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A simple anisotropic vector hysteresis model is developed to represent 2D weakly anisotropic vector hysteretic property. An isotropic 

vector play model is identified from azimuthally averaged vector property of anisotropic material. An anisotropy matrix is multiplied to 
the isotropic vector play model to represent anisotropy. Simulations for alternating and rotational flux conditions show that the 
anisotropy matrix improves the representation of vector hysteretic properties for a non-oriented silicon steel sheet. 
 

Index Terms—Alternating flux, anisotropic vector hysteresis, elliptically rotational flux, silicon steel sheet, vector play hysteron 
 

I. INTRODUCTION 
HE PLAY model is an efficient and precise hysteresis model 
with two vector versions, respectively using superposition 

of scalar models along the azimuthal direction [1], [2] and a 
geometrically vectorized play hysteron [2]–[5]. The latter is 
the more efficient version because the former one requires 
azimuthal integration. 

The isotropic rotational hysteretic property of a 
geometrically vectorized play model has been discussed in [2], 
[4], [5], in which several methods to adjust the simulated 
rotational hysteresis loss to the measured one have been 
proposed. 

However, the representation of anisotropic vector 
hysteretic properties of silicon steel sheets remains as an open 
problem for the play model and other hysteresis models. Ref. 
[6] proposed an anisotropic vector hysteresis model using 
anisotropically vectorized stop hysterons. However, its 
identification is not an easy problem. 

This paper presents a proposal of a simple generalization 
of vector play model for representation of the two-dimensional 
(2D) weakly anisotropic vector hysteretic property, which is 
observed in non-oriented steel sheets. 

II. ISOTROPIC VECTOR PLAY MODEL 
An isotropic vector play model is given as the following. 
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Therein, f(ζ, p) is a shape function, BS signifies the saturation 
magnetic flux density, and pζ is a vector play hysteron of 
radius ζ. Hysteron pζ [4] is given as presented below. 
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In those equations, pζ
0 is vector pζ at the previous time-point. 

The play model (1) is a 3D vector model. We discuss its 
2D property to represent rotational and alternating hysteretic 
properties of silicon steel sheets. 

The isotropic vector play model is identified as follows. An 
alternating magnetic flux density Balt is given as 

 Balt = Bacosωt  (cosφB, sinφB),          (5) 

where Ba is the amplitude and φB is the azimuth angle. The 
angular frequency ω does not affect the property of the vector 
play model (1) because of its rate-independence. The 
alternating property Halt(B, φB) for input (5) is 

 Halt(Bacosωt, φB) = H(Balt) .           (6) 

The averaged alternating property is given as 
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where eφ is the unit vector in the φ-direction. Shape function f 
is determined from Have(B) using the identification method for 
a scalar play model without the weighting function [7]. 

Alternating and rotational hysteretic properties of a non-
oriented silicon steel sheet (JIS: 50A1300) are measured to 
examine the isotropic vector play model. The exciting 
frequency is 10 Hz and the eddy current influence is ignored. 
The dashed line in Fig. 1 shows the simulated rotational 
hysteresis loss per cycle of the steel sheet. It is larger than the 
measured value because the vector model is identified only 
from the alternating property above. 

 

   
Fig. 1.  Rotational hysteresis losses given by isotropic vector play models. 
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Fig. 2.  Relation between P and P*. 

 

   
Fig. 3.  Relation between Have(B) and Halt(B, φB). 

 
Ref. [2] proposed an iterative method to adjust the 

simulated rotational loss to the measured one for the vector 
play model using a waiting function. This paper introduces 
another adjustment method without an iterative procedure, 
which has been applied to a vector stop model [8]. The vector 
play model is modified as 

P*(B) = (P(B)⋅e//)e// + r(|B|)(P(B)⋅e⊥)e⊥       (8) 

where e// and e⊥ respectively denote parallel and perpendicular 
unit vectors to B, and r(|B|) is the ratio of the measured 
rotational hysteresis loss to the simulated loss given by P. The 
relation between P and P* is presented in Fig. 2. The solid line 
in Fig. 1 shows the rotational hysteresis loss given by P*, 
which agrees with the measured one. 

III. ANISOTROPIC VECTOR HYSTERESIS MODEL 

A. Anisotropy Matrix Depending on B 
A simple 2D anisotropic version of the vector play model 

is 

PB(B) = WB(B) P*(B) ,            (9) 

where WB(B) is an anisotropy matrix of which components are 
single-valued functions of B. 

For example, WB is determined to reconstruct the 
anisotropic alternating property approximately from the 
averaged alternating property as shown below. 
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Therein, B = |B| and (Haltx(B, φB), Halty(B, φB)) = Halt(B, φB) 
given by (6); the azimuthally averaged alternating property 

Have(B) is assumed to be represented accurately by the 
isotropic vector play model P*. Both Halt(B, φB) and Have(B) 
are not single-valued functions but hysteretic functions. 
Accordingly, their amplitude properties are used in (11). The 
maximum point of alternating input B given by (5) with ωt = 0 
and the corresponding outputs of Halt and Have are used to 
determine wBx and wBy. Fig. 3 shows the relation between 
Have(B) and Halt(B, φB). 

B. Anisotropy Matrix Depending on P* 
Another anisotropic vector play model is given as 

PH(B) = WH(P*) P*(B) ,            (12) 

where WH is an anisotropy matrix of which components are 
single-valued functions of P*. For example, WH is determined 
similarly to WB, as shown in the equations below. 
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The same relation between Have and Halt(B, φB) as that for (11), 
illustrated in Fig. 3, is used for (14). 

IV. SIMULATION RESULTS 
Vector hysteretic properties of the non-oriented silicon 

steel sheet (JIS: 50A1300) are simulated. Fig. 4 depicts 
components of WB(B) and WH(P*). 

A. Alternating Magnetic Flux 
Fig. 5 depicts alternating hysteretic properties of isotropic 

model P* and anisotropic models PB and PH for φB = 0, π/4, 
π/2, where H// = H⋅e//. The anisotropic models give accurate 
amplitudes of H//. The discrepancy of alternating hysteretic 
properties between PB and PH is small. 

B. Rotational Magnetic Flux 
Figs. 6(a), 6(b), and 6(c) respectively portray the loci of H 

for counterclockwise rotational inputs of B with |B| = 0.5, 1.0, 
1.5 T, which are simulated respectively by P*, PB, and PH. The 
isotropic model P* yields circular loci of H. The loci obtained 
by PB are directly affected by the phase lag of B to P* because 
of WB(B). The loci obtained by PH are unaffected by the 
rotational direction because WH(P*) does not depend on the 
phase lag of B to P*. In other words, the anisotropy in PB 
depends only on B, although that in PH depends only on P*. 

To incorporate dependences on B and P*, another simple 
anisotropic model is introduced as 

 PBH(B) = WBH(B, P*) P*(B)           (15) 

  WBH(B, P*) = { WB(B) + WH(P*) } / 2 .         (16) 

Fig. 6(d) portrays loci of H given by PBH(B), which 
approximately agrees with the measured loci. 
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 (a)            (b) 

 
 (c)            (d) 
Fig. 4. Components of anisotropy matrices: (a) wBx, (b) wBy, (c) wHx, and (d) 
wHy. 

 

C. Elliptically Rotational Magnetic Flux 
The vector hysteretic property for elliptically rotational 

magnetic flux is examined. Fig. 7 depicts the loci of elliptically 
rotational magnetic flux density where the major radius BM ≈ 
0.5, 1.0, and 1.5 T and the azimuth angle of major axis φM = 0, 
π/4, and π/2. Fig. 8 shows the corresponding loci of H that are 
simulated by P* and PBH for counterclockwise rotation. The 
isotropic model P* yields loci of H that qualitatively agree 
with measured loci. The anisotropic model PBH achieves more 
accurate representation than P* does. 

 

 

 
Fig. 6.  Simulated loci of H for rotational inputs of B, where Bx = 0 or By = 0 
at “•” (simulated) and “o” (measured): (a) H = P*, (b) H = PB, (c) H = PH, 
and (d) H = PBH = (PB+PH)/2. 
 

V. CONCLUSION 
A simple anisotropy matrix improves the representation of 

the vector hysteretic properties of non-oriented silicon steel 
sheet. The anisotropy matrices examined herein are too simple 
for highly accurate representation. Future work should be done 
to improve the anisotropy matrix identification method. 

 

   

   

   
 (a)                 (b)                 (c) 

Fig. 5. Alternating hysteretic properties of isotropic model P* and anisotropic models PB and PH: (a) φB = 0, (b) φB = π/4, and (c) φB = π/2. 
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Fig. 7.  Loci of elliptically rotational magnetic flux density, where φM is the 
azimuth angle of the major axis. 

 

 
(a) 
 

  
 (b) 
 

 
 (c) 
Fig. 8.  Loci of H simulated by P* (left) and PBH (right) for counterclockwise 
elliptically rotational inputs of B: (a) φM = 0, (b) φM = π/4, and (c) φM = π/2. 
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