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Electromagnetic Field Computation Using
Space-Time Grid and Finite Integration Method

Tetsuji MatsuoMember, 1EEE,

Abstract—A finite integration (FI) method on a space-time grid ~ OH./0y—0D, /0w =0, —0H,/0xz+0(—D,)/0w =0 (3)
is studied for computation of electromagnetic wave propagation,
where a nonuniform time-step distribution is naturally intro- Ex=E/c, & =E,/c, H,=H,/c (4)
duced. Orthogonality between dual grids is given by the Lorentz
metric to obtain a constitutive equation for electromagnetic Two electromagnetic vectors are formally defined :in 4,
variables. Electromagnetic field computations show that the Fl ) space-time as
method on a nonuniform space-time grid yields correct wave

propagation. F = (5747 _5:1:7 Bz) ) G = (_Dy7 DI>HZ) (5)
Index Terms—Finite integration method, Lorenz metric, space- . . .
time grid. Equations (2) and (3) can be rewritten withand G as
Vo F=0,VaoxG=0 (6)

I. INTRODUCTION

HE FINITE difference time domain (FDTD) method [1]whereV,; means(9/dz,d/dy,d/0w).

is widely used for electromagnetic field computation be- The integral form of (6) is given as
cause of its efficiency and accuracy. However, the conveatio
Yee grid requires brick-type representation of analyzgdaib. j{ F-ndS=0, }{ G-tds=0 (7)
The finite integration (FI) method [2], [3] can use flexible S ©
spatial grids including tetrahedral, prismatic, and pyilah Where n and ¢ respectively denote the unit normal and
elements. Both conventional FDTD and FI methods usetangential vectors.
uniform time-step. The FDTD method using sub-grids [4], [5] Equation (7) derives an FI method in space-time using
uses nonuniform time-steps, but uses only brick-type apattlectromagnetic variables defined as
grids.
In contrast, space and time are handled in a unified man- €z = /&;dwdfc, ey = /5ydydw , b= /Bzdl'dy (8)
ner by the special theory of relativity. Although usual elec
tromagnetic field computation requires no relativity theor dy = /Dzdy, dy = /Dydx, h = /szw 9)
electromagnetic fields can be analyzed in space-time becaus
Maxwell equations are unaffected by the special theory &he integration ofd,, d,, and h along the z-direction is
relativity. Actually, several space-time finite elementthuels assumed implicitly for unit length in (9).
[6]-[8] have been proposed for eddy-current analysis. When orthogonal primal and sub grids in, (y, w) space-

This study examines a space-time FI method for eletime are used, the FI method reduces (7) to (see Fig. 1)

tromagnetic wave propagation, where nonuniform time-step

C . . —pnTt 4 6n7»1»/2 - enf1/2 ‘
distribution is naturally introduced. i, z,i,5—1/2  Tyi—1/2,j
. 6’n,—'l./2 6”_-1/2 -0 10
Il. FINITE INTEGRATION METHOD ON A SPACE-TIME g T g2 T Cyny2, (10)
GRID *dZ;iﬁz,j —hi;+ dZ—:—Ol—/12/2j T hi; =0 1)
A. Electro netics in Space-Time n—1/2 n+1/2 _
mag S tdy e —hiy — Aoy thi =0 (12)

The Euclid metric is used in this article for an analogical i )
explanation to the conventional electromagnetics in two- ¢NOSe result in the conventional FDTD scheme.
three-dimensional (2D or 3D) space. The following electromagnetic variables are defined when

For simplicity, permittivity = and permeabilityy are as- @ non-orthogonal primal grid and its dual grid are used.

sumed to be constant. A time-variahleis introduced as
f:/F~ndS,g:/G~tds (13)
w=ct, c=1/\/zp. Q) .
A 2D-electromagnetic field is described by (2) and (3)\{ariablesf andg are defined, respectively, on the primal and
where E,, E, and B, propagate in#, y, w) space-time. sub grids. Integration of along thez-direction is assumed
o implicitly for unit length in (13).
0Ey/0x + 0(=&) /0y + OB /0w =0 ) Let n, = (n1,n9,n3) be the normal vector of a face of the

T. Matsuo is with the Department of Electrical Engineeringpt¢ Univer- p”mal_g”d' To relatef to g, the_tan_gentlal vector of the corre-
sity, Kyoto, 615-8510 Japan, e-mail: tmastuo@kuee.kycda:jp sponding edge of the sub grid is giventas= (—n1, —na, n3),
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Fig. 1. FI method using an orthogonal space-time grid. Theaadioections eimnﬂ/iz}f 3 *h n h|"+ Ay AAhHlﬂ
correspond with the definition (5) of" and G and the integral forms (7). sy ! 1 !
They do not correspond with the directions Bf, D and H in the space A CE A g Ay
directly. 1 e =T
(a) bi (b) dy112

Fig. 4. Variables in the connecting domain. The arrow dioeicorrespond
with the definition (5) of FF and G and the integral forms (7).

where0 < Aly < 1/2 — Aw?/8 (see Fig. 3). Thenf"+1/4
and ¢"*1/* in domain (lll) are given as (see Fig. 4(a))

Fig. 2. Relation between the face of a primal grid and the edge sub frrt/a = —en Tl by, g" Yt = (Aw/4)Z) YA

: I+1/2
grid. (18)
In domain (I),b and h are updated as
as presented in Fig. 2. Thereby, nt1/2 _ n n+1/4 n+1/4
p g Yy b, = b = (e, 11170 — €y 1/2);
Fnp =& —&mna+ Bany RV = (Aw/2/2)00 P (> T+1). (19)

= u/€(Dyn1 - D$n2 + Hzn?)) =7ZG- ts (14)

whereZ = \/u/e. In fact, t, is orthogonal to the correspond-
ing face of the primal grid by the Lorentz metric. dZﬁ/lz = d;’ﬁ{% — (TR ),
n+3/4 _ n+3/4 .

B. Explicit Time-Marching €yinje = (ZAw/2)d ", (i>21+2).  (20)

For the space-time FI method to be as efficient as thethe connecting domain (I}, ande, are updated as shown
conventional FDTD method, an explicit time-marching schenbelow (see Figs. 3 and 4(b)).
is required. An explicit scheme is given as follows. nt1/2 n—1/2 . n—1/4  nil/d

For simplicity, a scheme for 2D space-time with 1D space dy,1—1/2 = dy,z_l/g —(hf —hi1)—g -9 )
along thez-direction is derived wheré, = 0. Fig. 3 presents ~ »t1/2 _ (ZAw)d”“” /(3/2 = Aly) (1)

. L . ; ; y,I—1/2 y,I—1/2 A

a space-time grid in which the solid and dashed lines respec-
tively denote edges of primal and sub grids. The grid hasthr&hen, f*3/4 and g"*+3/* in domain (Ill) are (see Fig. 4(a))
domains according to the time-step: (1) the domain with time i3/ nt1/d | n+1/2 n43/4 /4
step Aw, (Il) the domain withAw/2, and (Ill) the domain M= it e g = (Aw 4/ 2)
connecting (l) and (Il). For simplicitys and . are assumed , , ) (22)
to be uniform andAz is uniformly set to unity. Then,d ande in connecting domain (Ill) are updated as (see

In domain (I),d, ande, are updated as Figs. 3 and 4(b))

Subsequentlyd, ande, in domain (ll) are updated as

n n— n n n+3/4 _ m+1/4 - n+1/2 n 4 n 4
dy—:i/iQ = dy,ii/132 - (hi - hi—l)? dy,I+1/2 - dy,1+1/2 hI+1 +g 1/ +g +3/ )
n n . n+3/4 n+3/4 9
eyji/lzp = (ZAw)dy;ri/f/Q (1<I-1). 15) Cyrv12 T (ZAw/Q)dy)I+1/2/(1/2 + Alp + Aw?/8) (23)
In domain (Il),d ande are updated as In domain (I),b and» are updated as
n+l1/4 _ m—=1/4  n  gn nt+l _ n n+1/2 n+1/2
dy,i—1/2 - dy,’i—l/Q (hz hi—l)? bz + == b’L - (ey,i+1/2 - ey,i*1/2)7
ety = (ZAw/2)d M, (i>1+2).  (16) Wit = (Aw/Z)bp T (i< T —1). (24)
In connecting domain (lll)d ande are updated as In domain (l),b and h are updated as
n+l/4 _ m—1/4 n n n n n
dZ,I+1/2 = dy’H_l/Q — (hf4q — R, b?+1 =b; +1/2 ( yTﬂ% — eyjﬁéiz),

er}r/fl/Q = (ZAw/2)dei/14/2/(1/2 + Alp + Aw?/8) (17) AL = (Aw/2/Z)b0 T (i > T+ 1). (25)
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Fig. 5. Space-time grid: (a) spatial grid, and (b) domain (l11)

In domain (lll), b and h are updated as (see Fig. 4(a))

b = ey T L T = (w22 (26)

C. 3D Space-Time Grid with 2D Space
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Fig. 6. Electromagnetic variables at the corner of the joart:{a) two prism

The explicit time-marching scheme presented in the precegkments, (b) electromagnetic variables for the primal gdpielectromagnetic
ing subsection can be extended to that for a 3D space-tirde gfgriables for the sub grid, and (d) directionseotnd d.
with 2D space. Fig. 5 presents a 3D space-time grid that has

three domains (1), (11), and (l11), similarly to the 2D spatime

grid with 1D-space. Fig. 6 portrays electromagnetic vdeiab

From Fig. 6(b), /75" andg} ' are

at the corner of the joint part. The variable relations at the frtt _n¥3/4 L ndB/4 fn+3/4
corner part are given as follows. 211 yI+1/27i+1 el J+1/2 T ILT
From Fig. 6(b),f;"/* and g7 %'/* are given as 91 = (Bw/2)fr5" (32)
n+1/4 _ n+1/4 n+1/4 n From Figs. 6(b) and 6(d}" "' andh”"! are
17 =€yl jri2 ~ Cyrpryag T I gs- 6(b) (B, 1,7
n n 1_ n n+1/2 n+1/2 n+1/2
91,?1/4 = (Aw/2/Z) 1:;1/4- (27) b1 =0y e e T ey e Ty
n+1l __ n—+1
From Figs. 6(c) and 6(d)" /2 _ a2  q"*Y/? and hily = (2Aw/Z)b77 (33)

zI,J+1/20 Yyr+1/2,00 1,0
ef}l/ ? are given as
d:;r,b/fwz = d:;b/fl/z + (9?;1/14 - 9731/4)7
d;l;ril/fz,J = dZItrll/;lg,J - (9?111,{14 - 9?;1/4) (28)
At = dp =y g+ g0 gr g
e} 5 = (ZAw)dH P /(1 - Al — Alg). (29)

From Figs. 6(b) and 6(d)f; +*/* andg;*/* are given as

n+3/4 n+1/4+ n+1/2 n+1/2 n+1/2
.J  “Jig Cur,g+1/2 = Cyr+1/2,0 — 61,0

n+3/4 n+3/4
91; M= (Aw/2/Z) I,J; o (30)
. n+3/4 n+3/4
From Fig. 6(c),d£]/+1/2 and dyﬁl//w are
n+3/4 _ mn+1/2 n+3/4 n+3/4
dml,J+1/2 = dm[,J—i—l/Z t9r941 — 91,5

nt3/4 _ ntl/2 n+3/4 | nt3/4
dyriijo,g = byriiye g — 91410 T91.5 (31)

When ¢ and p are nonuniform, it is convenient to use
variablet instead ofw changing the metric dependently en
andu. The extension of the method above to a 4D space-time
FI method is possible, but it is not straightforward because
analogical discussion based on (6) and (7) is difficult tolyapp
to 4D space-time.

I1l. APPLICATION TOWAVE COMPUTATION

Wave propagation induced by a magnetic current source is
analyzed to examine the space-time Fl method. For simplicit
the permittivity and permeability are set uniformly to ynity
normalization. The magnetic current source with normadlize
frequency of 0.1 is located as depicted in Fig. 7(a). Fig) 7(b
depicts a space-time primal grid with 2D-space. Domains (1)
and (I) have a uniform time-stefAw and Aw/2, respectively,
which are connected by the domain (Ill). The FI method can
use prism elements in domain (ll) similarly to the usual loric
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Fig. 7. Geometry of application example and space-time grigds@arce
and domain (1), and (b) three domains where the number of elentods
not correspond to the simulations shown in Figs. 8 and 9.
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Fig. 8. Distributions ofB, without scattering: (a) space-time FI method an(P”mal and S“p ngdS WaS. given by the Lorent; met_nc to
(b) FI method with prism elements and uniform time-step. obtain a constitutive equation for electromagnetic vdeish

An explicit time-marching scheme was presented.

Future work remains: discussion of the dispersion property
elements. The spatial cell size is unity afvdb = 0.5 in domain of the space-time FI method, and extension of the proposed
(). The space-time FI method yields a distribution8f as method to a 4D space-time FI method.
portrayed in Fig. 8(a) ab» = 80 andy = 10, which agrees with
that given by the conventional FDTD method having the same ACKNOWLEDGMENT
spatial grid and time-step as in domain (). For comparison
Fig. 8(b) shows the distribution obtained from the FI metholq
with uniform time-step using similar prism elements padigia h
Small discrepancies in the distributions are seen in Fifs). 8
and (b), which are caused by nonuniform computational grids
The discrepancy can be reduced by the use of sufficientlyl smal
spatial grid size compared with the wavelength. [1] K. S. Yee, “Numerical solution of initial boundary valuergblems

Next. wav ttering b trianale dielectric i nalvzed involving Maxwellfs equations in isotropic medid EEE Trans. Antennas
e o a e scattering by a tnangle gec c S.a alyzed. Propagat., vol. 14, pp. 302-307, May 1966.
The dielectric has = 20 andyx = 1, which occupies half [2] T. Weiland, “Time domain electromagnetic field computatioithvfinite
of domain (Il), as depicted in Fig. 7(a). FigS. 9(a) and (bg difference methods,l_’nt. J. Numer. Model., vol. 9, pp. 295-319, 199_6.
t distributions ofB, obtained from the space-time FI[ 1 1. E. Lager, E. Tonti, A.T. de Hoop, G. Mur, and M. Marrortinite
portray z p . formulation and domain-integrated field relations in eletiagnetics — a
method and the FDTD method. The FDTD method results in synthesis,IEEE Trans. Magn., vol. 39, pp. 1199-1202, May 2003.
insufficient resolution in the dielectric because of thedigell [4] M. W. Chevalier, R.J. Luebbers, and V.P. Cable, "FDTDabgrid with
size. The space-time FI method can zoom in and out accordin material traverse,EEE Trans. Antennas Propagat., vol. 45, pp. 411-412,
. p _ _ _ 9 March 1997.
to the locally required resolution of the electromagnetave: |5 P. Thoma and T. Weiland, “A consistent subgridding scheanétfe finite
The simulation presented above for the space-time FI method ggfffigg% time domain methodiht. J. Numer. Model., vol. 9, pp. 359-
requires about twice as .mUCh ComPUtat'qn .t'me as .the FD A.J. Butler and Z.J. Cendes, “Space-time finite elementsvele by
method because of the fine space-time grid in domain (II). Theé convolution for the efficient solution of transient eddy rant problems,”
FDTD method with half-sized spatial and time steps yields a !EEE Trans Magn., vol. 24, pp. 2688-2690, Nov. 1988.
imilar distributi h in Eig. 9 to that in Fig. 9 [7] T. Renyuan, L. Feng, L. Yan and C. Xiang, “Analysis of ts&@mnt non-
similar distrioution shown ”_1 1. (C) 0 that in 'g'_ (aa)t' linear eddy current fields by space-time finite element methdeEE
the expense of about four times as much computation time as Trans. Magn., vol. 34, pp. 2577-2580, Sept. 1998.
the space-time El method. [8] S. Gyimodthy, A. Vagwlgyi, and I. Sebessn, “Application of optimally
distorted finite elements for field calculation problems ofcelemag-
netism,”|EEE Trans. Magn., vol. 38, pp. 365-368, March 2002.
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