From this equation, ߖ increases with time until it approaches its maximum value ߖ୫ୟ୶, as 241 

shown in Figure 8 (b). 242 

 243 

 244 

Figure 8: Modeling of the time-dependent healing of the rock structure via state parameter 245 

 rate of healing, (b) schematic figure showing an image of structural healing. 246 (a) :ߖ

 247 

(a)

(b) 
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The subloading surface concept [16] was further introduced to describe the 248 

elastoplastic deformation of soft rocks whose states lie under the state boundary surface. As 249 

all states of rock are located on or below the state boundary surface in Figure 7, the state 250 

boundary surface defined the loosest, upper limit of the specific volume of rocks. We thus 251 

defined state parameter ߗ as the specific volume difference between the current state and the 252 

least dense state under the same stress (p', ) on the state boundary surface, as illustrated in 253 

Figure 9. Using state parameter ߗ, the combination of the specific volume and mean effective 254 

stress was incorporated in this model to describe the changing strength and stiffness. 255 

According to this concept, the irreversible deformation below the state boundary surface and 256 

gradual approach to the state boundary surface with loading were properly modeled. Using 257 

state variable ߗ, we could represent an arbitrary specific volume ݒ as 258 

ݒ ൌ ୱୠୱݒ
ୱ୲୰୳ୡ୲୳୰ୣ െ ߗ ൌ ߋ െ ߣ ln

′݌

ୟ݌
൅ ሺ߁ െ ሻߟሺߞሻߋ ൅ ߖ െ .ߗ #ሺ13ሻ  

State parameter ߗ always refers to the volumetric distance from the current state to the least 259 

dense state of soft rock (specific volume on the state boundary surface) under the current 260 

stress condition p' and q as well as the current state parameter ߖ for the rock structure.  261 

During plastic flow, ߗ decreased with the development of plastic deformation and 262 

converged to zero. The evolution of ߗ could therefore be represented by 263 

ሶߗ

଴ݒ
ൌ െܳ൫Ω൯ฮઽ୮ሶ ฮ#ሺ14ሻ  

where ઽ୮ሶ  is the plastic strain rate tensor and ܳ൫Ω൯ is a function of Ω given by  264 

ܳ൫Ω൯ ൌ ଶ#ሺ15ሻߗ߱  

where ߱ is a parameter controlling the effect of density. 265 

 266 
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 267 

Figure 9: Modeling of the volumetric behavior of soft rocks considering the structural 268 

change. 269 

 270 

From the current specific volume v (Eq. (13)), the initial specific volume ݒ଴ can be 271 

obtained by substituting the initial states ݒ ൌ ߖ ,଴ݒ ൌ ߗ ,଴ߖ ൌ ′݌ ,଴ߗ ൌ ଴݌
′

, and q = 0 in 272 

Eq. (13) as 273 

଴ݒ ൌ ߋ	 െ ߣ ln
଴݌
′

ୟ݌
൅ ଴ߖ െ .଴ߗ #ሺ16ሻ  

The total volumetric strain (where compression is assumed to be positive) generated from the 274 

initial state to the current state is given by 275 

୴ߝ ൌ െ
dݒ
଴ݒ

ൌ
଴ݒ െ ݒ
଴ݒ

. #ሺ17ሻ  

By substituting Eqs. (13) and (16) in Eq. (17), we obtained 276 

୴ߝ ൌ
1
଴ݒ
ቐߣ ln

′݌

଴݌
′
൅ ሺߋ െ ሻߟሺߞሻ߁ െ ሺߖ െ ଴ሻߖ ൅ ሺߗ െ ଴ሻቑ#ሺ18ሻߗ  

by taking the trace on both sides of Eq. (3), the elastic volumetric strain could be obtained: 277 

୴ୣߝ ൌ
ߢ
଴ݒ
ln
′݌

଴݌
′
#ሺ19ሻ  

The plastic volumetric strain could be determined by taking the difference between the total 278 

v =1+e

lnp’pa

1
p0'

v0

0

initial

(p’ )

v
current state

1
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volumetric strain given by Eq. (18) and the elastic volumetric strain given by Eq. (19): 279 

୴ߝ
୮ ൌ

1
଴ݒ
ቐሺߣ െ ሻߢ ln

′݌

଴݌
′
൅ ሺߋ െ ሻߟሺߞሻ߁ െ ሺߖ െ ଴ሻߖ ൅ ሺߗ െ ଴ሻቑ#ሺ20ሻߗ  

From Eq. (20), the yield function f for soft rocks, which considered the effect of the structure, 280 

could be written as follows: 281 

݂ ൌ
1
଴ݒ
ቐሺߣ െ ሻߢ ln

′݌

଴݌
′
൅ ሺߋ െ ሻߟሺߞሻ߁ െ ሺߖ െ ଴ሻߖ ൅ ሺߗ െ ଴ሻቑߗ െ ୴ߝ

୮#ሺ21ሻ  

Assuming associated flow in the proposed model, we obtained the plastic strain rate tensor: 282 

୮ሶࢿ ൌ 〈ሶ߉〉
߲݂

߲࣌′
#ሺ22ሻ  

where ߉ሶ	is the rate of the plastic multiplier. The loading criterion was thus given by ߉ሶ ൐ 0. 283 

Since an unlimited distortional strain was exhibited at the critical state without any change in 284 

the stress or volume, tr ቀడ௙
డ࣌
ቁ became zero when  equaled M. Thus, ( was equal to 285 

()/ln2 in the case where Eq. (7) was applied, and the yield function could be given as 286 

follows: 287 

݂ ൌ
ߣ െ ߢ
଴ݒ

቎ln
′݌

଴݌
′
൅ ln ൜1 ൅ ቀ

ߟ
ߊ
ቁ
ଶ
ൠ቏ െ

ߖ െ ଴ߖ
଴ݒ

൅
ߗ െ ଴ߗ
଴ݒ

െ ୴ߝ
୮#ሺ23ሻ  

3.3 Elastoplastic stress–strain relationship  288 

In the purely elastic regime, the rate of the plastic multiplier 〈߉ሶ〉 remains zero. Meanwhile, 289 

during elastoplastic deformation, the stress remains on the yield surface, and the yield 290 

function f remains equal to zero. The time derivative of the yield function ݂ሶ consequently 291 

vanishes whenever the rate of the plastic multiplier 〈߉ሶ〉 is positive. Therefore, we could write 292 

a consistency condition that has validity for either elastic or elastoplastic deformation as 293 

0 ൌ .ሶ݂〈ሶ߉〉 #ሺ24ሻ  

During plastic flow, we applied the consistency condition to the time derivative of the yield 294 

function ݂ሶ ቀ࣌′, ୴ߝ
୮, ,ߖ  ቁ calculated from Eq. (23) as follows 295ߗ
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Substituting Eqs. (3), (9), (14), (15), and (22) in Eq. (26), we obtained the plastic multiplier: 296 
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We consequently obtained the rate form of the elastoplastic stress–strain relationship from 297 

Eqs. (3), (21), and (26): 298 
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When the rate of the plastic multiplier Λሶ  is positive, the rate form of the elastoplastic stress–299 

strain relationship can be expressed as 300 

࣌′ሶ ൌ :௘௣ࡰ ሶࢿ െ ௧#ሺ29ሻࡰ  

where ࡰ௘௣ and ࡰ௧ are defined as follows: 301 
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3.4 Determination of the parameters involved in the proposed model. 302 

The first set of constitutive parameters (,  ,  acan be readily obtained from the 303 

results of elementary tests. The results of isotropic consolidation tests on soft rock plotted in 304 

the (e-lnp’) plane can be used to determine the slope   of the LICL, from the slope of the 305 
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swelling line unloading part, and N from the specific volume on the LICL under atmospheric 306 

pressure at the destructured state. The parameter “a” can be obtained by fitting the 307 

compression curve under the reloading path. The slope  of the CSL in the q-p' plane, and 308 

Poisson’s ratio , are then calibrated from the result of the monotonic triaxial CD or CUതതതത tests. 309 

The second set of constitutive parameters (b, trefmax) that control the rate of the 310 

decay and healing of the rock structure can be deduced by fitting the simulations to SHS 311 

triaxial tests.  and max are the initial “structure” and the maximum “structure” assumed in 312 

the material, respectively. Their values can be obtained by fitting the stress–strain relationship 313 

for the SHS tests, so that the material can gain its maximum structure. 1/tref describes the rate 314 

of the increase in  to max when the rock gains its structrure during the hold phase. “b” 315 

describes the rate of decrease in  under plastic deformation. 316 

4. Simulation results 317 

4.1 Monotonic triaxial shearing and decay of the structure 318 

The proposed model was compared with the monotonic triaxial shearing test under drained 319 

conditions with a constant effective confining pressure (Adachi and Oka [13]) to validate the 320 

modeling of structural decay due to deformation. The set of material parameters shown in 321 

Table 1 was used for all simulations with different confining pressures. The initial conditions 322 

are summarized in Table 2. The axial strain rate applied during the drained triaxial shearing 323 

was 3.33 %/h. As shown in Figure 10, the proposed model can capture the tendency of strain 324 

hardening and strain softening as well as the tendency of dilatancy in soft rock.  325 

 326 

Table 1: Constitutive parameters for soft rock (pumice lapilli tuff) for the monotonic triaxial 327 

CD test. 328 

 Compression index  0.053 

 Swelling index  0.004 
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M Critical state stress ratio  1.7 

 Void ratio on LICL at atmospheric pressure p' (= 98 

kPa)  

0.83 

 Poisson’s ratio 0.12 

ω Rate of evolution of Ω 1 x 104 

b Rate of decay of rock structure Ψ due to plastic strain 100 

1/tref Rate of healing of rock structure Ψ [1/h] 0.10 

Ψmax Upper limit of rock structure Ψ 0.90 

 329 

Table 2: Initial conditions for the monotonic triaxial CD test with different confining 330 

pressures. 331 

Effective confining 

stress σ'0 (kPa) 

Initial void 

ratio e0 

Initial state 

parameterΨ0 

98 0.72 0.105 

490 0.72 0.130 

980 0.72 0.125 

1960 0.72 0.130 

 332 

 333 

(a) Effective confining pressure r = 98 kPa 334 
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 335 

(b) Effective confining pressure r = 490 kPa 336 

 337 

(c) Effective confining pressure r = 980 kPa 338 

 339 

(d) Effective confining pressure r = 1960 kPa 340 

Figure 10: Comparison between experimental and numerical simulation results on 341 

consolidated, drained monotonic triaxial compression test for various confining pressures. 342 

 343 

4.2 Slide-hold-slide triaxial shearing and structural healing and decay  344 

The characteristics of the proposed model are explained using examples of the simulation 345 

results of the SHS triaxial test shown in Figure 11 and Figure 12. SHS shearing was 346 

simulated under the drained condition with a constant effective confining pressure of 700 347 

kPa. Four holding processes were applied with a stepwise increase in the holding time 348 

periods. 349 
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In the model, the state parameter  increased due to the effect of the holding time 350 

(Figure 11 (c) and Figure 12 (c)) in the evolution law in Eq. (9). The increase in  led to the 351 

upward movement of the state boundary surface in the plane of mean effective stress and 352 

specific volume. Consequently, the state parameter , which  is the specific volume difference 353 

between the current state and the least dense state under the same state on the state boundary 354 

surface, also increased (Figure 11 (d) and Figure 12 (d)). As the holding time increased, 355 

increased. After a certain long holding time,  gradually reached its maximum value  max, 356 

which was assumed as the fully structured state of the rock. Decay in the rock strength was 357 

observed in the re-sliding process. First,  decreased (Figure 11 (c)) because of the larger 358 

decay effect of plastic strain over the healing effect of holding time in the evolution of the 359 

state variable in Eq. (9). The decrease in  moved the state boundary surface downward in 360 

the direction of specific volume, leading to a decrease in the state variable  (Figure 11 (d)). 361 

This resulted in a decrease in the stiffness. In addition, the deviator stress increased with a 362 

rather high stiffness, reaching a peak value before returning to the residual value. The 363 

magnitude of the strength recovery depended on the duration of the holding process, as 364 

higher peak strengths were typically observed after a longer holding time.  365 

 366 
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 367 

 Figure 11: Simulation results of the Figure 12: Simulation results of the  368 

SHS triaxial CD test SHS triaxial CD test  369 

(variations in relation to axial strain) (variations in relation to time) 370 

 371 

Next, consolidated drained triaxial tests on a pumice lapilli tuff with multiple SHS 372 

processes under constant effective confining pressures of 300 and 700 kPa were simulated 373 

using the proposed model. The constitutive parameters used for the simulation are listed in 374 

Table 3, while the initial conditions are given in Table 4. 375 

From Figures 13, 14, 15, and 16, the proposed model accurately predicted the stress-376 

time–strain relationship of soft rock with SHS processes under two different effective 377 

confining pressures. The healing and decay phenomena of the soft rock structure and their 378 

effect on the strength and dilatancy characteristics were properly captured by the proposed 379 
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model. The characteristic of the proposed model was confirmed: longer holding times result 380 

in greater recovery of the rock strength.  381 

 382 

Table 3: Constitutive parameters for soft rock (pumice lapilli tuff) for the SHS triaxial CD 383 

test 384 

 Compression index  0.0360 

 Swelling index  0.0012 

M Critical state stress ratio  1.9 

 Void ratio on LICL at atmospheric pressure p' (= 98 

kPa)  

0.70 

 Poisson’s ratio 0.30 

ω Rate of evolution of Ω 3 x 105 

b Rate of decay of Ψ due to plastic strain 2.0 

1/tref Rate of healing of rock structure Ψ [1/h] 0.05 

Ψmax Upper limit of rock structure Ψ 0.16 

 385 

Table 4: Initial conditions for the SHS triaxial CD test 386 

Effective confining stress 

σ'0 (kPa) 

Initial void 

ratio e0 

Initial state 

parameter Ψ0 

300 0.692 0.15 

700 0.692 0.15 

 387 

 388 
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 389 

Figure 13: Comparison of the experimental Figure 14: Comparison of the experimental  390 

and numerical simulation results of  and numerical simulation results of  391 

the SHS triaxial CD test the SHS triaxial CD test 392 

r = 300 kPa r = 300 kPa  393 

(variation in relation with axial strain) (variation in relation with time) 394 

 395 

  396 

Figure 15: Comparison of the experimental  Figure 16: Comparison of the experimental  397 

and numerical simulation results of the  and numerical simulation results of the  398 

SHS triaxial CD test SHS triaxial CD test399 

r = 700 kPa  r = 700 kPa 400 

(variation in relation with axial strain) (variation in relation with time) 401 

 402 
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4.4 Parametric study via monotonic shear in consolidated, drained triaxial compression 403 

test 404 

A parametric study of the proposed model was presented using numerical simulations of a 405 

monotonic triaxial compression test in the consolidated, drained condition. The same material 406 

parameters and initial conditions as those listed in Table 3 and Table 4 were applied in this 407 

simulation. Analysis was performed on the effect of material parameter b accounting for the 408 

decaying rate with different values of b ranging from 2 to 16 and the effects of a wide range 409 

of strain rates (from 2.5×10-3%/h to 8.0×10-2%/h). 410 

Figure 17 shows that different decaying rates of rock friction for different rock types 411 

can be controlled by the material parameter b in the proposed model. As the value of b or the 412 

strain rate increases, both decaying of rock friction and a lower negative dilatancy during the 413 

softening process were observed. Similarly, different healing rates for various rock types can 414 

also be controlled through the material parameters tref. Meanwhile, as shown in Figure 18, the 415 

proposed model can consider the effect of different shearing rates on the behavior of the same 416 

rock. These parameters should be determined by analyzing the experimental results of SHS 417 

tests for each type of rock. 418 

Regarding the strength, as observed in Figure 17 (a), the rock reached its critical state 419 

stress ratio, in which (q/p)cs =. The rate of structural decay could be studied by observing 420 

the variation of the state variable in Figure 17 (c) and 18 (c) when either b or the strain rate 421 

was changed. In Figure 18 (c),  reaches a limiting value, in which d is zero. In this 422 

limiting state, the healing and decay given by Eq. (9) likely had the same amount of effect on 423 

the rock friction. The state variable , which is the distance from the current void ratio to the 424 

ratio on the state boundary surface at the same mean stress, started from an initial value and 425 

gradually converged to zero.  426 

 427 



     25 

 428 

Figure 1: Simulation results of the effect  Figure 2: Simulation results of the effect  429 

of parameter b on the decay rate  of the strain rate on the decay rate  430 

in monotonic triaxial shear test under in monotonic triaxial shear test under  431 

the consolidated drained condition. the consolidated drained condition. 432 

 433 

5. Conclusion 434 

In summary, this study has highlighted the effects of structural healing and decay on the 435 

stress–strain characteristics of soft rock and presented a potential approach for describing the 436 

healing and decay of a rock structure in the formulation of an elastoplastic constitutive 437 

model. The model performance was validated by comparing simulations with the 438 

experimental results of drained, monotonic triaxial shearing tests and drained SHS triaxial 439 

shearing tests on soft sedimentary rock. Unlike the existing models for structured soil and 440 
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soft rock, our model is capable of describing the time-healing effect of the structure as well as 441 

the decay of the structure due to deformation. Our constitutive model is formulated based on 442 

a general stress–strain tensor. Thus, it is easy to implement the model in a finite element 443 

method to analyse any geotechnical problems considering the long-term behavior of soft 444 

sedimentary rocks. 445 
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 452 

Appendix 453 

The following notations and symbols are used in the present paper: bold letters denote 454 

vectors and matrices; the symbol “∙” denotes an inner product of two vectors (e.g., ܉ ∙ ܊ ൌ455 

ܽ୧ܾ୧) or a single contraction of the adjacent indices of two tensors (e.g., ሺ܋ ∙ ሻ୧୨܌ ൌ ܿ୧୩݀୩୨); 456 

the symbol “:” denotes an inner product of two second-order tensors (e.g., ܋: ܌ ൌ ܿ୧୨݀୧୨) or a 457 

double contraction of the adjacent indices of tensors of rank two and higher (e.g., ሺ܍: ሻ୧୨܋ ൌ458 

݁୧୨୩୪ܿ୩୪); “⊗” denotes a tensor product of two vectors (e.g., ሺ܉ ⊗ ሻ୧୨܊ ൌ ܽ୧ܾ୨) or a tensor 459 

product of two second-order tensors (e.g., ሺ܋ ⊗ ሻ୧୨୩୪܌ ൌ ܽ୧୨ܾ୩୪); “‖ ‖” denotes the norm of 460 

a vector (e.g., ‖܉‖ ൌ ܉√ ∙ ܉ ൌ √ܽ୧ܽ୧) or a second-order tensor (e.g., ‖܋‖ ൌ :܋√ ܋ ൌ ඥܿ୧୨ܿ୧୨); 461 

1 is the second-order identity tensor; ࡵ  is the fourth-order identity tensor ൬ܫ௜௝௞௟ ൌ462 

ଵ

ଶ
൫ߜ௜௞ߜ௝௟ ൅ ௝௞൯൰ߜ௜௟ߜ ; “ 〈 〉” is that Macaulay bracket that denotes the ramp function as 463 

൏ x ൐ൌ ቄx		if		x ൐ 0
0		if		x ൑ 0

; over-dot “ ሶ ” denotes the time derivative; and a zero subscript denotes 464 

an initial state. 465 
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