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ABSTRACT 

The transmission behavior of Lamb waves and the possible occurrence of resonance at an 
adhesive butt joint of plates are studied experimentally. To this purpose, two 2.5-mm thick 
aluminum alloy plates are bonded at their edges using cyanoacrylate-based adhesive. Bonded 
plate specimens with different joint conditions are prepared by changing the bonding procedure. 
The measurements are performed for the transmission characteristics of the lowest-order 
symmetric (S0) and antisymmetric (A0) Lamb modes for the frequency range of 0.4 to 0.6 MHz 
below the cut-off frequency of the higher-order modes. The experimental results show that the 
transmission coefficients of the S0 and A0 modes exhibit different frequency-dependent 
characteristics depending on the joint condition. Furthermore, for the incidence of the S0 mode at 
the center frequency of 1 MHz, the transmitted S0 mode in weakly bonded specimens shows a 
long oscillation tail due to the resonance effect. The experimental results are discussed in the 
light of the theoretical results based on the spring-type interface model. The interfacial 
stiffnesses identified from the transmission coefficients are shown to be correlated with the 
bonding condition of the joint and give reasonable estimates of the resonance frequencies of 
weakly bonded specimens.  
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1. Introduction 

Guided elastic waves have received much attention in the area of nondestructive evaluation 

and structural health monitoring due to their capability of propagating relatively long distances 

along the structures. Lamb waves are known as guided waves propagating in a thin plate, and 

expected to offer an effective tool for the inspection of plate-like structures. Lamb waves exhibit 

complicated propagation behavior because of their dispersion and multi-modal properties. 

Therefore, numerous experimental and theoretical investigations have been reported [1–4] in order 

to obtain the precise understanding of Lamb waves interacting with various types of defects. 

Lamb waves have also been applied to characterize the quality of bonding used in various 

plate structures [5–11]. Most of foregoing studies focused on lap joints or layered plates for 

which the plate surfaces are bonded by adhesives. For example, Lowe et al. [7] investigated the 

mode conversion behavior as well as the transmission characteristics of Lamb waves at an 

adhesively bonded lap joint. Heller et al. [8] used the dispersion relation of Lamb waves to 

characterize adhesive layers in plates. In contrast, there have been relatively few works reported 

for the Lamb wave interaction with butt-type joints of plates in spite of their simple geometry. 

This type of joints is less practical for adhesive bonding of plates, but offers basic insights 

regarding the behavior of Lamb waves. Predoi and Rousseau [10] studied the reflection and 

transmission of Lamb waves at a joint strip between elastic plates. 

Recently, Mori et al. [12] analyzed the reflection and transmission characteristics of Lamb 

waves at a butt joint of plates based on the spring-type interface model, which has been 

frequently used to analyze the interaction of ultrasonic waves with various imperfect interfaces 

[13–22]. They demonstrated that the reflection and transmission coefficients of the lowest-order 

symmetric (S0) and antisymmetric (A0) Lamb modes at the joint vary with the frequency and the 

interfacial stiffnesses. Furthermore, Mori and Biwa [23] showed that the imperfect joint modeled 

as a spring-type interface exhibits resonance behavior which is analogous to the free-edge 

resonance of a plate. They found that the imperfect joint has two resonance frequencies which 

selectively depend on the normal and tangential stiffnesses. These studies are, however, limited 

to numerical analysis. Experimental verification of such findings is important from a 

fundamental point of view in order to elucidate the interaction of Lamb waves with imperfect 

joints. It can also give a background to the characterization of not only adhesive joints but also 
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other imperfect interfaces in plate structures such as closed fatigue cracks [24–26] using Lamb 

waves. 

The aim of the present study is to experimentally investigate the interaction of Lamb waves 

with an imperfect joint of plates. To this purpose, two aluminum alloy plates are bonded at their 

edges by adhesive to constitute an imperfect butt joint. Bonded plate specimens with different 

joint properties are prepared by applying different bonding procedures. The experiments are 

carried out to evaluate the transmission characteristics of the S0 and A0 Lamb modes and the 

possible resonance at the joint when subjected to the S0 mode incidence. The experimental results 

are discussed in the light of the theoretical results [12, 23] based on the spring-type interface 

model. In this paper, different modes of Lamb waves are denoted by S0, S1, S2, … for 

symmetric modes and by A0, A1, A2, … for antisymmetric modes according to conventional 

terminology [27].  

 

2. Experiment 

2.1. Specimens 

Figure 1 shows the schematic of a plate specimen with an adhesive butt joint. Two 

square-shaped aluminum alloy plates (A5052, plate thickness 2.5 mm and side length 150 mm) 

were bonded together at their edge faces (area 150 × 2.5 mm2) using cyanoacrylate-based adhesive 

(Aron Alpha #30114, Konishi Co., Ltd.). Four bonded plate specimens (Samples I–IV) were 

prepared with different bonding procedures. Namely, after the adhesives were applied on the edge 

faces, two plates were fixed to each other in stainless steel guide rails and subjected to different 

levels of compressive loading for different time durations. Table 1 shows the bonding conditions 

and the resulting adhesive thicknesses measured by an Olympus laser microscope (OLS1200). In 

Table 1, the nominal pressure is defined as the ratio of the applied compressive force to the area 

of the edge face (150 × 2.5 mm2). These bonded specimens were kept in the guide rails to prevent 

flexure during two kinds of experiments described below. Furthermore, a single aluminum alloy 

plate (A5052, size 150 mm × 300 mm × 2.5 mm) was employed as the reference plate specimen 

with no joint interface. This reference specimen was also kept in the guide rails to perform the 

measurement in the same configuration as that for the bonded specimens. 
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Fig. 1.  Schematic of adhesively bonded aluminum alloy plates. 

 

Table 1  Nominal pressure and compression time for the adhesively bonded  

specimens, and thicknesses of adhesive hA. 

Nominal pressure Compression time hA [mm] 

Sample I 0.37 MPa 10 min. 0.11 

Sample II 0.10 MPa 10 min. 0.13 

Sample III < 0.03 MPa 10 min. 0.27 

Sample IV 0.05 MPa 5 sec. 0.16 

 

 

 

Fig. 2.  Schematic of the experimental setup.  
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2.2. Experimental procedures 

2.2.1. Transmission measurement of the lowest-order Lamb modes 

The transmission coefficients of the S0 and A0 Lamb modes were measured in a relatively 

low frequency range below the cut-off frequencies (0.63 MHz for the 2.5-mm thick aluminum 

alloy plate) of higher-order Lamb modes. The setup for the measurement is schematically shown 

in Fig. 2. Two piezoelectric longitudinal wave transducers (Panametrics V413, nominal frequency 

0.5 MHz) were fitted to adjustable-angle wedges and mounted on the surface of the specimen with 

liquid couplant. A Gaussian-modulated tone-burst signal given by 

 
݃ሺݐሻ ൌ exp ቈെ൬

ݐ െ ݐ
ߪ

൰
ଶ

 sinሾ2π ݂ሺݐ െ   ሻሿ, (1)ݐ

was generated by an Agilent arbitrary waveform generator (33220A), and sent to the emitting 

transducer via a Thamway amplifier (T145-7516B) and a RITEC attenuator (RA-30). In Eq. (1), t 

is the time, f0 = 0.5 MHz is the center frequency, and the other parameters are given as t0 = 50 μs 

and σ0 = 3 μs.  

 

 

Fig. 3.  (a) Phase velocities and (b) group velocities of different Lamb modes for the 

2.5-mm thick aluminum plate (the velocities of longitudinal and transverse waves are 

cL = 6.4 km/s and cT = 3.17 km/s, respectively). 
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According to Snell’s law, a particular Lamb mode can be excited and detected when the 

wedge angle θ is  

ߠ  ൌ sinିଵ ቀ
ܿ୵
ܿ
ቁ, (2)  

where cw = 2.72 km/s is the longitudinal wave velocity of the wedge material (PMMA) and c is the 

phase velocity of the desired Lamb mode. The dispersion curves of Lamb modes for the 

aluminum plate are shown in Fig. 3. At 0.5 MHz, the S0 mode has the phase velocity 5.4 km/s 

and Eq. (2) gives the wedge angle θ = 31 deg. In the measurement, the wedge angle was set as 30 

deg for the S0 mode incidence. On the other hand, the A0 mode has the phase velocity 2.5 km/s 

at 0.5 MHz, for which there is no angle satisfying Eq. (2). As a consequence, a relatively large 

angle of 60 deg was employed in the measurement and its validity to excite the A0 mode was 

checked experimentally (see Sec. 3.1). 

The distance between the two wedges was fixed to 150 mm. The transmitted wave measured 

by the receiving transducer was recorded as digital data with a KEYSIGHT digital oscilloscope 

(DSOS054A) and transferred to a PC after averaging over 64 synchronized signals. The measured 

waveform was then analyzed in the frequency domain by FFT (fast Fourier transform) to obtain 

the amplitude spectrum. The amplitude transmission coefficient was obtained at each frequency by 

dividing the spectral amplitude by the corresponding amplitude of the reference waveform 

measured for the reference plate in the same manner. 

 

2.2.2. Measurement of the resonance effect for the S0 mode incidence 

As described in Ref. [23], when an imperfect joint of plates is modeled as a linear 

spring-type interface, the joint resonance occurs for the S0 mode incidence at two frequencies 

below the cut-off frequencies of higher-order symmetric Lamb modes (1.27 MHz for the 2.5-mm 

thick aluminum alloy plate). The numerical simulation in the time domain [28] has shown that the 

resonance effect of the imperfect joint gives rise to long oscillation tails in the reflected and 

transmitted waveforms analogously to the free-edge resonance [29]. The present measurement 

aims to detect the long-time oscillation in the transmitted waveforms of the adhesively bonded 

specimens for the S0 mode incidence. 

The experimental setup was the same as that for the measurement of the transmission 

coefficients shown in Fig. 2, except for the excitation frequency and the transducers. The input 
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waveform was given by Eq. (1) but the parameters are t0 = 50 μs and σ0 = 4 μs. The center 

frequency is f0 = 1 MHz. Two longitudinal wave transducers with the nominal frequency 1 MHz 

(Panametrics V401) were utilized since the frequency range of interest was higher than that of the 

previous measurement. As shown in Fig. 3, the S0, A0, and A1 Lamb modes can propagate in the 

plate at the frequency of 1 MHz. Equation (2) predicts that the S0 mode (phase velocity 3.9 

km/s) can be generated and detected dominantly at the wedge angle of θ = 44 deg. In the 

measurement, the wedge angle was set as θ = 45 deg. The waveforms of the S0 mode transmitted 

across the adhesive joint were compared to the waveform of the S0 mode which propagated the 

same distance in the reference plate. 

 

3. Experimental results 

3.1. Transmission coefficients of the lowest-order Lamb modes 

The experimental results for the reference plate are first examined to confirm the generation 

and detection of Lamb waves with the two wedge transducers. The obtained waveforms are shown 

for the wedge angles θ = 30 deg and θ = 60 deg in Figs. 4 (a) and (b), respectively. The arrival 

times of the main wave packet are clearly different for θ = 30 deg and θ = 60 deg because different 

 

 

Fig. 4.  Waveforms measured in the reference plate when (a) θ = 30 deg and (b) θ = 60 

deg. The center frequency of the input waveform is 0.5 MHz. 
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modes are excited and detected dominantly due to the difference of the wedge angle. At 0.5 MHz, 

the S0 and A0 modes are expected to arrive at 110 μs and 127 μs, respectively, according to their 

group velocities (5.0 km/s and 3.2 km/s, respectively). Therefore the main wave packet in Fig. 4 

(a) is judged to be the S0 mode, while the one in Fig. 4 (b) is the A0 mode. Weak tails following the 

main wave packet result from reflections at boundaries of the wedges, plate edges, etc. 

Figures 5  (a)–(d) show the transmitted waves of the adhesively bonded specimens 

(Samples I–IV) when θ = 30 deg. It is clearly observed that Sample IV exhibits particularly 

decreased transmitted amplitude. The wave packets from 100 μs to 120 μs corresponding to the S0 

 

 

 

Fig. 5.  Measured waveforms of Samples (a) I, (b) II, (c) III, and (d) IV for the S0 mode 

incidence (θ = 30 deg). 
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mode were analyzed by the FFT to calculate the amplitude spectra. The transmission coefficient of 

the S0 mode is obtained as a function of the frequency f by 

 
ୗܶሺ݂ሻ ൌ

ୗሺ݂ሻܤ
ୗሺ݂ሻܣ

, (3)  

where ܣୗሺ݂ሻ and ܤୗሺ݂ሻ denote the S0 mode amplitudes for the reference and the bonded 

specimens, respectively. The S0 mode transmission coefficients for four bonded plate specimens 

are shown in Fig. 6. Samples II–IV show slightly decreasing behavior with the frequency, while 

Sample I exhibits almost perfect transmission. 

Likewise, the transmitted waves were measured for the A0 mode incidence (θ = 60 deg), as 

shown in Figs. 7 (a)–(d). The maximum amplitudes of the A0 mode in Samples II–IV are smaller 

than the reference plate (Fig. 4 b) due to the partial transmission, while Sample I does not show 

clear differences from the reference plate. The wave packets corresponding to the A0 mode are 

extracted to calculate the amplitude spectra by the FFT. The transmission coefficient of the A0 

mode is defined analogously to Eq. (3) as 

 
ܶሺ݂ሻ ൌ

ሺ݂ሻܤ

ሺ݂ሻܣ
, (4)  

where ܣሺ݂ሻ and ܤሺ݂ሻ denote the A0 mode amplitudes for the reference and the bonded 

specimens, respectively. The A0 mode transmission coefficients of four bonded specimens are 

shown in Fig. 8. It is noted that the A0 mode transmission coefficient of Sample III appears to 

take a local minimum value close to zero at around 0.56 MHz. On the other hand, the transmission 

coefficients of Samples I and IV do not change significantly with the frequency.  

 

 

Fig. 6.  Frequency dependence of the S0 mode transmission coefficients of Samples 
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Fig. 7.  Measured waveforms of Samples (a) I, (b) II, (c) III, and (d) IV for the A0 mode 

incidence (θ = 60 deg). 

 

Fig. 8.  Frequency dependence of the A0 mode transmission coefficients of Samples I–IV.
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3.2. Resonance of an adhesive joint subjected to the S0 mode incidence 

For the S0 mode incidence at the center frequency f0 = 1 MHz, Fig. 9 (a) shows the 

waveform measured in the reference plate. The main wave packet arriving at approximately 150 μs 

is judged to be the S0 mode on the basis of its group velocity (1.8 km/s at 1 MHz). The 

transmitted waveforms of Samples I–IV, shown in Figs. 9 (b)–(e), respectively, are compared to 

the reference waveform to investigate the effect of the S0 mode interaction with the joint. The 

shapes of the wave packets of Samples I and II are similar to that of the reference plate, while 

those of Samples III and IV show long oscillation tails. In Fig. 9 (f), these tail signals are 

compared to that of the reference waveform for the duration of 160 to 190 μs.  

In order to analyze the frequency content of these tail signals, the FFT is performed for the 

waveforms using a Hanning window for 165 μs to 190 μs. The amplitude spectra of the tail signals 

for the reference plate and four bonded specimens are shown in Fig. 10 with the vertical axis 

normalized by the maximum value of the reference spectrum. Samples I and II have the amplitude 

 
Fig. 9.  Measured waveforms of (a) the reference plate, Samples (b) I, (c) II, (d) III, and 

(e) IV when θ = 45 deg, and (f) comparison of Samples III and IV to the reference 
plate from 160 μs to 190 μs. The center frequency of the input waveform is 1 MHz.  
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spectra with magnitude similar to the spectrum of the reference plate. For Samples III and IV, 

however, the amplitude spectra have significantly increased peaks. The peak frequency appears to 

shift slightly from the spectral peak of the reference plate (1 MHz), i.e., 1.04 MHz in Sample III 

and 0.97 MHz in Sample IV. The increased peak amplitudes seen in Fig. 10 indicate that these 

peak frequencies are the resonance frequencies of the joint [28].  

 
4. Discussions 

4.1. Transmission coefficients 

4.1.1. Application of the spring-type interface model 

In Ref. [12], an imperfect joint of two isotropic elastic plates (density ρ, longitudinal and 

transverse wave velocities cL and cT, and thickness d) was modeled as a linear spring-type 

interface characterized by normal stiffness KN and tangential stiffness KT. For the incidence of the 

S0 mode in the frequency range fd/cT < 1/2, the numerical analysis showed that the amplitude 

transmission coefficient of the S0 mode decreases monotonically with the frequency. The analysis 

also showed that the S0 mode transmission coefficient in this frequency range is accurately 

expressed by the thin-plate theory of extensional wave as 

 

 
 

Fig. 10.  Amplitude spectra of the measured waveforms from 165 μs to 190 μs. The 
vertical axis is normalized by the maximum value of the reference spectrum. 
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	 ܶሺ݂, ሻܭ ൌ

ܭ2
ଵ߱ܿߩ

ඨ1  4ቀ
ܭ
ଵ߱ܿߩ

ቁ
ଶ
,  

(5)  

where ܿଵ ൌ 2ܿඥ1 െ ሺܿ ܿ⁄ ሻଶ is the velocity of the extensional wave in the plate, and ω = 2πf is 

the angular frequency. 

The above expression based on the thin-plate theory is fitted to the experimental results in 

Fig. 6. Namely, the value of the normal stiffness KN which minimizes the evaluation function 

 

ሻܭሺܬ ൌ
1
ܯ
ቈ ܶሺ ݂, ሻܭ െ ୗܶ

ୣ୶୮ሺ ݂ሻ

ୗܶ
ୣ୶୮ሺ ݂ሻ


ଶெ

ୀଵ

, (6)  

is sought for, where fn (n = 1, 2, …, M; 0.4 MHz < f1 < f2 < … < fM < 0.6 MHz) are the frequencies 

at which the transmission coefficients ୗܶ
ୣ୶୮ are obtained from the experiment. The measured 

transmission coefficients of the S0 mode as well as the theoretical results are shown in Fig. 11 (a). 

Table 2 gives the estimated value of the normal stiffness KN for each bonded plate specimen. The 

stiffness of Sample I was difficult to quantify since the evaluation function in Eq. (6) was 

monotonically decreasing in the range 0.1 GPa/mm < KN < 1000 GPa/mm: namely, Sample I was 

indistinguishable from the reference plate (KN = ). Therefore, among Samples I, II, and III 

bonded with the same compression time, the higher interfacial stiffness is associated with the 

specimen which was bonded with higher pressure and has smaller adhesive thickness. Sample IV, 

bonded with low pressure and short compression time, has significantly small interfacial stiffness 

compared to the others. 

In Ref. [12], it is also shown that the transmission coefficient for the A0 mode incidence 

exhibits non-monotonic dependence on the frequency, and has a zero at a certain frequency which 

depends on the interfacial stiffnesses KN and KT. Mindlin’s thin-plate theory for flexural waves 

[30] can reasonably reproduce the numerical results of the A0 mode reflection and transmission at 

the imperfect joint. In the present study, the transmission coefficient of the flexural wave is 

obtained in the same manner as Ref. [12], except that the shear factor introduced in Mindlin’s 

theory is set as κ = π2/12 to equalize the cut-off frequencies of the higher-order flexural mode 

(݂݀ ܿ⁄ ൌ  and the A1 Lamb mode (fd/cT = 1/2). Unlike Eq. (5), the transmission (ߨ/ߢ3√

coefficient is a function of both interfacial stiffnesses KN and KT. Then, the normal stiffness KN is 
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Table 2  Interfacial stiffnesses estimated by the transmission measurement of Lamb waves 

based on the spring-type interface model. 

KN [GPa/mm] KT [GPa/mm] KT/KN 

Sample II 67 21 0.32 

Sample III 41 12 0.29 

Sample IV 3.5 0.24 0.07 

 

 

 
Fig. 11.  Comparison of the measured transmission coefficients of the (a) S0 and (b) A0 

modes to the thin-plate theory with the spring-type interface model, and comparison of 
the thin-plate theory to the HFEM for the transmission coefficients of the (c) S0 and 
(d) A0 modes. 

fixed to the value determined above from the S0 mode transmission coefficient. The theoretical 

relation for the thin-plate theory of flexural wave is fitted to the measured transmission 

coefficients of the A0 mode ܶ
ୣ୶୮ by minimizing the following function with respect to the 

interfacial tangential stiffness KT 

 

,ܭሺܬ ሻܭ ൌ
1
ܯ
 ቈ ܶሺ ݂, ,ܭ ሻܭ െ ܶ

ୣ୶୮ሺ ݂ሻ

ܶ
ୣ୶୮ሺ ݂ሻ


ଶெ

ୀଵ

, (7)  
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where TF(f, KN, KT) is the amplitude transmission coefficient of the lower-order flexural mode in 

Mindlin’s theory. The measured transmission coefficients of the A0 mode as well as the 

theoretical results are shown in Fig. 11 (b). Table 2 provides the estimated values of the tangential 

stiffness KT and stiffness ratio KT/KN. It is seen that the difference of the bonding procedure gives 

influence on the resulting tangential stiffness in a similar manner to the normal stiffness. 

Therefore it is suggested that the bonding quality of the joint can be evaluated by the S0 and A0 

mode transmission characteristics. It is noted that the theoretical transmission coefficients have 

sharp peaks at 0.63 MHz which corresponds to the cut-off frequency of the A1 mode: this 

frequency is out of the range of the present measurement so these peaks are not confirmed 

experimentally. 

In Figs. 11 (c) and (d), the transmission coefficients of the S0 and A0 modes, obtained by 

the two-dimensional elastodynamic analysis using the hybrid finite element method (HFEM) [12, 

23] and the so-identified interfacial stiffnesses, are compared to the corresponding results of the 

thin-plate theories. The results obtained by the thin-plate theories and the HFEM are in good 

agreement, indicating that the interfacial stiffnesses identified above remain valid as far as the 

adhesive joint is modeled as a spring-type interface. 

 

4.1.2. Comments on the spring-type interface model 

The spring-type interface model is known to be an adequate description of adhesively 

bonded interfaces when the thickness of adhesive is sufficiently small compared to the 

wavelength [14, 15]. In order to check the validity of the spring-type interface model for the 

specimens used here, the theoretical results based on the spring-type interface model are 

compared to those when the adhesive is modeled as an elastic strip of finite length hA. In this 

adhesive zone model, it is first assumed that the adhesive is perfectly bonded to the plates. The 

velocities of longitudinal and transverse waves in the adhesive, denoted by cLA and cTA, 

respectively, are then estimated from the simple relations [15] 

 
ܭ ൌ

ܿߩ
ଶ

݄
, ܭ ൌ

ܿߩ
ଶ

݄
, (8)  

where the parameter ρA denotes the mass density of the adhesive. To obtain specific numerical 

results, the mass density of the adhesive is set as ρA = 1230 kg/m3 (the value for epoxy [31] is 

used here since the correct density of cyanoacrylate-based adhesive is unavailable). The bulk 
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wave velocities cLA and cTA calculated by Eq. (8) are shown in Table 3 for Samples II–IV. The 

velocities for Samples II and III appear reasonable for polymer-based solids. For Sample IV, the 

result shows remarkably small wave velocities which appear unreasonable for the same adhesive 

used in Samples I–III. Since Sample IV was manufactured with low bonding pressure and short 

compression time, it is likely that the interfaces between the adhesive and the plates are poorly 

bonded. To examine this possibility, the results of Sample IV are discussed separately on the 

basis of a different model in the later section. 

For Samples II and III, the transmission coefficients of the S0 and A0 Lamb modes across 

the adhesive zone are calculated by the HFEM. Figure 12 shows the two-dimensional model of 

semi-infinite isotropic elastic plates |z| < d/2 (d = 2.5 mm) with an adhesive zone |x| < hA/2. The 

plates are made of aluminum (cL = 6.4 km/s, cT = 3.17 km/s, and ρ = 2700 km/m3) and under the 

plane-strain condition in the x-z coordinates. The bounded area |x| < hA/2 + 0.24d is discretized 

by four-node isoparametric elements. The length of the elements in the z-direction is set as Δz = 

d/25, while the length in the x-direction is Δx = hA/4 in the adhesive zone (|x| < hA/2) and Δx = 

d/25 in the plate region (hA/2 < |x| < hA/2 + 0.24d), respectively. The displacement fields outside 

the discretized area are expressed as the series of six symmetric and six antisymmetric Lamb 

 

 

Fig. 12.  Adhesive zone model of bonded aluminum plates. 

 

Table 3  Wave velocities of adhesive estimated from the interfacial stiffnesses. 

cLA [km/s] cTA [km/s] 

Sample II 2.66 1.51 

Sample III 2.99 1.60 

Sample IV 0.672 0.175 
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modes. Continuity condition is applied to the displacement and stress components at x = ±hA/2. 

The number of total nodes and elements is 442 and 400, respectively. 

The calculated transmission coefficients of the S0 and A0 Lamb modes of the adhesive 

zone model are shown in Figs. 13 (a)–(d). In Fig. 13, two kinds of numerical results are shown. 

The first result is referred to as the adhesive zone model (A), for which the wave velocities cLA 

and cTA in the adhesive are determined from Eq. (8) as mentioned above using the interfacial 

stiffnesses identified experimentally based on the application of the spring-type interface model 

(cLA and cTA are shown in Table 3). In the second result, referred to as the adhesive zone model 

(B), cLA and cTA are chosen as in Table 4 so that the numerical results of the adhesive zone model 

 

 

 
Fig. 13.  Comparison of the theoretical transmission coefficients for the spring-type 

interface model, and the adhesive zone model (A) and (B) to the experimental results: 
(a) S0 and (b) A0 modes for Sample II, and (c) S0 and (d) A0 modes for Sample III. 

 

 

Table 4  Wave velocities of adhesive used for the adhesive zone model (B). 

 cLA [km/s] cTA [km/s] 

Sample II 

Sample III 

3.26 

2.89 

1.48 

1.47 
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fit best to the measured transmission coefficients. It is shown in Figs. 13 (a) and (c) that the 

spring-type interface model and the two results (A) and (B) of the adhesive zone model give 

almost identical curves for the S0 mode. Namely, the spring-type interface model can reproduce 

the transmission coefficient of the S0 mode accurately. In Figs. 13 (b) and (d) for the A0 mode, 

the three curves of the numerical analysis are in qualitative agreement regarding the frequency 

dependence of the transmission coefficient and the local minimum behavior. A quantitative 

deviation can be seen in Figs. 13 (b) and (d) for the adhesive zone model (A) from the other two. 

This is due to the non-negligible thickness of adhesives and the fact that cLA and cTA used in the 

adhesive zone model (A) are fixed as the values determined from Eq. (8). When these parameters 

are chosen as in Table 4, the adhesive zone model (B) can reproduce the experimental results as 

well as the spring-type interface model. As a whole, the use of the spring-type interface model is 

justifiable to qualitatively interpret the transmission coefficients for Samples II and III in Figs. 11 

(a) and (b). 

 

4.1.3. Application of the double spring-type interface model 

The assumption of perfect adhesive-plate bonding in the adhesive zone model gave 

unreasonably small bulk wave velocities of adhesive for Sample IV (Table 3), suggesting the 

possibility that the adhesive-plate interfaces are poorly bonded. To take into account this effect, 

the adhesive is modeled as an elastic strip bonded to the plates by spring-type interfaces at x = 

±hA/2. A similar approach has been used by Castaings [32] to interpret the shear horizontal wave 

propagation in an adhesively bonded metallic plate, also incorporating the viscoelastic nature of 

the adhesive. In the present discussion, the normal and tangential stiffnesses (SN, ST) are assumed 

to be the same at the left and right interfaces x = ±hA/2. The thickness of the adhesive is set as hA 

= 0.16 mm, according to the measured value shown in Table 1. The bulk wave velocities of the 

adhesive are assumed to be cLA = 2.66 km/s and cTA = 1.51 km/s, in accordance with the values 

of Sample II given in Table 3. The interfacial stiffnesses which minimize the following function 

,ሺܵܬ  ܵሻ ൌ ,ୗሺܵܬ ܵሻ  ,ሺܵܬ ܵሻ, (9)  

are identified by using the Nelder-Mead method [33], where 

 
,ୗሺܵܬ ܵሻ ൌ

1
ܯ
 ቈ ୗܶ

୲୦ୣ୭ሺ ݂, ܵ, ܵሻ െ ୗܶ
ୣ୶୮ሺ ݂ሻ

ୗܶ
ୣ୶୮ሺ ݂ሻ


ଶ

,

ெ

ୀଵ
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 (11)  

and ୗܶ
୲୦ୣ୭ and ܶ

୲୦ୣ୭ denote the transmission coefficients of the S0 and A0 modes calculated 

by the HFEM, respectively. As a result, the interfacial stiffnesses are estimated as SN = 5.6 

GPa/mm and ST = 3.2 GPa/mm (ST/SN = 0.57). The theoretical transmission coefficients of 

Sample IV based on this model are compared to the experimental results in Figs. 14 (a) and (b). 

As shown in Fig. 14, the double spring-type interface model reproduces low transmission 

coefficients of both S0 and A0 modes observed in the experiment as well as the spring-type 

interface model. It is noted that the agreement between the double spring-type interface model 

and the measurements can be better if cLA and cTA are also optimized, but this is out of the scope 

of this analysis. The analysis shown here indicates that the small interfacial stiffnesses of Sample 

IV based on the single spring-type interface model reflect poor bonding at the adhesive-plate 

interfaces. 

 

 

 
Fig. 14.  Comparison of the transmission coefficients of the (a) S0 and (b) A0 modes 

obtained from the single spring-type interface model and the adhesive zone model with 
double spring interfaces to the experimental result of Sample IV. 
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4.2. Resonance frequencies 

The numerical analysis in Ref. [23] has shown that when an imperfect joint of plates is 

modeled as a spring-type interface, two resonance frequencies of the joint exist in the frequency 

range fFR < f < fZGV, where fFR is the resonance frequency of a free edge and fZGV is the zero group 

velocity frequency of the S1 Lamb mode [34, 35]. The analysis has also shown that the resonance 

frequencies increase with the interfacial stiffnesses to approach fZGV asymptotically. The above 

range corresponds to 0.95 MHz < f < 1.16 MHz for aluminum plates of thickness 2.5 mm, which is 

covered by the present measurement as shown in Fig. 10. Predoi and Rousseau [10] analyzed the 

interaction of Lamb waves with an elastic strip of finite thickness bonded between semi-infinite 

elastic plates, and found a similar type of resonance at the frequency close to the free-edge 

resonance. They also show the occurrence of another resonance phenomenon, the strip resonance, 

when the wavelength meets certain relations with the strip thickness. In Ref. [10], relatively thick 

strip was considered as compared to the plate thickness. The frequency for the strip resonance 

increases as the strip thickness decreases. For the adhesive bonding considered in this study, the 

adhesive thicknesses (Table 1) are relatively small so that the smallest frequencies expected for 

the strip resonance, i.e., the adhesive thickness being equal to the quarter wavelength of S0 or A0 

mode, are higher than the frequency range of the present measurement. Therefore, the strip 

resonance is not considered in the present discussion. 

Using the interfacial stiffnesses in Table 2, the numerical analysis based on the spring-type 

interface model gives the theoretical resonance frequencies of Samples II–IV as shown in Table 5. 

For Samples II and III, the numerical analysis can identify only one resonance frequency. In Ref. 

[23], it has been shown that in certain ranges of interfacial stiffnesses the two resonance 

 

Table 5  Experimental and theoretical values of the resonance frequencies. 

 

Experiment 

[MHz] 

Theory [MHz] 

Spring interface Adhesive zone 

Sample II N/A 1.10 1.08, 1.10a 

Sample III 1.04 1.07 1.00, 1.05a 

Sample IV 0.97 0.96, 0.97 1.00, 1.01b 

aAdhesive-plate interfaces are assumed to be perfectly bonded. 
bAdhesive-plate interfaces are assumed to be spring-type interfaces. 
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frequencies approach each other so closely and appear as a single resonance. 

The theoretical resonance frequencies for Samples II and III are also obtained using the 

adhesive zone model based on the out-of-plane displacement amplitude at (x, z) = (hA/2, d/2) for 

0.9 MHz < f < 1.2 MHz by the HFEM. For Samples II and III, the perfect bonding is assumed for 

the adhesive-plate interfaces and the bulk wave velocities given in Table 3 are used. Table 5 gives 

the resonance frequencies obtained by the analysis. If the bulk wave velocities in Table 4 are used 

in the analysis, the adhesive zone model predicts two resonance frequencies as 0.99 MHz and 1.03 

MHz, which are close to the results in Table 5. 

Experimentally, Sample II did not show measurable resonance, and Sample III gave only a 

single resonance frequency at 1.04 MHz. Namely, the present measurement was not able to 

confirm the existence of two resonance frequencies at the adhesive joint. This is, however, not 

contradictory to the theory. It should be noted that the theoretically predicted resonance 

frequencies are very close to each other in all cases, and the measurement has limited frequency 

resolution when the resonance frequencies are to be obtained from the spectral analysis of the 

transient waveform of finite length. The measured resonance frequency of 1.04 MHz of Sample III 

is reasonably close to the theoretical results shown in Table 5. 

Resonance is also expected to occur analogously if the effect of imperfect interfaces is 

taken into account between the plates and adhesive. By using the adhesive zone model with 

double spring-type interfaces, the out-of-plane displacement amplitude at the plate edge (x, z) = 

(hA/2, d/2) is calculated for 0.9 MHz < f < 1.2 MHz by the HFEM for Sample IV. As a result, the 

displacement amplitude takes local maxima at the frequencies given in Table 5 (1.00 MHz and 

1.01 MHz). If the effect of the imperfect interfaces is neglected and perfect bonding is assumed 

between the plates and adhesive, the resonance frequencies are obtained as 1.06 MHz and 1.09 

MHz by the HFEM. Therefore the presence of the spring interfaces gives smaller resonance 

frequencies of the adhesive joint. The measured resonance frequency (0.97 MHz) is reasonably 

close to the frequencies which are predicted on the basis of the single spring-type interface 

model (0.96 MHz and 0.97 MHz) as well as the double spring-type interface model (1.00 MHz 

and 1.01 MHz). It is noted here again that the results of the double spring-type interface model 

may improve if the adhesive parameters are chosen to best fit the measurement. 

In the present experiment, the resonance frequencies have been identified for Samples III 

and IV, while no resonance effect has been confirmed for Samples I and II. Namely, the resonant 
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behavior has been observed in the transmitted waveform for weakly bonded joints. The 

resonance frequencies experimentally obtained for Samples III and IV are fairly close to those 

predicted theoretically. The resonance frequency found for Sample IV (0.97 MHz) is close to the 

free-edge resonance frequency (0.95 MHz). This result can be attributed to the poor bonding of 

the adhesive-plate interfaces in Sample IV. 

 

5. Conclusion 

In this study, the interaction of Lamb waves with an adhesive butt joint of aluminum alloy 

plates has been investigated experimentally. Namely, the transmission characteristics of the 

lowest-order symmetric (S0) and antisymmetric (A0) Lamb modes and the resonance at the joint 

have been evaluated when subjected to the S0 mode incidence. Adhesively bonded plate 

specimens with different joint properties were prepared to examine the effect of the bonding 

condition on the Lamb wave characteristics. It is shown that the transmission coefficient for the S0 

mode incidence shows only weak frequency dependence, while that for the A0 mode incidence 

exhibits distinct frequency dependence for different specimens. The spring-type interface model 

has been applied to interpret the experimental data of the transmission coefficients, and the 

interfacial stiffnesses have been identified for each specimen. The identified interfacial 

stiffnesses have been shown to be correlated with the bonding condition of the adhesive. 

Particularly low interfacial stiffnesses identified for the poorly bonded specimen have been 

attributed to the imperfect nature of the adhesive-plate interfaces. Furthermore, the resonance 

frequencies of the joint have been identified for weakly bonded specimens by the long oscillation 

in the transmitted waveform of the S0 mode. The theoretical models used to discuss the 

transmission coefficients have been shown to give reasonable estimates of the resonance 

frequencies. 
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