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Electromagnetic Field Computation Using
Space-Time Grid and Finite Integration Method

Tetsuji Matsuo,Member, IEEE,

Abstract—A finite integration (FI) method on a space-time grid
is studied for computation of electromagnetic wave propagation,
where a nonuniform time-step distribution is naturally intro-
duced. Orthogonality between dual grids is given by the Lorentz
metric to obtain a constitutive equation for electromagnetic
variables. Electromagnetic field computations show that the FI
method on a nonuniform space-time grid yields correct wave
propagation.

Index Terms—Finite integration method, Lorenz metric, space-
time grid.

I. I NTRODUCTION

T HE FINITE difference time domain (FDTD) method [1]
is widely used for electromagnetic field computation be-

cause of its efficiency and accuracy. However, the conventional
Yee grid requires brick-type representation of analyzed objects.
The finite integration (FI) method [2], [3] can use flexible
spatial grids including tetrahedral, prismatic, and pyramidal
elements. Both conventional FDTD and FI methods use a
uniform time-step. The FDTD method using sub-grids [4], [5]
uses nonuniform time-steps, but uses only brick-type spatial
grids.

In contrast, space and time are handled in a unified man-
ner by the special theory of relativity. Although usual elec-
tromagnetic field computation requires no relativity theory,
electromagnetic fields can be analyzed in space-time because
Maxwell equations are unaffected by the special theory of
relativity. Actually, several space-time finite element methods
[6]-[8] have been proposed for eddy-current analysis.

This study examines a space-time FI method for elec-
tromagnetic wave propagation, where nonuniform time-step
distribution is naturally introduced.

II. F INITE INTEGRATION METHOD ON A SPACE-TIME

GRID

A. Electromagnetics in Space-Time

The Euclid metric is used in this article for an analogical
explanation to the conventional electromagnetics in two- or
three-dimensional (2D or 3D) space.

For simplicity, permittivity ε and permeabilityµ are as-
sumed to be constant. A time-variablew is introduced as

w = ct , c = 1/
√

εµ. (1)

A 2D-electromagnetic field is described by (2) and (3),
whereEx, Ey andBz propagate in (x, y, w) space-time.

∂Ey/∂x + ∂(−Ex)/∂y + ∂Bz/∂w = 0 (2)
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∂Hz/∂y−∂Dx/∂w = 0 , −∂Hz/∂x+∂(−Dy)/∂w = 0 (3)

Ex = Ex/c , Ey = Ey/c , Hz = Hz/c (4)

Two electromagnetic vectors are formally defined in (x, y,
w) space-time as

F = (Ey,−Ex, Bz) , G = (−Dy,Dx,Hz) (5)

Equations (2) and (3) can be rewritten withF andG as

∇2 · F = 0 , ∇2 × G = 0 (6)

where∇2 means(∂/∂x, ∂/∂y, ∂/∂w).
The integral form of (6) is given as

∮

S

F · ndS = 0 ,

∮

C

G · tds = 0 (7)

where n and t respectively denote the unit normal and
tangential vectors.

Equation (7) derives an FI method in space-time using
electromagnetic variables defined as

ex =

∫

Exdwdx , ey =

∫

Eydydw , b =

∫

Bzdxdy (8)

dx =

∫

Dxdy , dy =

∫

Dydx , h =

∫

Hzdw (9)

The integration ofdx, dy, and h along the z-direction is
assumed implicitly for unit length in (9).

When orthogonal primal and sub grids in (x, y, w) space-
time are used, the FI method reduces (7) to (see Fig. 1)
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Those result in the conventional FDTD scheme.
The following electromagnetic variables are defined when

a non-orthogonal primal grid and its dual grid are used.

f =

∫

F · ndS , g =

∫

G · tds (13)

Variablesf andg are defined, respectively, on the primal and
sub grids. Integration ofg along thez-direction is assumed
implicitly for unit length in (13).

Let np = (n1, n2, n3) be the normal vector of a face of the
primal grid. To relatef to g, the tangential vector of the corre-
sponding edge of the sub grid is given asts = (−n1,−n2, n3),
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Fig. 1. FI method using an orthogonal space-time grid. The arrow directions
correspond with the definition (5) ofF and G and the integral forms (7).
They do not correspond with the directions ofE, D and H in the space
directly.
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Fig. 2. Relation between the face of a primal grid and the edge of a sub
grid.

as presented in Fig. 2. Thereby,

F · np = Eyn1 − Exn2 + Bzn3

=
√

µ/ε(Dyn1 − Dxn2 + Hzn3) = ZG · ts (14)

whereZ =
√

µ/ε. In fact, ts is orthogonal to the correspond-
ing face of the primal grid by the Lorentz metric.

B. Explicit Time-Marching

For the space-time FI method to be as efficient as the
conventional FDTD method, an explicit time-marching scheme
is required. An explicit scheme is given as follows.

For simplicity, a scheme for 2D space-time with 1D space
along thex-direction is derived whereEx = 0. Fig. 3 presents
a space-time grid in which the solid and dashed lines respec-
tively denote edges of primal and sub grids. The grid has three
domains according to the time-step: (I) the domain with time-
step∆w, (II) the domain with∆w/2, and (III) the domain
connecting (I) and (II). For simplicity,ε and µ are assumed
to be uniform and∆x is uniformly set to unity.

In domain (I),dy andey are updated as
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In domain (II),d ande are updated as
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In connecting domain (III),d ande are updated as
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Fig. 3. Space-time grid with 1D space.
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Fig. 4. Variables in the connecting domain. The arrow directions correspond
with the definition (5) ofF andG and the integral forms (7).

where0 < ∆lA < 1/2 − ∆w2/8 (see Fig. 3). Then,fn+1/4

andgn+1/4 in domain (III) are given as (see Fig. 4(a))

fn+1/4 = −e
n+1/4

I+1/2
+ bn

I , gn+1/4 = (∆w/4/Z)fn+1/4.
(18)

In domain (II), b andh are updated as
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Subsequently,dy andey in domain (II) are updated as
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In the connecting domain (III),dy andey are updated as shown
below (see Figs. 3 and 4(b)).
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Then,fn+3/4 andgn+3/4 in domain (III) are (see Fig. 4(a))

fn+3/4 = fn+1/4 + e
n+1/2

I−1/2
, gn+3/4 = (∆w/4/Z)fn+3/4.

(22)
Then,d ande in connecting domain (III) are updated as (see
Figs. 3 and 4(b))
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In domain (I),b andh are updated as
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In domain (II), b andh are updated as
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Fig. 5. Space-time grid: (a) spatial grid, and (b) domain (III).

In domain (III), b andh are updated as (see Fig. 4(a))
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C. 3D Space-Time Grid with 2D Space

The explicit time-marching scheme presented in the preced-
ing subsection can be extended to that for a 3D space-time grid
with 2D space. Fig. 5 presents a 3D space-time grid that has
three domains (I), (II), and (III), similarly to the 2D space-time
grid with 1D-space. Fig. 6 portrays electromagnetic variables
at the corner of the joint part. The variable relations at the
corner part are given as follows.
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Fig. 6. Electromagnetic variables at the corner of the joint part: (a) two prism
elements, (b) electromagnetic variables for the primal grid, (c) electromagnetic
variables for the sub grid, and (d) directions ofe andd.
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From Figs. 6(b) and 6(d),bn+1
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When ε and µ are nonuniform, it is convenient to use
variablet instead ofw changing the metric dependently onε
andµ. The extension of the method above to a 4D space-time
FI method is possible, but it is not straightforward because
analogical discussion based on (6) and (7) is difficult to apply
to 4D space-time.

III. A PPLICATION TO WAVE COMPUTATION

Wave propagation induced by a magnetic current source is
analyzed to examine the space-time FI method. For simplicity,
the permittivity and permeability are set uniformly to unity by
normalization. The magnetic current source with normalized
frequency of 0.1 is located as depicted in Fig. 7(a). Fig. 7(b)
depicts a space-time primal grid with 2D-space. Domains (I)
and (II) have a uniform time-step∆w and∆w/2, respectively,
which are connected by the domain (III). The FI method can
use prism elements in domain (II) similarly to the usual brick
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not correspond to the simulations shown in Figs. 8 and 9.
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Fig. 8. Distributions ofBz without scattering: (a) space-time FI method and
(b) FI method with prism elements and uniform time-step.

elements. The spatial cell size is unity and∆w = 0.5 in domain
(I). The space-time FI method yields a distribution ofBz as
portrayed in Fig. 8(a) atw = 80 andy = 10, which agrees with
that given by the conventional FDTD method having the same
spatial grid and time-step as in domain (I). For comparison,
Fig. 8(b) shows the distribution obtained from the FI method
with uniform time-step using similar prism elements partially.
Small discrepancies in the distributions are seen in Figs. 8(a)
and (b), which are caused by nonuniform computational grids.
The discrepancy can be reduced by the use of sufficiently small
spatial grid size compared with the wavelength.

Next, wave scattering by a triangle dielectric is analyzed.
The dielectric hasε = 20 andµ = 1, which occupies half
of domain (II), as depicted in Fig. 7(a). Figs. 9(a) and (b)
portray distributions ofBz obtained from the space-time FI
method and the FDTD method. The FDTD method results in
insufficient resolution in the dielectric because of the fixed cell
size. The space-time FI method can zoom in and out according
to the locally required resolution of the electromagnetic wave.
The simulation presented above for the space-time FI method
requires about twice as much computation time as the FDTD
method because of the fine space-time grid in domain (II). The
FDTD method with half-sized spatial and time steps yields a
similar distribution shown in Fig. 9(c) to that in Fig. 9(a),at
the expense of about four times as much computation time as
the space-time FI method.

IV. CONCLUSION

A space-time FI method was applied to electromagnetic
field computation for flexible time discretization depending
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Fig. 9. Distributions ofBz with scattering: (a) space-time FI method, (b)
FDTD method, and (c) FDTD method with fine gird.

on nonuniform spatial discretization. Orthogonality between
primal and sub grids was given by the Lorentz metric to
obtain a constitutive equation for electromagnetic variables.
An explicit time-marching scheme was presented.

Future work remains: discussion of the dispersion property
of the space-time FI method, and extension of the proposed
method to a 4D space-time FI method.
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