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Abstract—A finite integration method on a four-dimensional The Maxwell equations are given as [11]:
space-time grid is studied for the computation of electromagnetic
wave propagation, where a non-uniform time-step distribution is dF=0,dG=J 3)
naturally introduced. A dual grid based on the Hodge duality and
the Lorentz metric is proposed to provide a simple constitutive
equation for electromagnetic variables. An explicit time-marching

scheme for a non-uniform space-time grid achieves a more F= —ZEidxodxi—kZBjdxkdxl,
efficient electromagnetic field computation than the conventional P i=1
FDTD method. 3 3
PR ; ; _ 1..0 7,0 Ak 3.
Index Terms—Finite integration method, Hodge dual grid, G = ZH,dx dx —&—ZDjdm dz',
Lorenz metric, space-time grid. i—1 =1
3
_ 19,213 3,09k 1,1
|. INTRODUCTION J = cpdz dz"dx Z‘]de de”dz 4)

=1
HE FINITE difference time domain (FDTD) method [1] ’
requires brick-type representation of analyzed objecthere (Bi, B2, B;3) = ¢B, (D1,D2,D;3) = ¢D, andp is the
whereas the finite integration (F1) method [2], [3] can usglectric charge density(j, k,1) is a cyclic permutation of (1,
flexible spatial grids. However, both conventional FDTD and, 3)-
FI methods use a uniform time-step. The time-step is résttic ~ The integrated form of (3) is given as:
by the Courant-Friedrichs-Lewy (CFL) condition based am th

smallest spatial grid size. The FDTD method using sub-grids 7{ F=0, 7{ G= / J (5)
[4], [5] allows non-uniform time-steps, but uses only brick aQp aQd Qd
type spatial grids. where Q, and Q4 are hypersurfaces in space-time; their

In contrast, space and time are handled in a unified man%%rundanesaQ and 994 are represented by the faces of
by the special theory of relativity [6]. Even when elecprimal and dual grids in the FI method. The electromagnetic

tromagnetic field computation requires no relativity theoryariables are defined in the Fl method as:
electromagnetic fields can be analyzed in space-time becaus

the Maxwell equations are unaffected by the special thebry o f= F,g= G (6)

relativity. In fact, several space-time finite element noeth Sp sd

[7]-[9] have been proposed for eddy-current analysis.
Previous work [10] introduced a space-time Fl meth

that achieves non-uniform time-steps naturally on thre§

dimensional (3D) space-time grid with 2D space. This stu

\ghere $ and § are the faces of primal and dual grids.
When an orthogonal space-time primal grid and its dual grid

yre used, the variables (6) are written as:

extends the space-time FI method to a 4D space-time grid. .
X P : P I gn e; = / Eidxodxl,bj = Bjdxkdxl,
JSp Sp
Il. FINITE INTEGRATIOIéhéllEDTHOD ON A SPACE-TIME hy = Hidxodxi,dj _ / Djda:kda:l, (i, = 1,2,3)(7)
Sd Sd

A. Maxwell Equations in Space-Time where(j, k,1) is a cyclic permutation of (1, 2, 3). These vari-

The coordinate system is denoted by: ables are numbered according to the spatial center paosition
o 1 9 3 of faces as:
(ctyx,y,z) = (2", ", 2%, 2°) Q)

ek =€l nAzY iAzt, (5 —1/2)Az?, (k — 1/2)Ax?),
¢ =1/\/ofio @) eguk—EQ nAz° (i—1/2)Ax1,ij2,(k71/2)A:173),
€§ i in = es(nAz®, (i — 1/2)Az’, (j — 1/2)Az® kAz®),

where (
(
(
Tk = bl(nA (i —1/2)Azt, jAZ? kA2®),
(
(

andeg and g are the electric and magnetic constants.

T. Matsuo is with the Department of Electrical Engineeringadate by . = ba(nA ZA:L (] _ 1/2)Ax2 kAx?’)
School of Engineering, Kyoto University, Kyoto, 615-8518padn, e-mail: bJs ) ’ 3 ’
tmastuo@kuee.kyoto-u.ac.jp b3k = b3 nAz® iAzt, jAz?, (k — 1/2)Az?) (8)



. o . ©
where the center positions of, @re indicated in parentheses @ ® ’

in (8). The variablesl; and h; are numbered in the same way SR R
ase; andb;. Hence, (5) is rewritten as: a | L
? 1/2 ,‘ ~N/
n+1/2 _ m—1/2 n N |/
Qi g = i g + CambPi e a | N .
ntl  _ m n+1/2 _ Y
bm,i,j,k — Ym,i,5k T CPmei,j,k ’(m - 1’ 2) 3) (9) & 33 C\
where

Fig. 1. Faces of primal and dual grids based on Hodge dual®y: (&)

rimal face, (b) dual face, and (c) the projections ontHez! plane.
Cplpi,j,k: = D3,i,j+1,k — P3,i,5,k — D2,i,5,k+1 + D235,k P ®) (© prol P

Co2D; j i = Pligk+1 — Pliijk — P3,i+1,5.k T D3,ij.ks @ ®) ©
Co3Pi j i = P2iit1,,k — P2ijk — Plij+1k T Plij ks ° @xf °
Cdlpid',]g = P3,ij.k — P3,i,j—1,k — P25k T DP2i,5,k—1, 2 * Q :

Cdzpi,j,k = P15k — Plijk—1 — P35,k T D3,i—1,5,k> @ a N ";12 ¥
Casp; j i = P2ijk — P2,i—1jk — Plijk + P1ij—1,k{10) Y oo 4 T, \‘\\

These result in the conventional FDTD scheme.
When a non-orthogonal primal grid and its dual grid ar
used, the variables (6) are rewritten as:

ig. 2. Another set of faces of primal and dual grids based odgdaluality:
) primal face, (b) dual face, and (c) the projections onather? plane.

3 3
f= / F=8,(— anOz'Ei + Z npriBi), satisfy (13). The projections of these faces onther? plane
Sp i=1 =1 in Fig. 2(c) show the orthogonality in the space is equivalen
3 3 to that given by the Euclidean metric.
g= / G= Sd(z naoi H; + anlej) (11) In materials, the metric is modified depending on the speed
Sd i=1 j=1 of light. To relate f to g, the dual grid is constructed in

where(j, k,1) is a cyclic permutation of (1, 2, 3) and materials so as to satisfy:

g / 15 s / oS Saoj = aSpri/cr, Saw = —ac:Spoj, (j = 1,2,3)  (15)

L S e =1/\Ef (16)

. - deidad Sars = deidad wherea is an arbitrary constant determining the sizeSf
P ) T edi = G (4, k,1) is a cyclic permutation of (1, 2, 3), and and ., are

the specific permittivity and permeability. Thereby,

f=2g/a (7)
B. Hodge Dual Grid for Constitutive Equation whereZ = /uu/¢ is the impedance.

The variablesf and g contain both electric and magnetic The Hodge dual grid above gives a simple expression of
field variables. To relate to g, the dual grid is constructedthe constitutive equation without permittivity and reluiy

Npij = Spij/Sp » Naij = Saij/Sa , (4,5 =0,1,2,3). (12)

in vacuum so as to satisfy: matrices that are required by the Whitney elements [12],
) etc. However, the existence of the dual grid is not generally
Ndoj = Tpkl » Nkl = —Npoj > (1 =1,2,3) (13) guaranteed for an arbitrary primal grid.
where(j, k,1) is a cyclic permutation of (1, 2, 3). Thereby,

C. Explicit Time-Marching

J =209/ (14) For the space-time FI method to be as efficient as the
where Z;, = +/uo/eo is the impedance in a vacuum. Theconventional FDTD method, an explicit time-marching sckem
relationships of (13) and (14) result frol = Zy, G where * is required. An explicit scheme is given as follows.
is the Hodge operator based on the Lorentz metric. The duaFig. 3 presents a space-time grid projected on d#fer!
grid given by (13) is called the Hodge dual grid in this papeplane in which the solid and dashed lines denote the faces

Fig. 1(a) illustrates the primal face wif,n,12 = 1, Spnp02  Of primal and dual grids. The projection on thé-z! plane
= 1/2 and no other components 8fn;;, where the rotational allows the face direction to be represented by the straight
arrows indicate the directions of the surfaces. Fig. 1(lpicte arrows instead of the rotational arrows used in Figs. 1 and
the dual face withSqnqos = 1, Sanps1 = —1/2 and no other 2. The grid has three domains according to the time-step: ()
components ofSqnq;;, which satisfy (13). The projectionsthe domain with time-step\z?, (1I) the domain withAz°/2,
of those faces on the®-z' plane are illustrated in Fig. 1(c), and (lIl) the domain connecting (1) and (ll). For simpligity
which shows the orthogonality of the two faces by the Lorenend 1 are assumed to be uniform amsk? (i = 1,2,3) are
metric as discussed in [10]. Fig. 2 illustrates the primad aruniformly set to unity; the time-step is assumed to be unifor
dual faces withSpnpes = 1, Spnps1 = —1/2 and no other along thez? and z? directions. Fig. 4 illustrates the primal
components of,n,;;, where the directions of the dual facesind dual grids required in the connecting domain.



domain (1) domain (Il domain (1) . . . .
® i i i I - Thend,, ande,, in domain (lll) are given as (see Fig. 3(c)):
(1TSS R PR SR R S ) L L L
I I I T T 0 n+1/27 n+1/4 n+1/4
N il i:Mlz i .ZII?A?“?TB""?U;‘T"$"'%-' dipje =digjp T Cagip ",
| | I S A
E_ ___:4__ > 112+ \:(C,Ax") 8 A E- E- 6?}_3{5 = (CYZA$O/2)d?j:71J/J§ (25)
i B [ n+1/2 _ n—1/2 n—1/4 n+1/4
12 1 i+12 2,15,k — d2,[,j,k + Cd?h?,j,k 935k T 935k o
ne3la n+1/2  m—1/2 L n—1/4 n+1/4
; A i a1 js = Ay g+ Cashijre+ 92500 +9a5u"
Soi-mmhio) @ B n+1/2 0 nt+1/2 _
9 “\A__;ﬁm- ik = o ZAx dm717j,k/(3/2 — Al), (m =2,3). (26)
2l .
& hyi hlgng e In domain (Il), b,, and h,,, are updated as:
)
° e Sy g nt1/2 n+1/4 _ )
S S5l s Do = bmijn = Comei g5 (m=1,2,3,i 2 I+ (12)7)
Fig. 3. The connection of domain (I) and (ll): (a) primal and ldgeds h"m+i1/,2k = (CrA$O/2)b:1+i1/'2k/Z,
projected on thex®-z! plane, (b) electromagnetic variables for the primal v ) ! I
grid, and (c) electromagnetic variables for the dual grid. (i>I+2form=1,i>I+1form=2,3) (28)
0 0)2
i1z Az 1 (c:Ax?)? y1)2
@ i ®) ot hl,IJrl,ij YA [5 + Al + — 16 ]b171+1,j,k' (29)
I PN fzmal b 3 ] ) )
2 i ) T N Then, f273/* and ¢»"™>/* in domain (1ll) are (see Fig. 3(b)):
AT LS 1 AVAIVAE n+3/4 _ m+1/4  nt1/2  ntl)2 n+1/2
. L i e s 2k = J2ik T erik Cinjka T ey (30)
R T B n+3/4 _ n+1/4 |, n+1/2 | nt1/2 n+1/2
@ e @ | sk = Jagk’ Terieteirig e 81
e ; n+3/4 0 n+3/4 -
Im,jk = (c:Az /4)fm,j7k /Z,(m = 2,3). (32)
Subsequently,,, ande,, in domain (II) are updated similarly
to (19) to obtaind)" % and el % (i > 1+ 1 for m = 1

m, m,t,J

andi > I + 2 for m = 2,3). Then,d,, ande,, in connecting

domain (lll) are updated as (see Figs. 3(c)):
Fig. 4. Primal and dual grids in the connecting domain: (a) piriamal dual

grids, (b) primal grid, (c) dual grid, and (d) 3D grids for comipan. d;}_i/lzfj,k = d;}_i/fj,k + h?7—~1__1~_/127j7k - h?j-li-/fj,k—l
A U TR YO i
In domain (l),d,, ande,, are updated as: dgji/l‘fm — d;ﬁ%,k + hgﬁ/f]k _ 9;,;2/ 4 ;”;i/ 4
d::rlla/zk = dz;ljpk + Cdmh?,j,k’ *hﬁ:i—/f]k + hgbj:-li-/l%j—l,k?
entl i = ZALOdN T (m=1,2,3,i < 1—1). (18) weaa GZA0 dull 3 (3
In domain (Il), d,,, ande,, are updated as: mltLak T2 14+ AL+ % (=28 33)
nm+llj/t = d:z_zlj/t + Camhij i, dﬁi/lj - dﬁlj/z + Cdlg;ZSM’
U (e Z 000 /2)d A, I — (e, 200 J4)d T, (34)
(i>I+1for m=1andi>1+2form=2,3).(19) Indomain (l),b,, andh,, are updated as:
In connecting domain (lll)d,,, ande,, are updated as: b?nfil,j,k = bk — Cpme?j,iﬂ,
= d T cahy et = # e (m=1,23i <I—1). (35)
61”}1/ = (e ZAz%) 4)d7ff;,1j{;3 (20) " In domain (l1), b,, andh,,, are updated similarly to (27) and
AT Canhy (28) to obtainby ", and Al RTYL, L is given as:
0 0)2
enmfllfi,j,k = CrZQAxO 1 dz:jlﬁ(g’zxoy ,(m=2,3)(21) MLk = % [% +AlL+ %Mﬁil” (36)
7 FAIL+ =5 In domain (lll), b,,, and h,,, are updated as (see Fig. 3(b)):
where0 < Al < 1/2— (¢, Az%)?/8 (see Fig. 3(a)). In domain Gy Cp1e?+-2/2 37)
(1, variat.)lesf}ifl'/4 and ¢7"'/* are defined as in Figs. 3 o C’A’;’O 3 %3(0 A2
and 4, which are given as: Wit == ~ [5 — Al — #]bﬁljk (38)
=Wt eI~ e T @D b = e - e+ el 39)
na = W = e e - AT @) Bk = Tk — e e e - T @0)

gt M = (A0 )A) R 7 (m = 2,3). (24) bt e = (e 20t /2, (m = 2,3). (41)

m,j,k m,j,k m,1,
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Fig. 5. Geometry of application example and space-time grjcsdarce and
domain (11), (b) space-time grid projected on thé-z2 plane, (c) projected
on thez%-z1(2?) plane, and (d) projected on the (z2)-z3 plane; solid line:
primal grid, dashed line dual grid; the number of elements doesarrespond
to the simulations shown in Fig. 7.
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Fig. 6. Primal and dual grids at the corner of domain (lll): (ajal and
dual grids, (b) primal grid, (c) dual grid, and (d) 3D grids fmmparison.

I11. APPLICATION TOWAVE COMPUTATION
Wave propagation induced by an electric current source

Fig. 7. Distributions ofB.: (a) space-time FI method and (b) FDTD method.

executed on Intel Core 2 Duo E6400 was 305 s for the FDTD
method whereas it was reduced to 152 s for the space-time
FI method because of the large time-step in domain (). The
space-time FI method yields the correct wave propagation; t
maximum discrepancy aB between the two methods is 3.1
%, where the discrepancy is normalized by the maxipfl

The discrepancy is caused by the nonuniform grids [10] in-
cluding the irregularity indicated in Fig. 5(b). The disgagcy

can be reduced by the use of fine spatial grid compared with
the wavelength. When the normalized frequency is changed
to 0.1 or 0.025, the discrepancy becomes 6.2 % or 1.6 %,
respectively, owing to the wavelength change. The numlerica
instability is not observed even aftef = 10*Az°.

IV. CONCLUSION

A Hodge dual grid based on the Lorentz metric is proposed
to obtain a simple constitutive relationship for electrgmetic
variables in the 4D space-time finite integration method. An
explicit time-marching scheme was presented to achieve mor
efficient computation than the conventional FDTD method.
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