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Space-Time Finite Integration Method for
Electromagnetic Field Computation

Tetsuji Matsuo,Member, IEEE,

Abstract—A finite integration method on a four-dimensional
space-time grid is studied for the computation of electromagnetic
wave propagation, where a non-uniform time-step distribution is
naturally introduced. A dual grid based on the Hodge duality and
the Lorentz metric is proposed to provide a simple constitutive
equation for electromagnetic variables. An explicit time-marching
scheme for a non-uniform space-time grid achieves a more
efficient electromagnetic field computation than the conventional
FDTD method.

Index Terms—Finite integration method, Hodge dual grid,
Lorenz metric, space-time grid.

I. I NTRODUCTION

T HE FINITE difference time domain (FDTD) method [1]
requires brick-type representation of analyzed objects,

whereas the finite integration (FI) method [2], [3] can use
flexible spatial grids. However, both conventional FDTD and
FI methods use a uniform time-step. The time-step is restricted
by the Courant-Friedrichs-Lewy (CFL) condition based on the
smallest spatial grid size. The FDTD method using sub-grids
[4], [5] allows non-uniform time-steps, but uses only brick-
type spatial grids.

In contrast, space and time are handled in a unified manner
by the special theory of relativity [6]. Even when elec-
tromagnetic field computation requires no relativity theory,
electromagnetic fields can be analyzed in space-time because
the Maxwell equations are unaffected by the special theory of
relativity. In fact, several space-time finite element methods
[7]-[9] have been proposed for eddy-current analysis.

Previous work [10] introduced a space-time FI method
that achieves non-uniform time-steps naturally on three-
dimensional (3D) space-time grid with 2D space. This study
extends the space-time FI method to a 4D space-time grid.

II. F INITE INTEGRATION METHOD ON A SPACE-TIME

GRID

A. Maxwell Equations in Space-Time

The coordinate system is denoted by:

(ct, x, y, z) = (x0, x1, x2, x3) (1)

where
c = 1/

√
ε0µ0 (2)

andε0 andµ0 are the electric and magnetic constants.
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The Maxwell equations are given as [11]:

dF = 0 , dG = J (3)

F = −
3

∑

i=1

Eidx0dxi +

3
∑

j=1

Bjdxkdxl,

G =

3
∑

i=1

Hidx0dxi +

3
∑

j=1

Djdxkdxl,

J = cρdx1dx2dx3 −
3

∑

j=1

Jjdx0dxkdxl (4)

where(B1,B2,B3) = cB, (D1,D2,D3) = cD, andρ is the
electric charge density:(j, k, l) is a cyclic permutation of (1,
2, 3).

The integrated form of (3) is given as:
∮

∂Ωp

F = 0 ,

∮

∂Ωd

G =

∫

Ωd

J (5)

where Ωp and Ωd are hypersurfaces in space-time; their
boundaries∂Ωp and ∂Ωd are represented by the faces of
primal and dual grids in the FI method. The electromagnetic
variables are defined in the FI method as:

f =

∫

Sp

F , g =

∫

Sd

G (6)

where Sp and Sd are the faces of primal and dual grids.
When an orthogonal space-time primal grid and its dual grid

are used, the variables (6) are written as:

ei =

∫

Sp

Eidx0dxi, bj =

∫

Sp

Bjdxkdxl,

hi =

∫

Sd

Hidx0dxi, dj =

∫

Sd

Djdxkdxl, (i, j = 1, 2, 3)(7)

where(j, k, l) is a cyclic permutation of (1, 2, 3). These vari-
ables are numbered according to the spatial center positions
of faces as:

en
1,i,j,k = e1(n∆x0, i∆x1, (j − 1/2)∆x2, (k − 1/2)∆x3),

en
2,i,j,k = e2(n∆x0, (i − 1/2)∆x1, j∆x2, (k − 1/2)∆x3),

en
3,i,j,k = e3(n∆x0, (i − 1/2)∆x1, (j − 1/2)∆x2, k∆x3),

bn
1,i,j,k = b1(n∆x0, (i − 1/2)∆x1, j∆x2, k∆x3),

bn
2,i,j,k = b2(n∆x0, i∆x1, (j − 1/2)∆x2, k∆x3),

bn
3,i,j,k = b3(n∆x0, i∆x1, j∆x2, (k − 1/2)∆x3) (8)



2

where the center positions of Sp are indicated in parentheses
in (8). The variablesdi andhi are numbered in the same way
asei andbi. Hence, (5) is rewritten as:

d
n+1/2
m,i,j,k = d

n−1/2
m,i,j,k + Cdmhn

i,j,k,

bn+1
m,i,j,k = bn

m,i,j,k − Cpme
n+1/2
i,j,k , (m = 1, 2, 3) (9)

where

Cp1pi,j,k = p3,i,j+1,k − p3,i,j,k − p2,i,j,k+1 + p2,i,j,k,

Cp2pi,j,k = p1,i,j,k+1 − p1,i,j,k − p3,i+1,j,k + p3,i,j,k,

Cp3pi,j,k = p2,i+1,j,k − p2,i,j,k − p1,i,j+1,k + p1,i,j,k,

Cd1pi,j,k = p3,i,j,k − p3,i,j−1,k − p2,i,j,k + p2,i,j,k−1,

Cd2pi,j,k = p1,i,j,k − p1,i,j,k−1 − p3,i,j,k + p3,i−1,j,k,

Cd3pi,j,k = p2,i,j,k − p2,i−1,j,k − p1,i,j,k + p1,i,j−1,k.(10)

These result in the conventional FDTD scheme.
When a non-orthogonal primal grid and its dual grid are

used, the variables (6) are rewritten as:

f =

∫

Sp

F = Sp(−
3

∑

i=1

np0iEi +

3
∑

j=1

npklBj),

g =

∫

Sd

G = Sd(

3
∑

i=1

nd0iHi +

3
∑

j=1

ndklDj) (11)

where(j, k, l) is a cyclic permutation of (1, 2, 3) and

Sp =

∫

Sp

dS, Sd =

∫

Sd

dS,

Spij =

∫

Sp

dxidxj , Sdij =

∫

Sd

dxidxj ,

npij = Spij/Sp , ndij = Sdij/Sd , (i, j = 0, 1, 2, 3). (12)

B. Hodge Dual Grid for Constitutive Equation

The variablesf and g contain both electric and magnetic
field variables. To relatef to g, the dual grid is constructed
in vacuum so as to satisfy:

nd0j = npkl , ndkl = −np0j , (j = 1, 2, 3) (13)

where(j, k, l) is a cyclic permutation of (1, 2, 3). Thereby,

f = Z0Spg/Sd (14)

where Z0 =
√

µ0/ε0 is the impedance in a vacuum. The
relationships of (13) and (14) result fromF = Z0 ∗G where *
is the Hodge operator based on the Lorentz metric. The dual
grid given by (13) is called the Hodge dual grid in this paper.

Fig. 1(a) illustrates the primal face withSpnp12 = 1,Spnp02

= 1/2 and no other components ofSpnpij , where the rotational
arrows indicate the directions of the surfaces. Fig. 1(b) depicts
the dual face withSdnd03 = 1, Sdnp31 = −1/2 and no other
components ofSdndij , which satisfy (13). The projections
of those faces on thex0-x1 plane are illustrated in Fig. 1(c),
which shows the orthogonality of the two faces by the Lorentz
metric as discussed in [10]. Fig. 2 illustrates the primal and
dual faces withSpnp23 = 1, Spnp31 = −1/2 and no other
components ofSpnpij , where the directions of the dual faces
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Fig. 1. Faces of primal and dual grids based on Hodge duality (13): (a)
primal face, (b) dual face, and (c) the projections on thex

0-x1 plane.
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Fig. 2. Another set of faces of primal and dual grids based on Hodge duality:
(a) primal face, (b) dual face, and (c) the projections on thex

1-x2 plane.

satisfy (13). The projections of these faces on thex1-x2 plane
in Fig. 2(c) show the orthogonality in the space is equivalent
to that given by the Euclidean metric.

In materials, the metric is modified depending on the speed
of light. To relate f to g, the dual grid is constructed in
materials so as to satisfy:

Sd0j = aSpkl/cr, Sdkl = −acrSp0j , (j = 1, 2, 3) (15)

cr = 1/
√

εrµr (16)

wherea is an arbitrary constant determining the size ofSd,
(j, k, l) is a cyclic permutation of (1, 2, 3), andεr andµr are
the specific permittivity and permeability. Thereby,

f = Zg/a (17)

whereZ =
√

µ/ε is the impedance.
The Hodge dual grid above gives a simple expression of

the constitutive equation without permittivity and reluctivity
matrices that are required by the Whitney elements [12],
etc. However, the existence of the dual grid is not generally
guaranteed for an arbitrary primal grid.

C. Explicit Time-Marching

For the space-time FI method to be as efficient as the
conventional FDTD method, an explicit time-marching scheme
is required. An explicit scheme is given as follows.

Fig. 3 presents a space-time grid projected on thex0-x1

plane in which the solid and dashed lines denote the faces
of primal and dual grids. The projection on thex0-x1 plane
allows the face direction to be represented by the straight
arrows instead of the rotational arrows used in Figs. 1 and
2. The grid has three domains according to the time-step: (I)
the domain with time-step∆x0, (II) the domain with∆x0/2,
and (III) the domain connecting (I) and (II). For simplicity, ε
and µ are assumed to be uniform and∆xi (i = 1, 2, 3) are
uniformly set to unity; the time-step is assumed to be uniform
along thex2 and x3 directions. Fig. 4 illustrates the primal
and dual grids required in the connecting domain.
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i=I

n

n−1/2

n+1/2

n+1

i+1/2ii−1/2i=I−1

∆x0/2

∆x1=1 

∆x0

domain (I) domain (II)domain (III)

1−∆l

3/2−∆l

∆l

1/2+∆l+(cr∆x0)2/8
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∆l+(cr∆x0)2/8
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Fig. 3. The connection of domain (I) and (II): (a) primal and dual grids
projected on thex0-x1 plane, (b) electromagnetic variables for the primal
grid, and (c) electromagnetic variables for the dual grid.
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Fig. 4. Primal and dual grids in the connecting domain: (a) primal and dual
grids, (b) primal grid, (c) dual grid, and (d) 3D grids for comparison.

In domain (I),dm andem are updated as:

d
n+1/2
m,i,j,k = d

n−1/2
m,i,j,k + Cdmhn

i,j,k,

e
n+1/2
m,i,j,k = crZ∆x0d

n+1/2
m,i,j,k, (m = 1, 2, 3, i ≤ I − 1). (18)

In domain (II),dm andem are updated as:

d
n+1/4
m,i,j,k = d

n−1/4
m,i,j,k + Cdmhn

i,j,k,

e
n+1/4
m,i,j,k = (crZ∆x0/2)d

n+1/4
m,i,j,k,

(i ≥ I + 1 for m = 1 and i ≥ I + 2 for m = 2, 3). (19)

In connecting domain (III),dm andem are updated as:

d
n+1/4
1,I,j,k = d

n−1/4
1,I,j,k + Cd1h

n
I,j,k,

e
n+1/4
1,I,j,k = (crZ∆x0/4)d

n+1/4
1,I,j,k (20)

d
n+1/4
m,I+1,j,k = d

n−1/4
m,I+1,j,k + Cdmhn

I+1,j,k,

e
n+1/4
m,I+1,j,k =

crZ∆x0

2

d
n+1/4
m,I+1,j,k

1
2 + ∆l + (cr∆x0)2

8

, (m = 2, 3).(21)

where0 < ∆l < 1/2− (cr∆x0)2/8 (see Fig. 3(a)). In domain
(III), variables f

n+1/4
m and g

n+1/4
m are defined as in Figs. 3

and 4, which are given as:

f
n+1/4
2,j,k = bn

2,I,j,k + e
n+1/4
3,I+1,j,k − e

n+1/4
1,I,j,k+1 + e

n+1/4
1,I,j,k (22)

f
n+1/4
3,j,k = bn

3,I,j,k − e
n+1/4
2,I+1,j,k + e

n+1/4
1,I,j+1,k − e

n+1/4
1,I,j,k (23)

g
n+1/4
m,j,k = (cr∆x0/4)f

n+1/4
m,j,k /Z, (m = 2, 3). (24)

Thendm andem in domain (III) are given as (see Fig. 3(c)):

d
n+1/2
1,I,j,k = d

n+1/4
1,I,j,k + Cd1g

n+1/4
j,k ,

e
n+1/2
1,I,j,k = (crZ∆x0/2)d

n+1/2
1,I,j,k (25)

d
n+1/2
2,I,j,k = d

n−1/2
2,I,j,k + Cd2h

n
I,j,k − g

n−1/4
3,j,k − g

n+1/4
3,j,k ,

d
n+1/2
3,I,j,k = d

n−1/2
3,I,j,k + Cd3h

n
I,j,k + g

n−1/4
2,j,k + g

n+1/4
2,j,k ,

e
n+1/2
m,I,j,k = crZ∆x0d

n+1/2
m,I,j,k/(3/2 − ∆l), (m = 2, 3). (26)

In domain (II), bm andhm are updated as:

b
n+1/2
m,i,j,k = bn

m,i,j,k − Cpme
n+1/4
i,j,k , (m = 1, 2, 3, i ≥ I + 1)

(27)

h
n+1/2
m,i,j,k = (cr∆x0/2)b

n+1/2
m,i,j,k/Z,

(i ≥ I + 2 for m = 1, i ≥ I + 1 for m = 2, 3) (28)

h
n+1/2
1,I+1,j,k =

cr∆x0

2Z

[1

2
+ ∆l +

(cr∆x0)2

16

]

b
n+1/2
1,I+1,j,k. (29)

Then,fn+3/4
m andg

n+3/4
m in domain (III) are (see Fig. 3(b)):

f
n+3/4
2,j,k = f

n+1/4
2,j,k − e

n+1/2
3,I,j,k − e

n+1/2
1,I,j,k+1 + e

n+1/2
1,I,j,k (30)

f
n+3/4
3,j,k = f

n+1/4
3,j,k + e

n+1/2
2,I,j,k + e

n+1/2
1,I,j+1,k − e

n+1/2
1,I,j,k (31)

g
n+3/4
m,j,k = (cr∆x0/4)f

n+3/4
m,j,k /Z, (m = 2, 3). (32)

Subsequently,dm andem in domain (II) are updated similarly
to (19) to obtaind

n+3/4
m,i,j,k and e

n+3/4
m,i,j,k (i ≥ I + 1 for m = 1

and i ≥ I + 2 for m = 2, 3). Then,dm andem in connecting
domain (III) are updated as (see Figs. 3(c)):

d
n+3/4
2,I+1,j,k = d

n+1/4
2,I+1,j,k + h

n+1/2
1,I+1,j,k − h

n+1/2
1,I+1,j,k−1

−h
n+1/2
3,I+1,j,k + g

n+1/4
3,j,k + g

n+3/4
3,j,k ,

d
n+3/4
3,I+1,j,k = d

n+1/4
3,I+1,j,k + h

n+1/2
2,I+1,j,k − g

n+1/4
2,j,k − g

n+3/4
2,j,k

−h
n+1/2
1,I+1,j,k + h

n+1/2
1,I+1,j−1,k,

e
n+3/4
m,I+1,j,k =

crZ∆x0

2

d
n+3/4
m,I+1,j,k

1
2 + ∆l + (cr∆x0)2

8

, (m = 2, 3) (33)

d
n+3/4
1,I,j,k = d

n+1/2
1,I,j,k + Cd1g

n+3/4
j,k ,

e
n+3/4
1,I,j,k = (crZ∆x0/4)d

n+3/4
1,I,j,k . (34)

In domain (I),bm andhm are updated as:

bn+1
m,i,j,k = bn

m,i,j,k − Cpme
n+1/2
i,j,k ,

hn+1
m,i,j,k =

cr∆x0

Z
bn+1
m,i,j,k, (m = 1, 2, 3, i ≤ I − 1). (35)

In domain (II), bm andhm are updated similarly to (27) and
(28) to obtainbn+1

m,i,j,k andhn+1
m,i,j,k; hn+1

1,I+1,j,k is given as:

hn+1
1,I+1,j,k =

cr∆x0

2Z

[1

2
+ ∆l +

(cr∆x0)2

8

]

bn+1
1,I+1,j,k. (36)

In domain (III), bm andhm are updated as (see Fig. 3(b)):

bn+1
1,I,j,k = bn

1,I,j,k − Cp1e
n+1/2
I,j,k (37)

hn+1
1,I,j,k =

cr∆x0

Z

[3

2
− ∆l − 3(cr∆x0)2

32

]

bn+1
1,I,j,k (38)

bn+1
2,I,j,k = f

n+3/4
2,I,j,k + e

n+3/4
3,I+1,j,k − e

n+3/4
1,I,j,k+1 + e

n+3/4
1,I,j,k (39)

bn+1
3,I,j,k = f

n+3/4
3,I,j,k − e

n+3/4
2,I+1,j,k + e

n+3/4
1,I,j+1,k − e

n+3/4
1,I,j,k (40)

hn+1
m,I,j,k = (cr∆x0/2)bn+1

m,I,j,k/Z, (m = 2, 3). (41)
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Fig. 5. Geometry of application example and space-time grid: (a) source and
domain (II), (b) space-time grid projected on thex

1-x2 plane, (c) projected
on thex

0-x1(x2) plane, and (d) projected on thex1(x2)-x3 plane; solid line:
primal grid, dashed line dual grid; the number of elements does not correspond
to the simulations shown in Fig. 7.
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Fig. 6. Primal and dual grids at the corner of domain (III): (a) primal and
dual grids, (b) primal grid, (c) dual grid, and (d) 3D grids forcomparison.

III. A PPLICATION TO WAVE COMPUTATION

Wave propagation induced by an electric current source is
analyzed to examine the space-time FI method. The electric
current source with a normalized frequency of 0.05 is located
as shown in Fig. 5(a). Figs. 5(b), (c) and (d) present a space-
time grid in which the solid and dashed lines denote primal
and dual grids. Domains (I) and (II) have uniform time-steps
∆x0 and∆x0/2, which are connected by domain (III). Fig. 6
illustrates the primal and dual grids required at the cornerof
domain (III). An explicit time-marching scheme is developed
for this space-time grid. For simplicity, the permeabilityis set
uniformly to unity by normalization: the permittivity is set to
5 in domains (I) and (III) whereas the permittivity is unity in a
part of domain (II) as shown in Fig. 5(a). The spatial grid sizes
∆x1 and∆x2 are set to unity in domains (I) and (II), and∆x3

is uniformly set to unity in the spatial domain size of 1603.
The time step∆x0 is unity in domain (I). Fig. 7(a) portrays
a distribution of Bz at x0 = 200 given by the space-time
FI method. For comparison, Fig. 7(b) depicts the distribution
obtained using the conventional FDTD method with the same
uniform spatial grid and time-step as in domain (II), which is
restricted by the smallest permittivity. The computation time

-25 0 25 50 75

x

-25

0

25

50

75

y

-1

-0.5

 0

 0.5

 1

(a)
-25 0 25 50 75

x

-25

0

25

50

75

y

(b)

Fig. 7. Distributions ofBz : (a) space-time FI method and (b) FDTD method.

executed on Intel Core 2 Duo E6400 was 305 s for the FDTD
method whereas it was reduced to 152 s for the space-time
FI method because of the large time-step in domain (I). The
space-time FI method yields the correct wave propagation; the
maximum discrepancy ofB between the two methods is 3.1
%, where the discrepancy is normalized by the maximal|B|.
The discrepancy is caused by the nonuniform grids [10] in-
cluding the irregularity indicated in Fig. 5(b). The discrepancy
can be reduced by the use of fine spatial grid compared with
the wavelength. When the normalized frequency is changed
to 0.1 or 0.025, the discrepancy becomes 6.2 % or 1.6 %,
respectively, owing to the wavelength change. The numerical
instability is not observed even afterx0 = 104∆x0.

IV. CONCLUSION

A Hodge dual grid based on the Lorentz metric is proposed
to obtain a simple constitutive relationship for electromagnetic
variables in the 4D space-time finite integration method. An
explicit time-marching scheme was presented to achieve more
efficient computation than the conventional FDTD method.
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