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The ultrasonic wave transmission through multidirectional composite laminates is studied theoreti-

cally by accounting for the effect of thin interlayer resin-rich regions based on the spring-type inter-

face model. Using the stiffness-matrix method, the energy transmission spectrum of the

longitudinal wave impinging obliquely on cross-ply and quasi-isotropic laminates immersed in

water is calculated. The location and bandwidth of the frequency ranges where the transmissivity

becomes vanishingly small are shown to be significantly influenced by the incident angle, the lami-

nate lay-up, and the interlayer interfacial stiffnesses. By examining the energy flux density of par-

tial waves inside the laminate, these frequency ranges are shown to be the bandgaps due to the

constructive interference of scattered waves from the interlayer interfaces. The mode combination

causing the interference is found to vary remarkably with the bandgap location. Furthermore, the

interference in the finite laminate structure is shown to occur in almost the same manner as the

Floquet wave does in the infinitely extended laminate structure. The energy transmission spectrum

is experimentally measured for 16-ply carbon/epoxy cross-ply and quasi-isotropic composite lami-

nates using the through-transmission technique. The transmission and bandgap characteristics

observed in the experimental results are reasonably reproduced by the present theory incorporating

the interlayer resin-rich regions. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4976062]
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I. INTRODUCTION

In multilayered structures with a stacking periodicity,

the wave transmission is largely prohibited in certain fre-

quency ranges due to the constructive interference of scat-

tered waves from the interlayer interfaces. These frequency

ranges are called bandgaps or stop-bands. The occurrence of

bandgaps has been extensively studied for multilayered

structures consisting of isotropic media1–14 for the purpose

of fabricating artificial crystals called superlattices,15,16

designing foundations to isolate buildings from seismic

waves,17,18 and so on. Meanwhile, the advent of advanced

fiber-reinforced composite materials in the mid-20th century

motivated researchers to investigate the bandgap formation

of multilayered anisotropic media.19–24 Among others,

Braga and Herrmann25 formulated the characteristic equa-

tion of Floquet waves propagating in infinitely stratified

anisotropic layers by combining the Stroh formalism26 with

the Floquet theorem. They elucidated the band structure,

namely, the dispersion relation of Floquet waves, of an infi-

nite structure with cross-ply layering. The propagation

characteristics of Floquet waves were also investigated

for the case of quasi-isotropic layering by Potel et al.27

and Wang and Rokhlin.28 The revealed bandgap behavior

was utilized to determine the validity domain (frequency

and incident direction) of the so-called Floquet wave

homogenization.27–31

The above-mentioned works1–31 assumed in common

that the neighboring layers of multilayered structures were

perfectly bonded, i.e., the displacements as well as stresses

are continuous across the interlayer interfaces. In actual car-

bon/epoxy and glass/epoxy composite laminates, however,

thin resin-rich regions with typically several microns thick-

ness usually exist between adjacent plies. Understanding

the influence of such interfacial regions on the ultrasonic

wave propagation is essential for nondestructive diagnosis of

the interface quality, which has significant effects on the

mechanical performance of the whole laminated structure.32

Wang and Rokhlin28 modeled the interlayer resin-rich

regions of composite laminates by thin elastic layers of finite

thickness and discussed the bandgap behavior at normal inci-

dence. According to Rokhlin and Wang,33 such thin interface

layers can also be modeled as spring-type interfaces34–43

with equivalent stiffnesses and neglected mass. Using this

model, Lu and Achenbach44 and Lu45 analyzed the influence

of random fluctuations of the interfacial normal stiffness44

or the wave velocity in layers45 on the wave reflection/

transmission characteristics of longitudinal wave at normal

incidence. Ishii and Biwa46–48 elucidated the influence of the

interlayer interfacial stiffnesses on the wave propagation

behavior, including the bandgap formation in the layering

direction46,47 as well as arbitrary directions in unidirectional

composite laminates48 with spring-type interlayer interfaces.

These foregoing studies28,44–48 account for the presence of
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interlayer resin-rich regions, but are limited to the case of

normal incidence to multidirectional laminates or oblique

incidence to unidirectional laminates where the interlayer

interfaces are solely responsible for the bandgap formation.

In the more general case of oblique incidence to multidirec-

tional composite laminates, the wave scattering occurs not

only due to the finite interfacial stiffnesses but also due to

the mismatch of acoustic impedances between neighboring

plies, so the resulting bandgap formation remains as an issue

needing in-depth investigation.

In the present study, the ultrasonic wave transmission

characteristics and the bandgap formation in multidirec-

tional composite laminates with spring-type interlayer

interfaces are investigated theoretically. In particular, the

influence of the angle of incidence, the stacking sequence

of laminates, and the interlayer interfacial stiffnesses on

the energy transmission spectrum is elucidated. In Sec. II,

the stiffness-matrix method49,50 is employed to calculate the

energy transmission coefficient of the longitudinal wave at

oblique incidence to a composite laminate immersed in

water. The resulting transmission spectra of cross-ply and

quasi-isotropic composite laminates are presented and dis-

cussed in Sec. III. In order to discuss the formation mecha-

nism of low-transmission frequency ranges found in the

spectrum in more detail, the energy flux density of partial

waves inside the laminate is examined in Sec. IV A. The

energy flux of partial waves constituting the Floquet waves

as well as the number of propagative Floquet modes in the

infinitely extended laminate structure are also calculated

and compared to the finite layered case in Sec. IV B. The

energy transmission spectrum is experimentally measured

for 16-ply carbon/epoxy composite laminates with cross-ply

and quasi-isotropic stacking sequences and compared to the

theoretical results in Sec. V. The conclusion of the present

study is summarized in Sec. VI.

II. ANALYSIS OF WAVE TRANSMISSION
CHARACTERISTICS

This study deals with the transmission of plane har-

monic longitudinal wave impinging obliquely upon a com-

posite laminate immersed in water (density qf and wave

speed Vf) as shown in Fig. 1. Specifically, two types of

stacking sequences are considered for the composite lami-

nate: a symmetric cross-ply [0/90]4S and a symmetric quasi-

isotropic [þ45/0/�45/90]2S (Fig. 1) lay-up, both of which

consist of 16 transversely isotropic elastic plies and 15

spring-type interlayer interfaces. The procedure of the anal-

ysis is, however, outlined in this section for the laminate

structure made of N layers with N� 1 spring-type interlayer

interfaces. It is noted here that interlayer resin-rich regions

of composite laminates are sufficiently thin compared to the

ultrasonic wavelength in the frequency range of 0–14 MHz

considered in the present analysis: for example, the carbon/

epoxy cross-ply composite laminate, which will be used in

the experiment in Sec. V, has the resin-rich regions of

typically 3–8 lm thickness,46 while the wavelengths of the

longitudinal and shear waves in the same epoxy resin as the

composite laminate51 are about 0.2 mm and 0.09 mm at

14 MHz, respectively. Therefore, the spring-type interface

model can be reasonably applied to model the thin resin-

rich regions.

The Cartesian coordinate system is set in such a manner

that the x3 axis coincides with the stacking direction and the

x1–x3 plane with the plane of incidence as shown in Fig. 1.

The angle u is defined as the deviation of the plane of inci-

dence from the isotropic plane of the 0� plies.

When the displacement vector is defined as

u � ðu1; u2; u3ÞT, where the superscript “T” denotes the

transpose, the displacement fields of the incident and the

resulting transmitted longitudinal waves are given as

uInc ¼ Ainc

sinh
0

cosh

0
@

1
Ae�ifkf ½x1sinhþðx3�Z0Þcosh�þxtg; x3 > Z0;

(1)

uTra ¼ TAinc

sin h

0

cos h

0
B@

1
CAe�ifkf ½x1 sin hþðx3�Z0Þcos h�þxtg;

x3 < ZN; (2)

where Ainc is the amplitude of incident wave, h is the angle

of incidence, i2¼ –1, kf¼x/Vf is the wavenumber in water,

x is the angular frequency, t is the time, and x3¼Z0 and

x3¼ZN are the positions of top and bottom surfaces of the

laminate, respectively. In Eq. (2), T denotes the complex

amplitude transmission coefficient. This can be calculated

by using the stiffness-matrix method49,50 as

T ¼ �2cSG
63

c� SG
33

� �
cþ SG

66

� �
þ SG

36SG
63

e�ikf H cos h; (3)

FIG. 1. (Color online) A 16-ply quasi-isotropic composite laminate with

spring-type interlayer interfaces immersed in water.
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where c � cos h=ðiqfVfxÞ and H¼ Z0�ZN is the laminate

thickness. In Eq. (3), SG
IJ represent the elements of the

inverse of 6� 6 global stiffness matrix, which is obtained by

combing the local stiffness matrices of the plies Kply
m (m¼ 1,

2,…,N) and the interlayer interfaces Ksp
p (p¼ 1,2,…,N� 1)

using the recursive algorithm.49 These local matrices are

defined as

rjx3¼Zm�1;�

rjx3¼Zm;þ

 !
¼ Kply

m

ujx3¼Zm�1;�

ujx3¼Zm;þ

 !
;

rjx3¼Zp;þ

rjx3¼Zp;�

 !
¼ Ksp

p

ujx3¼Zp;þ

ujx3¼Zp;�

 !
; (4)

where r � ðr13; r23; r33ÞT is the stress vector, x3¼Zp

(p¼ 1,2,…,N� 1) are the positions of interlayer interfaces,

and the subscripts “þ” and “–” denote the limit of a field

variable when x3 approaches the corresponding coordinate

from the positive and negative sides, respectively. The local

stiffness matrix of the ply can be calculated according to

the procedure in Ref. 49, while that of the interlayer inter-

face is given as

Ksp
p ¼

Bp �Bp

Bp �Bp

� �
; Bp ¼

KT11 KT12 0

KT21 KT22 0

0 0 KN

2
4

3
5;

(5)

where KN is the interfacial normal stiffness, and KT11,

KT12, KT21, and KT22 are terms governed by the shear

interfacial stiffness, which generally depends on the fiber

direction of plies on both sides of the interface and the

angle u.

In the present analysis, all plies are assumed to have

the same material properties of density q, thickness h, and

elastic constants with respect to their crystallographic coor-

dinates in Voigt notation Cij. Namely, the stiffness matrix

of the mth ply Kply
m depends on m due only to its fiber direc-

tion. In addition, it is assumed that all interlayer interfaces

possess the same normal and orientation-independent shear

stiffnesses KN and KT, and that the shear stresses occur at

the interlayer interfaces only in the direction of the shear

displacement gap. In this case, Bp in Eq. (5) becomes Bp

¼ diag(KT, KT, KN) for any stacking sequences and any

angles u.

III. RESULTS

A. Composite laminates with perfectly bonded
interlayer interfaces

The numerical results are first shown for the case of per-

fect bonding at interlayer interfaces, i.e., KN¼KT¼1, for a

better understanding of the case of finite interfacial stiff-

nesses, which will be presented in Sec. III B. It is noted that

the wave transmission characteristics of multidirectional

composite laminates with perfectly bonded interfaces have

been studied by Wang and Rokhlin.28

The variation of the energy transmission coefficient

jTj2 calculated by Eq. (3) with the frequency f and the angle

of incidence is shown in Figs. 2(a) and 2(b) for the cross-

ply and quasi-isotropic laminates, respectively. The results

for a 16-ply unidirectional laminate [0]16 are also shown

for comparison in Fig. 2(c). The material properties used

in the present study are summarized in Table I. Note that

the imaginary parts of ply elastic constants in Table I

are neglected in Secs. III and IV, but will be considered

in the comparison of the analysis with experiments in

Sec. V. The angle of the plane of incidence is fixed as

u¼ 90�. The horizontal axis f*� fh(q/Re[C33])1/2 in Fig. 2

represents the frequency normalized by the ply thickness

and the longitudinal wave velocity of the ply in the x3

direction, whose range corresponds approximately to

0� f� 14 MHz.

It is seen in Figs. 2(a) and 2(b) that when approximately

h< 10�, both cross-ply and quasi-isotropic laminates exhibit

the similar oscillatory pattern of the transmission coefficient

against the frequency to that of the unidirectional lay-up

in Fig. 2(c). As an example, cross sections of Figs. 2(a)–2(c)

at a fixed incident angle of h¼ 3� are shown in Fig. 2(d).

Except for the several sharp peaks due to the occurrence of

eigen vibration of the laminates, the spectra in Fig. 2(d) have

very similar oscillation amplitude and period irrespective of

the stacking sequence. On the other hand, the transmission

characteristics in the range of approximately 10�< h< 60�

TABLE I. Material properties of the ply and the water.

Complex elastic constants of transversely

isotropic ply (GPa; fiber direction: x1)

C11 109� 2.90i

C13 4.9� 0.18i

C33 14.8� 0.33i

C44 3.6� 0.16i

C66 6.2� 0.30i

Density of ply q (kg/m3) 1.5� 103

Thickness of ply h (mm) 0.135

Density of water qf (kg/m3) 1.0� 103

Wave speed in water Vf (m/s) 1.5� 103

FIG. 2. (Color online) Variation of the energy transmission spectrum of 16-

ply (a) cross-ply, (b) quasi-isotropic, and (c) unidirectional composite lami-

nates with the angle of incidence h when u¼ 90� and KN¼KT¼1, and (d)

the cross sections of (a)–(c) at h¼ 3�.
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are significantly influenced by the stacking sequence. Unlike

the unidirectional lay-up, the cross-ply and quasi-isotropic

laminates have several finite frequency ranges of low trans-

missivity in a manner depending on the angle of incidence,

such as the one at around f*¼ 0.3 when h¼ 40� in Fig. 2(a).

The occurrence of such low-transmission zones will be dem-

onstrated in the case of laminates with spring-type interlayer

interfaces below, and discussed further in Sec. IV in the light

of bandgaps of Floquet waves in the corresponding infinite

periodic structures. When the angle of incidence is suffi-

ciently large (h> 60�), the transmission coefficient in Figs.

2(a)–2(c) becomes very small over the wide frequency

ranges because of the total reflection of the incident wave at

the water-laminate interface.

B. Composite laminates with spring-type interlayer
interfaces

When the thin interlayer resin-rich zones of composite

laminates are modeled as spring-type interfaces, the interfa-

cial normal and shear stiffnesses can be reasonably approxi-

mated as KN¼ (keþ 2le)/he and KT¼le/he,
33 respectively,

where ke and le are the Lam�e constants of resin and he is the

equivalent thickness of resin-rich zones. The two interfacial

stiffnesses are hence expected to have a certain correlation

for actual composite laminates, i.e., KN/KT¼ (keþ 2le)/le.

In this section, however, the influence of each of normal and

shear stiffnesses on the wave transmission characteristics as

well as bandgap behavior is investigated separately.

In order to first examine the influence of interfacial nor-

mal stiffness KN, the interfacial shear stiffness is fixed as

KT¼1 and the variation of the energy transmission spec-

trum of the cross-ply and quasi-isotropic laminates with KN

is depicted in Fig. 3 for two representative angles of inci-

dence h¼ 5� and 40� for small (h< 10�) and large

(10�< h< 60�) ranges mentioned above in Sec. III A, respec-

tively. Likewise, the variation with KT is depicted in Fig. 4

when KN¼1 to look into the influence of interfacial shear

stiffness. The vertical axes KN*�KNh/Re[C33] in Fig. 3 and

KT*�KTh/Re[C66] in Fig. 4 represent the interfacial stiff-

nesses normalized by the ply thickness and stiffness, whose

ranges correspond approximately to 0.01�KN� 11 GPa/lm

and 0.005�KT � 5 GPa/lm, respectively.

The transmission characteristics of the cross-ply lami-

nate are shown in Figs. 3(a) and 4(a) for the incident angle

h¼ 5�, and in Figs. 3(c) and 4(c) for h¼ 40�. In Fig. 3(a)

when KT¼1, the transmission coefficient drops to a low

level at around f*¼ 0.48 when KN*¼ 10 and its bandwidth

becomes much wider as the normal stiffness decreases. In

the case of finite shear stiffness in Fig. 4(a), totally different

types of low-transmission zones from the one in Fig. 3(a) are

generated such as those containing the points indicated by

“C” and “D.” The dependence of their bandwidth on the

shear stiffness is, however, not as remarkable as that on the

normal stiffness seen in Fig. 3(a).

When h¼ 40� in Figs. 3(c) and 4(c), the normal and

shear stiffnesses have a similar influence on the transmission

coefficient when they are relatively large. For example, the

low-transmission frequency ranges formed at around

f*¼ 0.3 in Figs. 3(c) and 4(c) become narrower in a similar

way when KN* or KT* decreases from 102 to 100. In contrast,

when the interfacial stiffnesses fall to a lower level, say,

KN*< 100 and KT*< 100, the transmission characteristics

are dependent separately on the normal and shear stiffnesses.

In particular, the normal stiffness has a distinct effect to pro-

duce new low-transmission zones such as the one containing

the point “J” in Fig. 3(c).

The corresponding results for the quasi-isotropic lami-

nate are shown in Figs. 3(b) and 4(b) for the incident angle

h¼ 5�, and in Figs. 3(d) and 4(d) for h¼ 40�. The influence

FIG. 3. (Color online) Dependence of the energy transmission spectrum on

the interlayer interfacial normal stiffness for different angles of incidence

and stacking sequences when u¼ 90� and KT¼1.

FIG. 4. (Color online) Dependence of the energy transmission spectrum on

the interlayer interfacial shear stiffness for different angles of incidence and

stacking sequences when u¼ 90� and KN¼1.
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of stacking sequence on the stiffness dependence of wave

transmissivity is not so significant for the smaller angle of

incidence h¼ 5� when Figs. 3(a) and 3(b) [Figs. 4(a) and

4(b)] are compared. On the other hand, it varies with the

interfacial stiffnesses in a manner depending on the laminate

lay-up for the larger angle of incidence h¼ 40� when Figs.

3(c) and 3(d) [Figs. 4(c) and 4(d)] are compared. Unlike the

cross-ply laminate in Fig. 4(c), other low-transmission zones

are newly formed for the quasi-isotropic laminate even in

the range of lower shear stiffness, such as the one containing

the point “P” in Fig. 4(d).

IV. DISCUSSIONS

In Sec. III, the energy transmission coefficient has been

shown to drop to a low level in certain finite frequency ranges

depending on the angle of incidence, the stacking sequence,

and the interlayer interfacial normal and shear stiffnesses. In

order to investigate the formation mechanism of these low-

transmission zones seen in Figs. 2–4 in more detail, the com-

plex Poynting vector52 of partial waves inside the laminate is

examined here. The real part of the x3 component of this vec-

tor, denoted by P3, represents the time average of the energy

flux density in the layering direction. In this section, this

quantity is calculated for each partial wave inside the laminate

according to the procedure outlined in Appendix A. Note that

the previous studies1,53 analyzed the wave propagation behav-

ior in infinitely periodic structures in terms of the energy flux

density of the so-called Floquet waves. In contrast, the follow-

ing analysis focuses on the energy flux density of partial

waves as the present interest is to examine the wave propaga-

tion behavior in finite laminate structures.

A. Distribution of energy flux density in the stacking
direction

1. Small angle of incidence

The distribution of Re[P3] along the x3 direction is

depicted in Fig. 5 for the eight selected points corresponding

to the small angle of incidence h¼ 5�, which are indicated

by “A” in Fig. 2(a), “B” in Fig. 3(a), “C” and “D” in

Fig. 4(a), “E” in Fig. 2(b), “F” in Fig. 3(b), and “G” and “H”

in Fig. 4(b) as summarized in Table II. The wave transmis-

sion is partially achieved at the points “A” and “E,” while it

is strongly prohibited at the others.

In Fig. 5, “QLþ,” “QT1þ,” and “QT2þ” (“QL-,”

“QT1-,” and “QT2-”) denote the energy fluxes of the quasi-

longitudinal, fast quasi-transverse, and slow quasi-transverse

waves propagating in the positive (negative) x3 direction,

respectively. Note that “QLþ” and “QL-” include the pure

longitudinal mode in water. The horizontal axis in Fig. 5

represents the energy flux density normalized by that of the

incident wave given as ðqfVfx2A2
inccos hÞ=2. The vertical

axis represents the x3 coordinate normalized by the ply thick-

ness, where (x3 � Z0)/h¼ 0 and (x3� Z0)/h¼�16 corre-

spond to the top and bottom surfaces of the laminate,

respectively.

In Fig. 5, the energy flux densities remain constant in

each ply since the viscoelastic nature of plies is neglected.

Furthermore, the conservation of energy can be confirmed,

as the sum of the energy flux densities of all partial waves

remains constant along the x3 direction. In Fig. 5(a), the QL

mode is dominant inside the cross-ply laminate with the per-

fectly bonded interlayer interfaces. Since the plane of inci-

dence coincides with the plane of symmetry of the 0� and

90� plies, the out-of-plane modes (QT2 for the 0� ply and

QT1 for the 90� ply) are not generated in the cross-ply lami-

nate as shown in the inset of Fig. 5(a). In contrast, in the

FIG. 5. (Color online) Distribution of energy flux density in the stacking

direction for the points indicated by “A”–“H” in Figs. 2(a), 2(b), 3(a),

3(b), 4(a), and 4(b).

TABLE II. Selected points in Figs. 2–4 for which the energy flux density

distribution is calculated.

Symbol Lay-up

Angle of

incidence

h [�]
Normalized

frequency f*

Normalized interlayer

interfacial stiffnesses

KN* KT*

A [0/90]4S 5 0.5 1 1
B [0/90]4S 5 0.4 1 1
C [0/90]4S 5 0.38 1 0.1

D [0/90]4S 5 0.5 1 0.1

E [þ45/0/�45/90]2S 5 0.5 1 1
F [þ45/0/�45/90]2S 5 0.4 1 1
G [þ45/0/�45/90]2S 5 0.38 1 0.1

H [þ45/0/�45/90]2S 5 0.5 1 0.1

I [0/90]4S 40 0.3 20 1
J [0/90]4S 40 0.3 0.2 1
K [0/90]4S 40 0.3 1 10

L [0/90]4S 40 0.3 1 0.1

M [þ45/0/�45/90]2S 40 0.3 20 1
N [þ45/0/�45/90]2S 40 0.3 0.2 1
O [þ45/0/�45/90]2S 40 0.3 1 10

P [þ45/0/�45/90]2S 40 0.3 1 0.1
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quasi-isotropic laminate in Fig. 5(e), not only the in-plane

but also the out-of-plane mode is generated and the QT1 and

QT2 modes account for a larger portion of energy compared

to the cross-ply laminate in Fig. 5(a). Nevertheless, the

energy distribution inside the laminate in Fig. 5(e) is still

dominated by the QL mode. This dominant mode propagates

and is polarized in almost the same direction regardless of

the fiber direction of plies when h¼ 5�, as the deviation of

wave vector (polarization direction) from the x3 axis is 10.8�

(19.5�), 10.8� (13.9�), and 10.7� (10.7�) in the 0�, 645�, and

90� plies, respectively. The wave transmissivity for small

angles of incidence is, hence, not influenced by the stacking

sequence very much as mentioned in Sec. III A regarding the

results shown in Fig. 2.

When the interlayer interfaces possess a finite normal

stiffness, the energy flux density distributions are shown in

Figs. 5(b) and 5(f), where the energy transmission is very low

for both cross-ply and quasi-isotropic laminates. In these

cases, however, a few plies close to the upper surface contain

similar non-zero energy fluxes of the QL mode. This indicates

that the wave interference takes place for both laminates in a

similar manner by the upward- and downward-propagating

QL modes scattered from the interlayer interfaces. Namely,

the corresponding low-transmission zones are the bandgaps

caused by the QL mode. It is noted that the energy flux den-

sity of partial waves will vanish throughout the laminate if the

low transmissivity is due to the total reflection at the water-

laminate interface, as the Poynting vector component

becomes pure imaginary for evanescent waves.

When the interfacial shear stiffness has a finite value in

Figs. 5(c) and 5(g) where both laminates lie in different

low-transmission zones from Figs. 5(b) and 5(f), the energy

distribution along the x3 direction is dependent on the stack-

ing sequence. There are still common features between

Figs. 5(c) and 5(g) that the corresponding low-transmission

zones are the bandgaps caused by the interference of QL and

QT1 modes in combination, and that the QT1 mode becomes

particularly remarkable in the 0� plies. When the frequency

increases from the point “C” [Fig. 5(c)] to “D” [Fig. 5(d)],

or from the point “G” [Fig. 5(g)] to “H” [Fig. 5(h)], it still

lies in different low-transmission zones, and the QT2 mode

undertakes a role in the bandgap formation instead of the

QT1 mode.

2. Large angle of incidence

For the angle of incidence h¼ 40�, the distribution of

energy flux densities for different interfacial stiffnesses with

a fixed frequency f*¼ 0.3 is shown in Fig. 6 for the eight

selected points indicated by “I” and “J” in Fig. 3(c), “K” and

“L” in Fig. 4(c), “M” and “N” in Fig. 3(d), and “O” and “P”

in Fig. 4(d) as summarized in Table II. All these points lie in

the low-transmission zones except for the point “L.” For the

same reason mentioned in Sec. IV A 1, these zones are found

to be the bandgaps due to the wave interference.

For this angle of incidence, the energy flux of the QL

mode vanishes throughout the laminate since it becomes

evanescent in all the plies. As a result, the wave interference

is caused by the quasi-transverse modes. In particular, the

bandgaps of cross-ply laminate in Figs. 6(a)–6(c) are solely

governed by the QT1 and QT2 modes in the 0� and 90� plies,

respectively. In the case of the quasi-isotropic laminates in

Figs. 6(e)–6(h), both of the QT1 and QT2 modes exist in the

0� and 90� plies, while only the QT2 mode has a non-zero flux

in the 645� plies since the QT1 mode is evanescent therein.

It should be noted that the sum of energy flux densities

of the partial waves is no longer constant along the x3 direc-

tion as seen in the inset of Fig. 6(d). This is because of the

evanescent nature of the partial waves, which does not

appear in the case of small angle of incidence in Sec. IV A 1.

If the coupling effect52 of evanescent waves localized at the

upper and lower edges of the ply is incorporated by consider-

ing the energy flux for a pair of upward- and downward-

propagating partial waves (Appendix B), the resulting fluxes

vanish almost completely throughout the thickness direction

for the low-transmission zones even when the wave interfer-

ence occurs.

Consequently, for the two angles of incidence examined

here, it can be concluded that the finite frequency ranges of

low transmissivity presented in Sec. III are the bandgaps due

to the wave interference inside the laminate. The mode com-

bination causing such interference is influenced profoundly

by the angle of incidence, the stacking sequence, and the

interlayer interfacial normal and shear stiffnesses.

B. Comparison with Floquet wave

For unidirectional composite laminates with spring-type

interlayer interfaces, the previous study48 has shown that

the wave transmission characteristics of finite laminate struc-

ture are closely related to the propagation behavior of the

Floquet waves in the infinitely extended laminate structure.

Following this result, the correspondence between finite and

FIG. 6. (Color online) The same as Fig. 5, but for the points indicated by

“I”–“P” in Figs. 3(c), 3(d), 4(c), and 4(d).
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infinite laminate structures is examined here for the wave

propagation behavior in the cross-ply and quasi-isotropic

lay-ups by comparing the energy flux density distributions

inside the structures and calculating the number of propaga-

tive Floquet modes.

In infinitely extended periodic multilayered structures,

the wave propagation is characterized by three pairs of

Floquet wave modes propagating in the opposite x3 direc-

tions.48 Each Floquet mode is a superposition of classical

plane partial waves in each layer.27 By assuming that the x1

and x2 components are �kf sin h and zero, respectively, the x3

components of the wavenumber of the Floquet waves can be

calculated according to Appendix C. The distribution of the

energy flux densities of the plane partial waves constituting

the Floquet waves propagating (or decaying) in the negative

x3 direction is shown in Fig. 7 for the two selected points indi-

cated by “B” in Fig. 3(a) and “P” in Fig. 4(d): the correspond-

ing results for the finite laminate structures are shown in

Figs. 5(b) and 6(h), respectively. Note that Fig. 7 exhibits the

energy flux when a single Floquet mode is decomposed into

the six partial waves in each layer, not the energy flux

of Floquet wave itself as considered in Refs. 1 and 53.

Figures 7(a)–7(c) and Figs. 7(d)–7(f) represent three Floquet

modes for the infinitely periodic structures whose unit-cells

are [0/90] and [þ45/0/�45/90], respectively. For both lay-

ups, the energy distribution is depicted for eight plies,

i.e., four unit-cells in Figs. 7(a)–7(c) and two unit-cells in

Figs. 7(d)–7(f). The energy flux densities in Fig. 7 are normal-

ized by the sum for six partial waves when the Floquet mode

is propagative, i.e., the Floquet wavenumber is real [Figs. 7(b)

and 7(c)] and by the maximum value when the Floquet

mode is non-propagative, i.e., the Floquet wavenumber pos-

sesses a negative imaginary part [Figs. 7(a) and 7(d)–7(f)],

respectively.

The cross-ply laminate at the point “B” is characterized

by one non-propagative and two propagative Floquet modes.

The first non-propagative Floquet mode in Fig. 7(a) is found

to have a similar energy distribution pattern to that of the

immersed finite cross-ply laminate in Fig. 5(b). The other

Floquet modes are dominated either by the out-of-plane

modes [Fig. 7(b)] or by the quasi-transverse modes [Fig. 7(c)].

These modes do not have their counterparts in Fig. 5(b) as

they do not couple significantly with the longitudinal wave

impinging on the immersed finite laminate structure at this

small angle of incidence h¼ 5�. The quasi-isotropic laminate

at the point “P” is characterized by three non-propagative

Floquet modes. The two Floquet modes in Figs. 7(d) and 7(e)

have very similar energy distribution dominated by the QT2

mode, which is attenuated almost completely in the first þ45�

ply, while the distribution pattern in Fig. 7(f) can be favorably

compared with that of the finite quasi-isotropic laminate in

Fig. 6(h).

With the same parameters used for the computation of

the transmission coefficients in Figs. 3(a) and 4(d), the num-

ber of pairs of propagative Floquet modes of corresponding

infinitely laminate structures is counted as in Ref. 48 and

illustrated in Figs. 8(a) and 8(b), respectively. When compar-

ing Figs. 3(a) and 8(a) for the finite and infinite cross-ply

laminates, the patterns of low-transmission zones such as

those containing the point “B” in Fig. 3(a) are favorably

observable in Fig. 8(a) where the Floquet mode possessing

the energy flux distribution similar to that of the finite lami-

nate becomes non-propagative. Note that as shown in Fig. 7,

the wave field inside the immersed finite laminate is mainly

governed by a single Floquet mode, so the transmission coef-

ficient is not sensitive to whether the other two Floquet

modes are propagative or not. In Fig. 8(b) for the infinite

quasi-isotropic laminate corresponding to the large angle of

incidence h¼ 40�, the number of propagative Floquet waves

becomes zero or one over a wide area, and white zones are

fairly compared with the low-transmission zones of finite

laminate in Fig. 4(d).

It can be thus reasonably expected that the ultrasonic

wave causes the interference even in the immersed finite

laminate structure in almost the same manner as one out of

three Floquet modes does in the corresponding infinite lami-

nate structure. Note that since the energy fluxes vanish

almost entirely in the upper half of the laminate when the

interference occurs in Figs. 5 and 6, the influence of symmet-

ric stacking of layers is insignificant in the present compari-

son between finite and infinite laminate structures.

V. COMPARISON WITH MEASUREMENT

The measurement of the energy transmission spec-

trum was carried out for 16-ply cross-ply [0/90]4S and

quasi-isotropic [þ45/0/�45/90]2S composite laminates

FIG. 7. (Color online) Distribution of the normalized energy flux density of

three downward-propagating Floquet waves for the points indicated by

(a)–(c) “B” in Fig. 3(a) and (d)–(f) “P” in Fig. 4(d).

FIG. 8. The number of propagative Floquet modes of infinitely laminated

structures (a) in the f*––KN* plane when the unit-cell is [0/90] and (b) in the

f*–KT* plane when the unit-cell is [þ45/0/�45/90].
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(thickness: 2.16 mm) immersed in water. The specimens

were made of carbon/epoxy composite plies (carbon fibers

TR30 and epoxy resin #340, Mitsubishi Rayon, Co. Ltd.,

Tokyo, Japan) and had the same ply thickness of about

0.135 mm. The experimental procedure follows Ref. 48,

except that the through-transmission measurement was

performed instead of the double-through transmission

measurement in Ref. 48. A piezoelectric broadband trans-

ducer of nominal frequency 10 MHz with a diameter

0.5 in. (IS1013R, Insight, Inc., Tokyo, Japan) was used as

the transmitter. The ultrasonic wave transmitted through

a specimen was received at the other side by another

piezoelectric broadband transducer of the same nominal

frequency but with a larger diameter 1 in. (IY1025R,

Insight, Inc., Tokyo, Japan). Compared to the double

through-transmission technique used in Ref. 48, the

through-transmission technique is advantageous to reduce

the effect of wave attenuation. With this method, care

should be taken of the fact that the beam sound axis of

the first arrival transmitted waves, as well as the follow-

ing ones due to the multiple reflections inside the speci-

men, is shifted from that of the incident wave due to the

refraction effect. The influence of such finite beam size

can be accounted for, for example, by shifting the posi-

tion of the receiver in the horizontal direction54 to obtain

the results to be compared with the predictions of plane-

wave theory. In the present measurement, however, the

position of the receiver was fixed on the beam sound axis

of the incident wave since the laminates were so thin that the

beam axis shifts were minimal. In addition, the receiving

transducer with larger diameter is also a solution to remove

as much influence of beam refraction as possible.

Furthermore, the two transducers were separated by about

50 mm, which was much larger than the thickness of speci-

mens, so the influence of beam diffraction can be reasonably

suppressed as the spectrum of transmitted signals was nor-

malized by that of the reference wave measured without the

specimen to obtain the transmission coefficient.

The variation of the measured energy transmission

spectrum with the angle of incidence is shown in

Figs. 9(a)–9(f) for u¼ 0�, 45�, and 90�, where u¼ 0� cor-

responds to the plane normal to the fiber direction of the 0�

plies. Note that a logarithmic scale is used for the color bar

to make the spectrum in larger angles of incidence of

h> 10� conspicuous. Because of the limited bandwidth of

the transducers, the results are shown in Fig. 9 for a finite

frequency range of 3� f� 13 MHz. The theoretical results

are also depicted in Figs. 9(g)–9(l) for comparison. These

are calculated by the stiffness-matrix method using the

properties in Table I, including the imaginary parts of the

ply stiffness with the interlayer interfacial stiffnesses

KN¼ 3.0 GPa/lm and KT¼ 0.8 GPa/lm. These laminate as

well as interface parameters were determined from the

transmission coefficient data measured in Ref. 48 for a uni-

directional composite laminate made of the same materials

as the present specimens. It is noted that the ply stiffness

FIG. 9. (Color online) Variation of (a)–(f) experimental and (g)–(l) theoretical energy transmission spectrum of 16-ply carbon/epoxy cross-ply and quasi-

isotropic composite laminates with the angle of incidence when u¼ 0�, 45�, and 90�.
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values shown in Table I are slightly different from those in

Ref. 48: in Ref. 48, these parameters were determined so

that the theoretical transmission coefficients in the f–h
plane fit best to the experimental ones for u¼ 0�, 45�, and

90�, while in the present study the same evaluation proce-

dure was performed using the larger set of data for

0� �u� 90� with the increment Du¼ 3�. As mentioned in

Sec. III B, the interfacial stiffnesses and the material prop-

erties of resin-rich regions are simply related by

KN¼ (keþ 2le)/he and KT¼ le/he. Based on this relation

with the elastic constants measured for the bulk epoxy

resin #340, keþ 2le¼ 9.3 GPa and le¼ 1.8 GPa,51 the

interfacial stiffnesses identified above imply an equivalent

thickness of resin-rich regions 2.3–3.1 lm, which is con-

sidered to be reasonable in comparison with the one mea-

sured for the present cross-ply laminate by the

micrographic observation 3–8 lm,46 as the resin-rich

regions of unidirectional laminates are likely to be thinner

than those of multidirectional laminates.

For approximately h< 10� in Figs. 9(a)–9(f), the bandg-

aps are seen for both laminates at around 11 MHz regardless

of the angle u, which conforms to the result in Sec. IV A 1

that the wave transmissivity is not influenced by the stacking

sequence very much for small angles of incidence. For large

angles of incidence, i.e., 10�< h< 40� for the cross-ply lam-

inate and 10�< h< 30� for the quasi-isotropic laminate, the

bandgaps can be observed, e.g., at around 4 MHz and

6.5 MHz for h¼ 20� in Fig. 9(f), although the boundaries

between neighboring bandgaps are not as clear as in the theo-

retical results in Fig. 2 due mainly to the ply viscoelastic nature.

The transmission characteristics and the bandgap formation

seen in the f–h plane and their dependence on the angle u in

the experimental results are favorably reproduced by the theory

in Figs. 9(g)–9(l). The significance of incorporating the influ-

ence of imperfect interlayer interfaces can be verified by com-

paring Figs. 2 and 9, as the bandgaps for h< 10� observed at

11 MHz in the experimental results are not reproduced in the

case of perfectly bonded interfaces in Fig. 2.

Using the above-mentioned material properties, the distri-

bution of energy flux density inside the cross-ply and quasi-

isotropic laminates immersed in water is calculated for the

points indicated by “Q”–“T” in Figs. 9(k) and 9(l), and

depicted in Fig. 10. These points exhibit relatively low energy

transmissivities and correspond to the bandgaps. It should be

noted that the energy fluxes of partial waves in Fig. 10 show

decreasing behavior in each ply due to the ply viscoelastic

nature, in contrast to Figs. 5 and 6 where they are constant.

Figures 10(a) and 10(c) show the energy distributions

when h¼ 3� and f¼ 11 MHz. The corresponding bandgaps

are found to be due to the wave interference of the QL mode

for both cross-ply and quasi-isotropic laminates. The decay

of the QL mode in the layering direction is relatively weak

in these two cases, as the wave scattering at the interlayer

interfaces are not so significant due to the high interfacial

stiffnesses KN*¼ 27 and KT*¼ 17. In Figs. 10(b) and 10(d)

for h¼ 25� and f¼ 4.5 MHz, the wave interference is caused

by the quasi-transverse modes dominantly since the QL

mode is propagative only in the 90� plies. In particular, the

bandgap of cross-ply laminate in Fig. 10(b) is governed by

the combination of QT1 mode in the 0� plies and the QL and

QT2 modes in the 90� plies.

VI. SUMMARY

In the present study, the ultrasonic wave transmission

through cross-ply and quasi-isotropic composite laminates

with spring-type interlayer interfaces has been analyzed

theoretically by using the stiffness-matrix approach. It has

been shown that the frequency ranges of finite bandwidth

in which the energy transmission coefficient drops to van-

ishingly low levels are profoundly influenced by the angle

of incidence, the stacking sequence of laminates, and

the interlayer interfacial normal and shear stiffnesses. By

calculating the energy flux density inside the laminate,

these low-transmission zones have been shown to be the

bandgaps due to the constructive interference of scattered

waves from the interlayer interfaces. In addition, the mode

combination causing the interference has been shown to vary

FIG. 10. (Color online) Distribution of energy flux density in the stacking

direction for the points indicated by “Q”–“T” in Figs. 9(k) and 9(l). Note

that the ply viscoelastic nature is considered.
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remarkably with the frequency, the incident angle, the stack-

ing sequence, and the interlayer interfacial stiffnesses.

Furthermore, the wave interference in the finite laminate

structure has been found to occur in almost the same manner

as the Floquet wave does in the corresponding infinitely peri-

odic structure. The energy transmission spectrum has been

experimentally measured for 16-ply carbon/epoxy composite

laminates with cross-ply and quasi-isotropic lay-ups for vari-

ous incident directions. The observed transmission character-

istics and the bandgap behavior have been favorably

compared with the theory. The results of the present analysis

can be helpful when the imperfect interlayer interfaces of

multidirectional composite laminates are evaluated from the

ultrasonic wave propagation characteristics.
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APPENDIX A: CALCULATION OF POYNTING VECTOR
COMPONENT INSIDE LAMINATE

In what follows, the summation convention is not used

to avoid confusion. The displacement and stress vectors at

the top (x3 ¼ Z0;þ) and bottom (x3 ¼ ZN;�) surfaces of the

composite laminate immersed in water can be written as

ujx3¼Z0;þ
¼ Ainc

ð1þ RÞsin h

0

ð1� RÞcos h

0
B@

1
CA; (A1)

rjx3¼Z0;þ
¼ Ainc

0

0

�iqfVfxð1þ RÞ

0
B@

1
CA; (A2)

ujx3¼ZN;�
¼ Ainc

T sin h
0

T cos h

0
@

1
Aeikf H cos h; (A3)

rjx3¼ZN;�
¼ Ainc

0
0

�iqfVfxT

0
@

1
Aeikf H cos h; (A4)

where the common term depending on x1 and the time,

exp½�iðkfx1sin hþ xtÞ�, is omitted, which is conserved

throughout the laminate because of Snell’s law. In the above

expressions, R is the complex amplitude reflection coeffi-

cient calculated by the stiffness-matrix method49,50 as

R ¼ cþ SG
33

� �
cþ SG

66

� �
� SG

36SG
63

c� SG
33

� �
cþ SG

66

� �
þ SG

36SG
63

: (A5)

Using Eqs. (A1)–(A4) with the local stiffness matrices

of plies as well as interlayer interfaces in Eqs. (4) and (5),

the stress vectors at the upper and lower edges of the mth ply

(m¼ 1,2,3,…,N) can be calculated (refer to Ref. 50 for the

detailed procedure). The complex-valued amplitude of

partial waves in the mth ply is then obtained by using the

stress vectors at the upper (x3 ¼ Zm�1;�) and lower

(x3 ¼ Zm;þ) edges of the corresponding ply as

A1�

A2�

A3�

A1þ

A2þ

A3þ

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

D� DþHþðZm�1�ZmÞ
D�H�ðZm�1�ZmÞ Dþ

" #�1

�
rjx3¼Zm�1;�

rjx3¼Zm;þ

 !
; (A6)

where Asþ and As� (s¼ 1,2,3) represent the amplitude of

partial waves (quasi-longitudinal and two quasi-transverse

modes) propagating in the mth ply in the positive and nega-

tive x3 directions, respectively. In Eq. (A6), D
6 and H

6 are

3� 3 matrices given by

D6¼ i
X3

q¼1

X3

j¼1

C13jqp16
j k16

q C13jqp26
j k26

q C13jqp36
j k36

q

C23jqp16
j k16

q C23jqp26
j k26

q C23jqp36
j k36

q

C33jqp16
j k16

q C33jqp26
j k26

q C33jqp36
j k36

q

2
664

3
775;

(A7)

H6ðzÞ¼
expð6ik16

3 zÞ 0 0

0 expð6ik26
3 zÞ 0

0 0 expð6ik36
3 zÞ

2
664

3
775;

(A8)

where Cr3jq (r, j, q¼ 1,2,3) are the elastic constants of the

mth ply, and ps6
j and ks6

q are the polarization and wave vec-

tors of the partial waves in the mth ply, respectively. The

polarization and the x3 component of wave vector can be

obtained by solving the Christoffel equation with the known

parameters ks6
1 ¼ �kf sin h and ks6

2 ¼ 0.50

The x3 component of complex Poynting vector52 for the

partial waves propagating in the mth ply in the negative and

positive x3 directions is then given as

Ps�
3 x3ð Þ ¼ �

1

2

X3

j¼1

vs�
j x3ð Þrs�

j3 x3ð Þ

¼ � 1

2
ixjAs�j2Wss x3ð Þ; (A9)

Psþ
3 x3ð Þ ¼ �

1

2

X3

j¼1

vsþ
j x3ð Þrsþ

j3 x3ð Þ

¼ � 1

2
ixjAsþj2W sþ3ð Þ sþ3ð Þ x3ð Þ;

s ¼ 1; 2; 3; Zm < x3 < Zm�1; (A10)

where “ � ” and “j � j” denote the complex conjugate and

absolute value, respectively. In the above expressions,

vs6
j and rs6

j3 are the velocity and stress components of the

partial waves, and Wss are the elements of a 6� 6 matrix

given by
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Wðx3Þ ¼
H�ðZm�1 � x3ÞðP�Þ†D�H�ðZm�1 � x3Þ H�ðZm�1 � x3ÞðP�Þ†DþHþðx3 � ZmÞ
Hþðx3 � ZmÞðPþÞ†D�H�ðZm�1 � x3Þ Hþðx3 � ZmÞðPþÞ†DþHþðx3 � ZmÞ

" #
; (A11)

where the superscript “†” denotes the Hermitian transpose

and P6 are 3� 3 matrices given by

P6 ¼
p16

1 p26
1 p36

1

p16
2 p26

2 p36
2

p16
3 p26

3 p36
3

2
64

3
75: (A12)

The Poynting vector inside the composite laminate can be

obtained by carrying out the above computation [Eqs.

(A6)–(A12)] for all plies constituting the laminate.

APPENDIX B: POYNTING VECTOR INCORPORATING
COUPLING EFFECT

Equations (A9) and (A10) yield the Poynting

vector component for a single partial wave. In this frame-

work, the energy flux density (Re½Ps6
3 �) vanishes for evanes-

cent modes. On the other hand, the evanescent modes

localized at the upper and lower edges of the ply can in com-

bination transfer the energy in the thickness direction.52

Such a coupling effect can be incorporated by calculating

the Poynting vector component for a pair of upward- and

downward-propagating partial waves as

Ps
3 x3ð Þ ¼ �

1

2

X3

j¼1

vs�
j x3ð Þ þ vsþ

j x3ð Þ
h i

� rs�
j3 x3ð Þ þ rsþ

j3 x3ð Þ
h i

¼ � 1

2
ix As� Asþ
� �

�
Wss x3ð Þ Ws sþ3ð Þ x3ð Þ

W sþ3ð Þs x3ð Þ W sþ3ð Þ sþ3ð Þ x3ð Þ

" #

�
As�

Asþ

" #
; s ¼ 1; 2; 3: (B1)

APPENDIX C: POYNTING VECTOR IN INFINITELY
PERIODIC STRUCTURE

The x3 component of Floquet wavenumber for an infi-

nitely periodic structure, denoted by f, can be calculated by

solving48

det K21 expðifhuÞ �K12 expð�ifhuÞ þK22 �K11� ¼ 0;½
(C1)

where hu is the thickness of a unit-cell of the periodic struc-

ture, and KIJ (I, J¼ 1,2) are the 3� 3 submatrices of the

6� 6 stiffness matrix for the unit-cell. Note that Eq. (C1)

has six solutions for f corresponding to three pairs of

Floquet modes propagating in the opposite x3 directions.48

For each Floquet mode, the displacement and stress vec-

tors at the upper (x3 ¼ ZU) and lower (x3 ¼ ZL ¼ ZU � hu)

surfaces of the unit-cell can be calculated from the following

equations with the so-obtained f from Eq. (C1):

K21 exp ðifhuÞ �K12 exp ð�ifhuÞ½
þK22 �K11�ujx3¼ZL

¼ 0; (C2)

ujx3¼ZU
¼ exp ðifhuÞujx3¼ZL

; (C3)

rjx3¼ZU

rjx3¼ZL

 !
¼ K11 K12

K21 K22

" #
ujx3¼ZU

ujx3¼ZL

 !
: (C4)

Using the obtained displacement and stress vectors, the

Poynting vector of partial waves constituting the correspond-

ing Floquet wave can be calculated in the same manner as

described in Appendix A.

It should be noted that solving Eqs. (C1)–(C4) for f and

the corresponding displacement and stress vectors is equivalent

to calculating the eigenvalues and the corresponding eigenvec-

tors of the transfer matrix of the unit-cell as in Ref. 53.
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