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Abstract Solnit (2010) notes that it is often the case that immediately after a
disaster occurs, voluntary mutual help motivated by altruism among the victims
is observed. She names this phenomenon “a paradise built in hell.” Subsequently,
it has been pointed out that “a paradise built in hell” has the potential to reform
existing social institutions in the long term. Through the application of a social
network model based on game theory, this study models the link formation moti-
vated by altruistic preferences during disasters and analyzes the possibilities for a
long-term outcome induced by the short-term effect of “a paradise built in hell.”
More specifically, we utilize numerical simulations and examine the dynamic effect
of altruistic link formation during disasters on the properties of a network such as
network density and disparities in the number of links of each player. In addition,
this study focuses on larger-scale disasters that lead to more instances of altruis-
tic behaviors among affected people, and analyzes such behaviors’ cross-sectional
and dynamic effects on social welfare as well as the possibility of the long-term
outcome of “a paradise built in hell.”

Keywords Social networks · A paradise built in hell · Network formation model ·
Altruism · Dynamic effect

1 Introduction

Extraordinary events often result in people having unusual opportunities to inter-
act with others. This is because such events place people into contexts or roles
that are different from those of regular life, such as at work or school. Kotani and
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Yokomatsu (2015a) showed that the random rewiring of links caused by extraordi-
nary events has a long-term effect on the growth of social networks, and can result
in an increase in individual utility.

Disasters can be viewed as extraordinary events (e.g., Fujimura 2001). Disas-
ters force people to relinquish their usual behavioral patterns, and instead follow
different patterns. For example, one could assume that people prefer to interact
with others who have many friends in regular life, because through the resulting
links people are more likely to expand their opportunities for finding jobs or other
personal gains. This preference would allow people to expand their networks. How-
ever, if a disaster occurs, people are concerned about and contact those who have
fewer friends, because they might believe that those who have many friends will
be supported by them.

Solnit (2010) notes that it is often the case that immediately after a disaster oc-
curs anywhere in the world, voluntary mutual help among the victims is observed,
motivated by altruism. She names this phenomenon as “a paradise built in hell,”
which is also called by other researchers like “post-disaster utopia,” “altruistic or
therapeutic community,” and “democracy of distress” by disaster researchers (e.g.,
Wolenstein 1957; Barton 1969; Giel 1990; Kaniasty and Norris 2004). For exam-
ple, Solnit (2010) gives an example of a Hurricane Katrina victim evacuated to
an elementary school shelter, who said, “I saw people being compassionate about
people that they never met, people that they never saw, people that they never
knew reaching out them, feeding them, giving them clothes. · · · This was every-
where in New Orleans.” Moreover, Kotani and Yokomatsu (2015b) conducted an
interview survey in the area affected by the Great Hanshin-Awaji Earthquake that
struck Japan in 1995 and revealed that during a water failure after the quake, well
water at a food market was supplied not only to local residents who had interacted
previously in the market but also to those who had not.

Subsequently, some works (e.g., Ohsawa 2011; Yamori 2011) have pointed out
that “a paradise built in hell” has the potential to reorganize the existing society,
and to result in the creation of an alternative society in the long term. Hence, “a
paradise built in hell” would represent both a short-term aspect, the mutual help
motivated by altruism, and a long-term one, the reform of the society. However,
the general process and condition under which the short-term aspect eventually
becomes long-term remain unclear. To answer the questions, this study analyzes
the possibilities for the long-term development induced by the short-run effect
of “a paradise built in hell,” through the application of a social network model.
As previously mentioned, distinct behavioral principles have been observed de-
pending on whether people are in a time of peace or experiencing a disaster, and
thus, the model assumes that a player has a selfish, or non-altruistic, preference in
peaceful times and an altruistic one during disasters. Then, we conduct numerical
simulations of the model and examine the dynamic effect of altruistic link forma-
tion during disasters on the properties of a network, such as network density and
disparity in the number of links of each player.

The rest of this paper is organized as follows. Section 2 presents the literature
review and outlines the contribution of this paper. Section 3 formulates the net-
work formation model. Section 4 analyzes network formation in cases with and
without the presence of disasters by means of numerical simulations, focusing on
the different cost functions for communication. Section 5 extends the model so
as to consider many players are affected by disasters, and analyzes its network
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formation. Section 6 discusses the results obtained in Sections 4 and 5. Section 7
concludes our findings and describes future work.

2 Literature review

Research on social network formation after a disaster is classified roughly into
two types: 1) qualitative analysis based on methods in sociology, psychology, or
ethnography, and 2) mathematical analysis based on the graph theory. The for-
mer has mainly concentrated on a detailed description of phenomena that occur
immediately after disasters, on the basis of information gained from interviews
and/or field surveys conducted after the event. For example, previous studies have
analyzed deepening kinship ties immediately after a hurricane (e.g., Fogleman and
Vernon 1977), the ties that emerge immediately after a hurricane among people
in a minority community who did not know or interact with each other before the
event took place (e.g., Messias et al. 2012), a pay-it-forward network to survivors
of a current disaster created by support from survivors of previous disasters (e.g.,
Atsumi 2014), and so forth.

The latter, namely, the approach using mathematical network models, has the
advantage of dealing with more individuals simultaneously. In general, such math-
ematical approaches are classified into two categories: 1) statistical and empirical
analyses with real data, and 2) qualitative structural analyses of possible future
issues by means of analytical or simulation approaches. As an example of the for-
mer, Phan and Airoldi (2015) analyzed the effects of Hurricane Katrina on a social
network of students both in affected and non-affected areas, leveraging data from a
sample of 1.5 million college students who wrote messages and posts on Facebook
over four years. They estimated the short-term (four weeks after the Hurricane)
and subsequent (fifty-two weeks after the event) effects of Katrina on social net-
work formation, and also estimated changes in the friendship formation pattern of
the affected students after Katrina. The results suggest that affected students are
less prone to “preferential attachment dynamics” (i.e., the well-known friendship
formation process in which friendships are chosen proportional to degree), thus
displaying a shift from a typical friendship formation pattern. While Solnit (2010)
remarked upon the existence of altruistic behavior immediately after a disaster,
our study goes a step further and models the above-mentioned altruistic behavior
as a behavior that “lets one connect to persons with less relationships immediately
after disasters.” Phan and Airoldi (2015) have shown that our proposed model is
reasonable.

Although our study follows the mathematical simulation approach, we use only
hypothetical parameters, and thus, we are unable to quantitatively predict possible
future phenomena. Instead, we can reduce the elements in the model as much as
possible and clarify the theoretical consequences of the factors in the model. In
addition, compared to statistical analysis, our approach makes it relatively easy to
conduct a dynamic analysis on the longer-term aspects. Our simulation approach
reveals that altruistic behavior immediately after a disaster has both negative
cross-sectional externality and positive dynamic externality.

As mentioned above, our model assumes that an individual’s preference changes
depending on whether he/she is in a time of peace or experiences a disaster. Dur-
ing the former, persons are assumed to have selfish or non-altruistic, preferences
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with regard to obtaining more information and making new connections by linking
with those who already have many links. For the sake of simplicity, we call this
preference “selfish preference” in the rest of the paper. On the other hand, during
a disaster, persons are assumed to have altruistic preferences for linking with those
who have almost no links in order to help them. Among previous social network
models, Chasparis and Shamma (2013) alone introduced the state-dependent util-
ity function. According to their model, the amount of the link establishment cost
of player i varies according to state xi that i belongs to. In contrast, in our model,
the form of the utility function itself changes depending on times of peace and dis-
asters. In addition, we assume that such preference changes are exogenous shocks
that are unpredictable and uncontrollable for the players. Then, we investigate the
possibility that the behaviors during a disaster temporarily reduce social welfare
measured by utilities with selfish preference, but the behaviors increase the social
welfare long after a disaster. To the best of our knowledge, our study is the first
to employ the above-mentioned modeling with the stated aims.

3 Network Formation Model with a Focus on Times of Peace and
Disasters

3.1 The Model

Let N = {1, · · · , n} be the finite set of players who are community members (n >
2) in a community. The network relations among the players are represented by
graphs, whose nodes represent the players and whose links capture the connections
between the players. A network g is a set of links between the players in N . A
link connecting players i and j is represented by ij. If ij ∈ g, then players i and
j are directly connected in the network g, while if ij /∈ g, then the players are
not directly connected. For example, if n = 3 and there are directed links between
players 1 and 2 and players 2 and 3, then the network is written as g = {12, 23}. In
addition, let g + ij denote the network obtained by adding link ij to the existing
network g and let g − ij denote the network obtained by deleting link ij from the
existing network g, that is, g + ij = g ∪ {ij} and g − ij = g \ {ij}.

Player i’s neighbors are given by all j ∈ N such that ij ∈ g. In this model,
neighborly relation is defined by a certain level of communication, meetings and
sharing of information. Formally, the set of neighbors of i in g, denoted by Ni(g),
is defined as Ni(g) = {j ∈ N |ij ∈ g}. The degree of player i is the number of
neighbors of i, which is defined as di(g) = |Ni(g)|.

Given a network g, we now define the utility function of player i as follows:

uh
i (g) =

∑
j∈Ni(g)

bh(dj) − c(di) · di (1)

(h = s, a)

where c(di) in the second term represents the cost to i of interacting with a neigh-
bor. In the following, we will call c(di) the “communication cost.” In general, the
larger the number of neighbors of i, the more the schedule adjustment and the
opportunity cost seem to increase for i, so c(di) is assumed to be a non-decreasing

function. That is, dc(di)
ddi

≥ 0. By h we denoted the type of preference of a player.
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Explicitly, h = s denotes that player i has a “selfish preference,” and h = a denotes
an “altruistic preference.” During a time of peace, players are assumed to have a
selfish preference (h = s), which leads them to interact with others who have more
neighbors in order to expand their opportunities for jobs or other personal gains
and fun. Then, bs(dj) denotes the benefit obtained from neighbor j in a time of

peace, such that
dbs(dj)

ddj
> 0. In contrast, during a disaster, and given a pair ij

that are affected by the disaster, we identify the player with the larger degree as
player i. We assume that i now has an altruistic preference (h = a), which leads
to i interacting with those who have fewer neighbors. Then, ba(dj) denotes the

benefit obtained from neighbor j during a disaster, such that
dba(dj)

ddj
< 0. Here,

the preference of the player j with the smaller degree is assumed to remain as
h = s. Appendix A summarizes variables that appear in the model in Sections
3-5.

3.2 The Dynamic Process

3.2.1 The Case without Disaster

In the community, n players, who are community members, play a game repeatedly.
Let gt denote the network at the beginning of period t (t = 1, 2, · · · ). Given gt,
players with selfish preferences h = s, namely preferences in time of peace, decide
to add or delete links.

Our dynamic process of link formation is an example of a dynamic process
of network formation accompanied with exogenous randomness, which has been
widely used in many papers (e.g., Jackson and Watts 2002a, b). This means that
the process assumes bounded rationality of players: the inertia, myopic, and er-
ror/mutation hypothesis. In the situation that we consider, these properties are
satisfied as follows:

1. Not all players need to react instantaneously to their environment (the inertia
hypothesis).

2. Players react myopically when they react (the myopic hypothesis).
3. There is a small probability that players change their strategies at random (the

error/mutation hypothesis).

Unintended changes in a network caused by errors/mutations are due to the ex-
ogenous factors that are independent of individual rational choice such as loss of
common jobs or hobbies, malfunction of communication means and unexpected
assignment of roles of community activities where two community members start
communication. Without the presence of errors or mutations, one equilibrium is
locked in at random by externality. However, under our process the network contin-
ues to change indefinitely and to visit each network over time, so that the process
identifies the most robust or easy-to-reach networks in the long run.

The dynamic process in period t consists of the following four steps, as proposed
by Jackson and Watts (2002a).

1st
A pair of players ij is randomly identified with fixed probability distribution
{pij} where pij > 0 for each ij.
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2nd
The remaining players (i.e., all players except the pair ij) do not react instan-
taneously to their environment. In other words, do not adjust their links (the
inertia hypothesis).

3rd
The pair ij with selfish preferences (h = s), identified in the first step, myopi-
cally decide whether to add or delete the link ij, following the rule shown in
steps 3-1 and 3-2 below, which we call “two sided-link formation” (the myopia
hypothesis). They make this choice based on the assumption that all players
(including themselves) will have the same links (other than the link ij) as at
the beginning of this period.

3-1 In case that the link ij is not in the network gt, it is added if at least one
player’s utility strictly increases and the other player’s does not decrease.
Otherwise, it is not added.

3-2 In case that the link ij is already in the network gt, it is deleted if ei-
ther player would strictly benefit from its removal. Otherwise, it remains
connected.

4th
After the choice is made, there is some small probability ϵ (0 < ϵ < 1) that
an error/mutation occurs (the error/mutation hypothesis). Hence, the choice
made in the third step is not reversed with probability 1 − ϵ, and is reversed
with probability ϵ. This process determines the network gt

1.
More specifically, the network gt

1 is obtained as follows.

– In case ij /∈ gt

If us
i (g

t + ij) ≥ us
i (g

t) and us
j(g

t + ij) ≥ us
j(g

t) with one inequality strict,
then gt

1 = gt + ij with probability (1 − ϵ) and gt
1 = gt with probability ϵ.

Otherwise, gt
1 = gt with probability (1−ϵ) and gt

1 = gt+ij with probability
ϵ.

– In case ij ∈ gt

If us
i (g

t − ij) > us
i (g

t) and/or us
j(g

t − ij) > us
j(g

t), then gt
1 = gt − ij with

probability (1− ϵ) and gt
1 = gt with probability ϵ. Otherwise, gt

1 = gt with
probability (1 − ϵ) and gt

1 = gt − ij with probability ϵ.

The network gt
1 that is determined through the above process constitutes the

network at the end of period t. This network is also the network at the beginning
of period t + 1. After period t + 1, the above process is repeated.

Note that in the third step, one can see the asymmetry of adding and deleting
a link. This represents the fact that the formation of a link requires the consent
of both players, but severance can be carried out unilaterally.

3.2.2 The Case Including Disasters

Let us assume the occurrence of a disaster where the community members i and
j who were identified in the first step of the dynamic process that was presented
above are affected. We add the following fifth step.

5th
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In every period, disasters occur with probability η (0 < η < 1). If no disasters
occur, with probability 1 − η, then the fifth step ends.
When a disaster occurs, then, redefine the player with the larger degree from
the pair ij identified in the first step as player i. In other words, redefine players
i and j such that di > dj . If gt

1 of the fourth step does not include the link ij,
then player i is furnished with an altruistic preference h = a and player j with
a selfish preference h = s, and they decide whether or not to add the link ij
based on the notion of two sided-link shown in the steps 3-1 and 3-2.
Similarly to the fourth step, there is some small probability ϵ that an er-
ror/mutation occurs in the fifth step, which reverses the choice.
Consequently, if the link ij is added, then player i deletes the link ik with the
player k that has the largest degree among i’s neighbors. In other words, k is
identified such that {dk ≥ dl for ∀l ∈ Ni(g

t
1)}. Through the above process,

the network gt
2 is determined, and also becomes the network at the beginning

of period t + 1, namely, gt+1.
More specifically, the network gt

2 is obtained as follows.

gt
2 = gt

1 happens with probability 1 − η.
Otherwise, the following process (A) happens with probability η.

– In case di ̸= dj

Redefine players i and j such that their degrees satisfy di > dj . More-
over, define another player k in the set of the neighbors of player i
such that dk ≥ dl, ∀l ∈ Ni(g

t
1). If more than one player satisfies the

condition to be player k, select one randomly from among them, and
define that player as k.

– In case ij /∈ gt
1

If ua
i (gt

1+ij) ≥ ua
i (gt

1) and us
j(g

t
1+ij) ≥ us

j(g
t
1) with one inequality

strict, then gt
2 = gt

1 + ij − ik with probability (1 − ϵ) and gt
2 = gt

1

with probability ϵ. Otherwise, gt
2 = gt

1 with probability (1− ϵ) and
gt
2 = gt

1 + ij − ik with probability ϵ.
– In case ij ∈ gt

1

gt
2 = gt

1.

– In case di = dj

gt
2 = gt

1.

Note that this model deletes the link ik ∈ gt
1 if the link ij is added during

a disaster. This process arises for the following two reasons. The first relates
to the modeled phenomena. When player i obtains an altruistic preference
during a disaster and interacts with a player j that has a smaller degree, then
i expects the player k that has the largest degree to be supported by some of
k’s many friends, so i would stop allocating time for interactions with k. The
second is to make a comparative analysis clear. Adding one link in the fifth
step without deletion derives a natural result that the number of links in the
network is increased by that operation. However, our aim is to investigate the
true long-term effects of adding a link in the fifth step on network formation,
so in order to avoid this obvious result, we remove link ik and exclude the
short-term effects that are directly brought by the fifth step operation.
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4 Numerical Simulation

4.1 Functions and Parameters

Let us specify the functions and parameters as follows:

bs(dj) = dj − 1, (2)

ba(dj) = n − dj , (3)

c(di) = c̄ · dα
i , c̄ = 0.2, (4)

pij =
1(n
2

) , g1 = ∅, (5)

n = 20, T = 3000, (6)

ϵ = 0.05, η = 0.1. (7)

The communication cost c(di) would be affected by a time constraint α(≥ 0).
Thus, in the case including a time constraint (α > 0), the larger the number of
neighbors of player i, the more the schedule adjustment and the opportunity cost
seem to increase for i, so c(di) increases with respect to the degree di of i. This
case includes, for example, a situation in which people face a lot of difficulty to
make a new friend in a community due to the shortage of free time. In the case
without a time constraint (α = 0), the number of neighbors of i does not affect the
schedule adjustment or the opportunity cost for i at all, so c(di) remains constant
with respect to the degree di of i (c(di) = c̄). The fixed probability pij for the first
step in the dynamic process is uniformly distributed. The initial network g1 is the
empty network, namely, the network where every player has no links, since we are
interested in a network growth in a community. The final period of the dynamics
is denoted by T .

We run a Monte Carlo simulation with 1,000 iterations, and examine its mean
in the analysis.

4.2 Results

Let us examine two cases for the communication cost c(di): the case that c(di) is
constant and the case that c(di) increases with respect to the degree of i. We will
analyze the dynamics of the network from the viewpoint of the network density
(ND), the average clustering coefficient (ACC), the number of isolated players,
and the standard deviation of each player’s degree.

The network density (ND) is the ratio of the number of links present to the
maximum number possible, and is calculated as follows:

ND =

∑
i di

2 ·
(n
2

) . (8)

The relation in which the neighbors of a player are connected to each other,
namely the triangle in the network, is called “transitivity” or “clustering” (e.g.
Jackson 2008; Newman 2010). The measure that looks at all pairs of players that
are linked to i and then considers how many of them are linked to one another is
called as the individual clustering coefficient Cli(g). The average of the individual
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Fig. 1 Network density in the case with α = 0

clustering coefficients of all players is the average clustering coefficient (ACC), and
is defined as follows:

ACC =

∑
i Cli(g)

n
, (9)

where

Cli(g) =
#{jk ∈ g|k ̸= j, j ∈ Ni(g), k ∈ Ni(g)}

#{jk|k ̸= j, j ∈ Ni(g), k ∈ Ni(g)} .

(10)

Among many conceptualizations of social capital, some of the literature on
social network theory view the clustering coefficient and the network density as
measures of social capital (e.g., Coleman 1988; Borgatti et al. 1998). For example,
Coleman (1988) reports that higher clustering prevents a person from betraying
others because his/her behavior is monitored by a third person who is their com-
mon friend. Moreover, Borgatti et al. (1998) write that higher density provides a
basis for sharing knowledge that can finally create synergetic effects in collabora-
tion of persons with different backgrounds. Focusing on these aspects of the broad
concept of social capital, the clustering coefficient and the network density have
been applied as its indices.

4.2.1 The Case Where Communication Cost c(di) Remains Constant with
Respect to the Degree di of i: The Case of α = 0

Here, let us consider the case where c(di) is constant; namely, α = 0. Figures 1-4
show the dynamics of the network density, average clustering coefficient, number
of isolated players, and standard deviation of each player’s degree, respectively. In
each figure, a dotted line represents the case without disasters, while a solid line
represents the case with disasters.
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Fig. 2 Average clustering coefficient in the case with α = 0
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Fig. 3 The number of isolated players in the case with α = 0

By comparing these two cases, we can see that every index converges to almost
the same level in the long-term. However, we also observe that the paths to the
convergent state are not the same. In the case with disasters, the network density
and average clustering coefficient increase quickly, and isolated players disappear
quickly. The standard deviation of the degree quickly achieves a maximum, and its
maximum is smaller than that in the case without disasters, which means that in
the case including disasters there exists less disparity in degrees between players.
Therefore, in the case of a constant communication cost, it is demonstrated that the
link formation motivated by altruism during disasters has the effect of accelerating
convergence speed. In the following, let us call this effect a “speed up effect.”
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Fig. 4 Standard deviation of degree in the case with α = 0

Let us consider the reason for the above difference. Under our present settings,
the communication cost is constant, and c̄ = 0.2. Then, in a time of peace player
i forms a link with player j if j has at least one link other than i. Conversely, i
does not form a link with player j if j is isolated. Therefore, i and j form link ij
if i and j have links ik and jl, respectively (k ̸= j, l ̸= i). Consequently, in a time
of peace, every pair ij (ij /∈ g) that adds link ij can be depicted with respect to
di and dj as shown in Figure 5.

Therefore, in the case without disasters, the trigger allowing an isolated player
to obtain an initial link can only be an error/mutation. Once an isolated player
forms a link, then the player autonomously forms links with others having at
least one link with players other than her/him. If every player has at least one link
formed by error/mutation, then all players start adding links autonomously, which
leads a network to converge to a state close to a complete network (a network g
in which di = n − 1, ∀ i) in the long-term.

On the other hand, in the case that includes disasters, the player i with the
larger degree from pair ij has an altruistic preference during a disaster. Therefore,
the more likely j is to be isolated, the more i prefers to link with j. Consequently,
every pair ij (ij /∈ g) that adds the link ij can be depicted with respect to di

and dj as shown in Figure 6. Unlike Figure 5, this figure shows that players with
dj = 0 can form a link, while players with dj = 19 cannot form a link. Therefore,
not only error/mutation in times of peace but also rational decision making during
disasters enables isolated players to obtain an initial link, allowing isolated players
to eliminated sooner. Once every player has an initial link, players start adding
links autonomously, which leads the network to converge quickly to a state close
to a complete network. Moreover, after player i adds the link ij during a disaster,
i deletes the link ik (k ̸= j), that is, a link which she/he has with the player k
having the largest degree among the set of i’s neighbors Ni(g). Consequently, this
process increases player j’s degree and decreases k’s degree, so it is demonstrated
that in the case with disasters, the standard deviation of the degree decreases.
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Fig. 5 Every pair who adds link ij in time of peace in the case with α = 0
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Fig. 6 Every pair who adds link ij during disasters in the case with α = 0

4.2.2 The Case Where Communication Cost c(di) Increases with Respect to the
Degree di of i: The Case of α = 1

Here, we consider the case where c(di) increases with respect to di; namely α > 0.
We assume that α = 1. Figures 7-10 show the dynamics of the network density,
average clustering coefficient, number of isolated players, and standard deviation
of each player’s degree, respectively. In each figure, a dotted line represents the
case without disasters, while a solid line represents the case with disasters.

First, let us focus on the case without disasters, and examine the effect of the
change of α from α = 0 to α = 1 on the dynamics of network. By comparing these
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Fig. 7 Network density in the case with α = 1
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Fig. 8 Average clustering coefficient in the case with α = 1

two cases, we can observe that in the case with α = 1 isolated players do not nec-
essarily disappear, even in the long run, unlike in the case with α = 0. In the case
with α = 1, the standard deviation of the degree does not decrease, and maintains
a higher level. Therefore, it is demonstrated that the network never attains the
state of an almost complete network, but instead converges to a relatively sparse
network.

Let us consider the reason for the phenomenon described above. In the case
that the communication cost increases with respect to the degree, the marginal
cost of forming a link is larger for player i that have a larger degree di. Therefore,
if player j’s degree is smaller, then i cannot gain additional net utility from adding
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Fig. 9 The number of isolated players in the case with α = 1
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Fig. 10 Standard deviation of degree in the case with α = 1

a link with j. This means player i is less likely to form a link with the player j.
Consequently, we can represent every pair ij (ij /∈ g) that adds the link ij in a
time of peace with respect to di and dj as depicted in Figure 11. The figure for
the case with α = 1, unlike that for the case with α = 0, shows that players whose
degrees are larger tend to connect only with others whose degrees are also large.
Thus, isolated players and players who have smaller degrees cannot increase their
degrees, so the standard deviation of the degree remains large, and the network
density and average clustering coefficient remain small.

Next, on the basis of the above consideration, let us examine the dynamic effect
of the altruistic preference on the network formation when α = 1, and compare the
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case with disasters with the one without disasters. By comparing these two cases,
we see that the standard deviation of the degree in the case with disasters reaches
a lower maximum of around t = 700, and that it then decreases after reaching
this maximum. Moreover, we can see that isolated players are eliminated, and the
network density and average clustering coefficient show higher levels after around
t = 1000. Although the level is not as high as that in the case with α = 0, the
shape of the paths is almost the same. If we compare the network in the case with
disasters with that in the case without disasters, we can observe that the network
in the case with disasters is more likely to converge to an almost complete network.
Therefore, the link formation motivated by altruistic preferences during disasters
in the case with α = 1 has the effect of accelerating the convergence speed (the
“speed up effect”), and also increases the level of convergence. In the following, we
will call the latter effect the “level effect.” Then, the “level effect” is an additional
dynamic effect of altruistic preferences during disasters on the network formation,
in the case with α = 1.

Let us consider the reason for the above difference. When the player i with
the larger degree from pair ij has an altruistic preference during disasters, we can
represent every pair ij (ij /∈ g) that adds link ij with respect to di and dj as
depicted in Figure 12. As we can observe from the figure, a player i with a larger
degree obtains an altruistic preference during disasters, so the smaller j’s degree
is, the more likely i is to link with j. Through this process, players who have small
degrees in times of peace can increase their degrees during disasters. Moreover,
the increase in the degree dj also enables j to connect with other players in time
of peace who have large degrees, which accelerates the autonomous link formation
among players. Owing to the above reasons, the network becomes denser in the case
with α = 1, and the “level effect” can be observed. Similarly to the case of α = 0,
after link ij is added by the altruistic preference during disasters, player i then
deletes the link ik (k ̸= j) , that is, a link which she/he has with the player k having
the largest degree among the set of i’s neighbors Ni(g). Consequently, this process
increases the degree of player j and decreases that of k, so it is demonstrated that
in the case including disasters, the standard deviation of the degree decreases.

5 Network Formation Including Disasters Affecting Multiple Pairs

The previous section considered the situation in which only one pair of players has
a chance to form a link based on altruistic preference when a disaster occurs. How-
ever, a larger-scale disaster affects more people. Therefore, this section considers a
situation in which more pairs of players form links based on altruistic preferences
when a larger-scale disaster occurs, and we thus analyze the dynamic effect of the
scale of disasters on social networks and social welfare. Note that this model as-
sumes that the occurrence of disasters is independent of social network structure,
while it has been pointed out that, in reality, social vulnerability depends on social
network structure (e.g., Nakagawa and Shaw 2004; Murphy 2007). Although it is
an important aspect, since our focus is to examine the impact of temporal altru-
istic behaviors on the network formation process that is more clearly described
with a simpler framework, the endogenous vulnerability will be the topic of future
research.
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Fig. 11 Every pair who adds link ij in time of peace in the case with α = 1
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Fig. 12 Every pair who adds link ij during disasters in the case with α = 1

5.1 Extension of the Dynamic Process

This section extends the fifth step of the dynamics shown in the previous section
in order to model a situation in which M pairs form links based on altruistic
preferences during a disaster, assuming that M becomes larger as the scale of the
disaster grows. More specifically, if M ≥ 2, we execute step 5-1 shown below after
network gt

2 is formed in the fifth step.

5-1
A pair of players i′j′ is randomly identified with fixed probability distribution
{pi′j′} where pi′j′ > 0 for each i′j′, and then pair i′j′ decides whether or not
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to add link i′j′ as shown in the fifth step. The above process is repeated M −1
times and network gt

3 is created.

Network gt
3 is expressed as gt+1 at the beginning of period t + 1. More specif-

ically, network gt
3 is obtained as follows.

After process (A) in the fifth step, let gt
2,1 := gt

2, and if M ≥ 2, iterate as
follows.
For m = 1, 2, · · · , M − 1,
given gt

2,m, identify players i′ and j′ with probability pi′j′ .

– In case di′ ̸= dj′

Redefine players i′ and j′ such that their degrees satisfy di′ > dj′ . Moreover,
define another player k′ in the set of the neighbors of player i′ such that
dk′ ≥ dl′ , ∀l′ ∈ Ni′(g

t
2,m). If more than one player satisfies the condition to

be player k′, select one randomly from among them, and define that player
as k′.

– In case i′j′ /∈ gt
2,m

If ua
i′(g

t
2,m + i′j′) ≥ ua

i′(g
t
2,m) and us

j′(gt
2,m + i′j′) ≥ us

j′(gt
2,m) with one

inequality strict, then gt
2,m+1 = gt

2,m+i′j′−i′k′ with probability (1−ϵ)
and gt

2,m+1 = gt
2,m with probability ϵ. Otherwise, gt

2,m+1 = gt
2,m with

probability (1 − ϵ) and gt
2,m+1 = gt

2,m + i′j′ − i′k′ with probability ϵ.
– In case i′j′ ∈ gt

2,m

gt
2,m+1 = gt

2,m.

– In case di′ = dj′

gt
2,m+1 = gt

2,m.

End
gt
3 = gt

2,M .

5.2 Functions and Parameters

Let us continue to use the same parameters and functions shown in equations (2)-
(7) for this section. We specify probability pi′j′ with which pair i′j′ is identified
for step 5-1 as uniform distribution pi′j′ = 1/

(n
2

)
. In addition, let us focus on the

case where communication cost c(di) increases with respect to degree di, namely,
the case under time constraint α = 1.

The targeted society is assumed to have a large standard deviation of the
degree for an initial period 1. One of the reasons for realizing such a society is that
it has not experienced any disasters before. Therefore, given an initial network,
that is, a network that has not experienced any disasters before 2, this section

1 This is because even if M is so large, if a network has a small standard deviation of the
degree, it is more likely that di′ = dj′ for pair i′j′ in step 5-1, and consequently, we are less
likely to observe M number of link formations with altruistic preferences. This hampers our
analysis of the true effect of the difference in M .

2 This section creates a network with a large standard deviation, running a process without
any disaster as in Section 3. 2. 2 for 1 ≤ t ≤ 1500. Then, we define the network at t = 1501 as
an initial network for this section, and analyze the situation with the disaster occurring after
this period. Figure 10 clearly shows that the network around t = 1500 has a large standard
deviation of degree.
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Fig. 13 Comparative dynamics of network density with respect to M

considers the situation in which the extension of the fifth step is executed during a
disaster, and investigates how M pairs of link formations with altruistic preferences
affect the network density, standard deviation of degree, and social welfare. We
measure social welfare in each period by aggregating each player’s utility with
selfish preference at the end of the period. More specifically, social welfare (SW)
is calculated as follows:

SW =
n∑

i=1

us
i (g

t). (11)

Disasters are rare events that do not occur in every period; thus, every individual
spends a much longer time without experiencing any disasters, which lets us mea-
sure the social welfare with selfish rather than altruistic preferences. Similar to
the previous section, we run a Monte Carlo simulation with 1,000 iterations and
examine its mean in the analysis.

5.3 The Scale of Disasters and Its Dynamic Effect

Let us consider three different cases according to the scale of the disaster, namely,
when the number of pairs forming links in the fifth step are 1) only one (M = 1),
2) five percent of all possible pairs (M = 10(≃ 0.05 ·

(n
2

)
)), and 3) ten percent of

all possible pairs (M = 19(= 0.10 ·
(n
2

)
)). Case M = 1 corresponds with the case

in Section 3. 2. 2, which considers the occurrence of disasters. Figures 13-15 show
the dynamics of the network density, standard deviation of each player’s degree,
and social welfare, respectively, according to the scale of the disaster. Figure 16
shows the enlarged view during 1 ≤ t ≤ 150 in Figure 15. In each figure, the black,
blue, and red lines represent the cases M = 1, M = 10, and M = 19, respectively.

We observe from Figures 13-14 that as M becomes larger, the standard de-
viation of degree becomes smaller, and the network density becomes larger more
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Fig. 14 Comparative dynamics of standard deviation of degree with respect to M
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Fig. 15 Comparative dynamics of social welfare with respect to M

quickly, finally converging to a steady state. Moreover, Figure 16 shows that af-
ter t ≥ 80, as M becomes larger, social welfare increases, finally converging to
a steady state as well. Let us consider the reason for the above phenomena. As
M becomes larger, more links among players are redistributed during a disaster,
which equalizes the degree between players and decreases the standard deviation
of degree. Consequently, every player is more likely to have an equal chance to in-
teract with each other, which accelerates autonomous link formation during a time
of peace. In other words, the dynamic positive externality, which is generated by
link formation motivated by altruistic preference, continues even after a disaster,
and accelerates the realization of a dense network and improved social welfare.
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Fig. 16 Enlarged view of Figure 15 during 1 ≤ t ≤ 150

Fig. 17 Dynamics process in which player i with altruistic preference forms link ij

However, as M becomes larger, social welfare becomes smaller during 1 ≤ t <
80 as Figure 16 indicates. The above finding can be explained analytically. Let us
rewrite social welfare using standard deviation σd of degree and average degree µd

as follows:

SW = n
(
0.8 ·

(
σ2

d + µ2
d

)
− µd

)
. (12)

The proof of equation (12) appears in the appendix B. As mentioned previously,
as M increases, more links among players are redistributed during a disaster,
which leads to a decrease in the standard deviation of degree. In other words, only
standard deviation σd of degree decreases, leaving average degree µd constant.

According to equation (12), ∂SW
∂σd

> 0, and thus, other things being equal, as σd

decreases, so does SW.
To further analyze why the larger decrease occurs temporally in social welfare,

let us focus on the change in each player’s utility. We see that when pair ij forms
a link motivated by an altruistic preference on a network with large standard
deviation of degree, a decrease of utilities with selfish preference of each 1) player
i, 2) player k who is i’s neighbor, and 3) players l who are k’s neighbors is more
likely to occur, which results in a decrease in social welfare. We explain the above
statement by illustrating a typical case depicted on the left-hand side of Figure
17, in which pair ij forms a link with an altruistic preference in a network that is



21

formed autonomously. As depicted in the figure, we assume that 1) 1 < di < dk

and that 2) a component that j belongs to and a component that i, k, and l
belong to are both distinct. If player i with an altruistic preference forms link
ij with player j whose degree satisfies di > dj (see the middle of Figure 17), i
deletes link ik with player k who has the largest degree among i’s neighbors (see
the right-hand side of Figure 17). Through this process, 1) a change in i’s utility
with selfish preference is denoted as follows:

us
i (g + ij − ik) − us

i (g)

= (dj − 1) − (dk − 1)

= dj − dk < 0. (∵ dj < di < dk) (13)

Hence, i’s utility with selfish preference necessarily decreases. 2) Regarding a net-
work that has been formed autonomously, k obtains a net benefit from connecting
with i. Thus, k’s utility necessarily decreases if k loses link ik. A change in k’s
utility is denoted as follows:

us
k(g + ij − ik) − us

k(g)

= −(di − 1) − c̄ ·
(
(dk − 1)α+1 − dα+1

k

)
= 0.4 · dk − di + 0.8 < 0. (14)

(∵ network g is autonomously created.)

3) Since k loses link ik, a change in the utility of l, who is one of k’s neighbors, is
denoted as follows:

us
l (g + ij − ik) − us

l (g)

= (dk − 1 − 1) − (dk − 1)

= −1 < 0. (15)

Hence, l’s utility necessarily decreases, which means that negative externality to l
exists. As the standard deviation of degree becomes larger, degree dk, namely, the
number of neighbors (= dk), is likely to increase, and therefore, more neighbors of
k face decreases in utility; that is to say, the formation of link ij generates more
negative externalities.

In addition to the above players’ utilities, the utilities of player j and j’s
neighbor o are also altered. Since j obtains link ij, each change in their utilities is
denoted as follows:

us
j(g + ij − ik) − us

j(g)

= (di − 1) − c̄ ·
(
(dj + 1)α+1 − dα+1

j

)
= di − 0.4 · dj − 1.2 > 0. (∵ 1 < di and dj < di) (16)

us
o(g + ij − ik) − us

o(g)

= dj − (dj − 1)

= 1 > 0. (17)

Hence, the utilities of player j and o necessarily increase.
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If we denote a change in social welfare by ∆(SW), we can derive ∆(SW) as
follows, considering equations (13)-(17) and the presence of a number dk of k’s
neighbors l and a number dj of j’s neighbors o:

∆(SW)

= (dj − dk) + (0.4 · dk − di + 0.8)

+(−1) · dk + (di − 0.4 · dj − 1.2) + 1 · dj

= −1.6 · (dk − dj) − 0.4 < 0. (∵ dj < di < dk) (18)

In conclusion, for the case depicted in Figure 17, in which a link is formed
with an altruistic preference, the negative effects of 1)-3) dominate, and therefore,
social welfare decreases. Furthermore, as M becomes larger, the above-mentioned
negative effects increase, and as a result, social welfare decreases more significantly.

6 Discussion

Finally, let us consider the implications of the results of our model for “a paradise
built in hell.” As previously mentioned, the situation where the communication
cost of interacting with a person increases with respect to the degree, that is, where
the additional cost in opportunities of interacting with a new friend increases as a
player’s number of friends is larger, can include cases where it is not easy to adjust
one’s schedule for meeting friends or where the opportunity cost of interacting
in a community is high owing to a busy job. In such situations, people tend to
be selective about persons with whom they interact as their number of friends
increases. More specifically, people tend to choose to interact with others who bring
benefits that outweigh the high costs. Because the interaction requires mutual
consent, this results in the “disparity in relationships.” That is, a disparity between
those who have many relationships and those who have few relationships can be
created. This result can be seen from Figure 10, which shows a monotonic increase
in the standard deviation of each player’s degree. Furthermore, those who have
more relationships are more likely to collect the latest information, and to have
a more favorable opportunity to make decisions related with business or politics
through cooperation with their friends. Consequently, this would strengthen the
social structure where the “rich in relationships” obtain better chances.

In contrast, disasters induce a temporary altruism factor, which enables the
“poor in relationships” to become integrated into large human networks. Once they
are integrated, they then begin to increase their number of relationships even in
regular life. Consequently, society as a whole increases its network density and av-
erage clustering coefficient, which are regarded as indices of social capital in social
network theory. Therefore, the society following disasters can have an enhanced
social capital and a narrower “disparity in relationships.” The enhancement of
social capital facilitates the sharing of information and increases the possibilities
for coordinated behavior. The smaller disparity also increases the possibilities for
decision making, such as decisions by majority. To summarize, the alteration of
social networks caused by disasters could have the potential to modify social insti-
tutions or conventions. This phenomenon corresponds with the long-term aspect of
“a paradise built in hell.” In other words, a social network that is the foundation of
a series of large institutional reforms following disasters would be created mainly
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through the temporary altruism that immediately follows disasters. In addition, if
we regard an increase in communication cost as a phenomenon that is more often
seen in regular life in urban areas, we can conclude that the qualitative changes in
the shapes of social networks caused by disasters and the long-term developments
of “a paradise built in hell” would be more likely to be observed in urban areas.

If the temporary altruism induced by large-scale disasters is seen among more
people, the poor in such relationships are more likely to become integrated into
networks constituted by the rich. Thus, the long-term effect would surely have
a larger potential impact. Meanwhile, the temporary altruism during disasters
encourages people to interact more with the poor than with the rich in their re-
lationships. Thus, rich people in relationships are temporarily less likely to collect
the latest information and have favorable opportunities. Moreover, since richer
people in relationships have many friends, the negative effect spreads to their
friends too, resulting in these friends also having fewer chances for collecting the
latest information and having favorable opportunities. As the scale of the disaster
enlarges, the above-mentioned temporary effect becomes more serious for the rich
in relationships and their surrounding friends. In summary, as altruistic behavior
immediately after disasters, namely, the short-term aspect of “a paradise built in
hell,” is seen more frequently owing to the larger-scale disaster, it not only gen-
erates a larger negative temporary externality to the rich in relationships and the
surrounding people, it also creates a larger positive dynamic externality. Thanks
to the latter externality, a network that allows for coordinated behavior and collec-
tive decision making is more likely to be formed quickly, and thus, the long-term
aspect of “a paradise built in hell” is more likely to be realized.

This study exclusively focuses on the dynamic impact of altruistic behaviors
that temporally emerge in the aftermath of disasters. However, there are a variety
of factors that are critical for issues of the communities such as changes of com-
munity members, among which emigration is one of the most serious phenomena
for sustainability of vitality of affected communities or their social capital (e.g.,
Drabo and Mbaye 2011). Although the model does not deal with emigration in an
explicit way, it may be possible to imagine that isolated players are more likely
to migrate to other regions. By applying the network density and the clustering
coefficient as indices, this study examines the social capital that includes those iso-
lated players who decrease the values of the indices. In other words, it seems less
appropriate to exclude those potential emigrants from evaluation of social capital
that would result in an increase in those values. On the other hand, an interesting
future topic is to include the impact of in-migration of volunteer workers who may
play an important role as catalytic agents in social networks.

7 Conclusion

Through the application of a social network formation model based on game the-
ory, this study analyzed the long-term effects on social networks of link formation
motivated by altruistic preferences during disasters. In a situation where the com-
munication cost of maintaining a link increases, the disparity in the number of
relationships was shown to become larger. In other words, people who have more
(fewer) relationships to start with obtaining new relationships at a faster (slower)
rate. However, if disasters occur in this situation, then the link formation that is
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motivated by the altruistic preferences leads to the integration of isolated players
into a network, which also leads to an increase in their number of relationships
even long after disasters. This study figured out two sorts of externalities; the re-
distribution generates a negative cross-sectional externality for persons who have
many neighbors and the neighbors in terms of utility that results in a decrease
in social welfare, while it has a dynamic positive externality that accelerates the
formation of a network with a potential to lead to the long-term outcome of “a
paradise built in hell.” It was also pointed out that the dynamic effect is composed
of “speed up effect” and a “level effect” of social network formation, and more-
over, the disparity in the number of relationships among people decreases. It was
also implied that if some groups that have dominant influence in collective deci-
sion making of social institutions are changed by disasters, the long-term aspect
of “a paradise built in hell” is more likely to occur. Furthermore, the study also
focused on the impact of a large-scale disaster, namely, simultaneous multiple link
reformation with altruistic preference, which resulted in larger effect on long-term
outcome of “a paradise built in hell.”

We will conclude by discussing some possible extensions and directions for fu-
ture research. In addition to topics that we have already described, first of all,
this study adopted an algorithm that allows only one pair of players plays a link-
formation game in each step, which could be extended to ones with many players
that make simultaneous decision to investigate the possibility of collaboration ac-
tivities in an affected area. Second, it has been noted that people tend to value
relationships formed during disasters more highly. A model that accounts for dis-
tinctions in the quality of links should be proposed. Third, the supply of goods
and labor to victims from persons who have them in abundance during disaster
has the potential to create new leaders or relationships in a community. A net-
work formation that is driven by those actions will be described with a model
where several types of goods and resource are dealt with. Finally, in our model the
emergence of the altruistic behavior was given exogenously. Some of the previous
studies have focused on the endogenous emergence or dispersal of altruism (e.g.,
Mitteldorf and Wilson 2000; Ohtsuki et al. 2006). In future study, we will propose
a hybrid type of a model that considers endogenous altruistic behaviors.

Acknowledgements This work was partly supported by JSPS KAKENHI Grant Number
15J08041 and Kyoto University Research Development Programs 2015.
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Appendix A

Table 1 List of variables in the model

Endogenous variables
di the degree of player i
bh(dj) the benefit of each player with preference h obtained from neighbor j
c(di) the communication cost, which means the cost to player i of interacting with

a neighbor
uh

i (g) the utility of player i with preference h in network g

Exogenous variables
n the number of players in a community
h the type of preference (h = s means a selfish preference, and h = a means an

altruistic one.)
ϵ the probability of occurrence of an error/mutation
pij the probability that a pair ij is identified in the first step of the dynamic

process
η the probability of occurrence of a disaster
α the parameter of the communication cost function
c̄ the cost of maintaining a link without a time constraint
T the final period of the dynamics
M the number of pairs that form links based on altruistic preferences when a

disaster occurs in Section 5

Appendix B

Equation (12) is derived as follows:

SW =

n∑
i=1

us
i (g

t)

=
n∑

i=1

 ∑
j∈Ni(g)

bs(dj) − c(di) · di


=

n∑
i=1

 ∑
j∈Ni(g)

(dj − 1) − c̄ · dα+1
i

 (∵ bs(dj) = dj − 1, c(di) = c̄ · dα
i )

=
n∑

i=1

(
(di − 1) · di − c̄ · dα+1

i

)
(
∵

n∑
i=1

 ∑
j∈Ni(g)

(dj − 1)

 =
n∑

i=1

(di − 1) · di,

i.e., on the left-hand side of the above formulation, (di − 1) appears di times for each i.

)

=
n∑

i=1

(
0.8 · d2

i − di

)
(∵ c̄ = 0.2, α = 1)

= n
(
0.8 ·

(
σ2

d + µ2
d

)
− µd

)
. (19)



26 Hitomu Kotani, Muneta Yokomatsu

References

1. Atsumi T (2014) Relaying support in disaster‐affected areas: the social implications of a
‘pay‐it‐forward’ network. Disasters, 38(s2): s144-s156. doi:10.1111/disa.12067

2. Barton AH (1969) Communities in disaster: A sociological analysis of collective stress sit-
uations. Garden City, NY: Doubleday

3. Borgatti SP, Jones C, Everett MG (1998) Network measures of social capital. Connections,
21(2):27-36

4. Chasparis GC, Shamma JS (2013) Network formation: neighborhood structures, establish-
ment costs, and distributed learning. Cybernetics, IEEE Transactions on, 43(6):1950-1962.
doi:10.1109/TSMCB.2012.2236553

5. Coleman JS (1988) Social capital in the creation of human capital. American Journal of
Sociology, 94:S95-S120

6. Drabo A, Mbaye L (2011) Climate change, natural disasters and migration: An empirical
analysis in developing countries. IZA Discussion Paper, No. 5927

7. Fogleman CW, Parenton VJ (1959) Disaster and aftermath: Selected aspects of individual
and group behavior in critical situations. Social Forces, 38(2):129-135. doi:10.2307/2573932

8. Fujimura M (2001) Contemporary Sociological Contrasts between Ordinary and Excep-
tional Times. In: Shimane K, Fujimura M (ed) Cultural Apparatus as Determiners for Ex-
ceptional Times, Hokuju Shuppan, pp 16-37 (in Japanese)

9. Giel R (1990) Psychosocial processes in disasters. International Journal of Mental Health,
19(1):7-20

10. Jackson MO, Watts A (2002) The evolution of social and economic networks. Journal of
Economic Theory, 106(2):265-295. doi:10.1006/jeth.2001.2903

11. Jackson MO, Watts A (2002) On the formation of interaction networks in social
coordination games. Games and Economic Behavior, 41(2):265-291. doi:10.1016/S0899-
8256(02)00504-3

12. Jackson MO (2008) Social and economic networks. Princeton University Press, New Jersey
13. Kaniasty K, Norris FH (2004) Social support in the aftermath of disasters, catastrophes,

and acts of terrorism: Altruistic, overwhelmed, uncertain, antagonistic, and patriotic com-
munities. Bioterrorism: Psychological and Public Health Interventions, 3:200-229

14. Kotani H, Yokomatsu M (2015) Role of Local Festivals on Network Formation among a
Variety of Residents in a Community. Systems, Man and Cybernetics (SMC), 2015 IEEE
International Conference on. IEEE:832-839. doi:10.1109/SMC.2015.154

15. Kotani H, Yokomatsu M (2015) A Role of Ennichi and Jizobon in Expanding Interaction
in a Local Community- Results of a Social Network Survey in Nagata Ward, Kobe City.
Reports of the City Planning Institute of Japan, 14(May):91-98 (in Japanese)

16. Messias DKH, Barrington C, Lacy E (2012) Latino social network dynamics and the
Hurricane Katrina disaster. Disasters, 36(1):101-121. doi:10.1111/j.1467-7717.2011.01243.x

17. Mitteldorf J, Wilson DS (2000) Population viscosity and the evolution of altruism. Journal
of Theoretical Biology, 204(4):481-496. doi:10.1006/jtbi.2000.2007

18. Murphy BL (2007) Locating social capital in resilient community-level emergency man-
agement. Natural Hazards, 41(2):297-315. doi:10.1007/s11069-006-9037-6

19. Nakagawa Y, Shaw R (2004) Social capital: A missing link to disaster recovery. Interna-
tional Journal of Mass Emergencies and Disasters, 22(1):5-34

20. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford
21. Ohsawa M (2011) Shakai wa Taezu Yume wo Miteiru. Asahi Shuppan, Tokyo [Society

Dreams Incessantly. Asahi Shuppan, Tokyo](in Japanese)
22. Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the

evolution of cooperation on graphs and social networks. Nature, 441(7092):502-505.
doi:10.1038/nature04605

23. Phan TQ, Airoldi EM (2015) A natural experiment of social network formation
and dynamics. Proceedings of the National Academy of Sciences 112(21):6595-6600.
doi:10.1073/pnas.1404770112

24. Solnit R (2010) A paradise built in hell: The extraordinary communities that arise in
disaster. Penguin

25. Wolfenstein M (1957) Disaster: A psychological essay. Free Press and Falcon’s Wing Press
26. Yamori K (2011) Saigai heno taiou. In: Disaster Prevention Research Institute, Kyoto

University (ed) Shizensaigai to Bousai no Jiten, Maruzen Shuppan, Tokyo [Response to
disaster. In: Disaster Prevention Research Institute, Kyoto University (ed) The Encyclopedia
of Natural Disaster and Disaster Prevention, Maruzen Shuppan, Tokyo](in Japanese)


