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Abstract –– Measurement of mass flow rate of polymer powder in a gas–solids pipe 

flow was investigated theoretically and experimentally. The measurement was based on 

the static electrification of the flowing particles. In the system, two current detecting 

pipes made of different materials were used and mass flow rates were calculated from 

the two generated currents. Since polymer powder formed a stiff coating layer on the 

hard surface of metallic pipes by particle collision, several polymer materials were 

examined as to the detecting pipes and the performance of the current detection was 

evaluated by changing the powder flow rate. It was found that electrically conductive 

polymers containing carbon had superior stability for the current detection. It was also 

found that the mass flow rate of polymer powder could be measured by use of two 

different conductive polymers for the detecting pipe 
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NOMENCLATURE 

a constant in Eq.(3) (–) 

b constant in Eq.(3) (C kg –1) 

I electric current (A) 

m powder-to-air mass-flow ratio (–) 

n (x), n (Δx) number of collisions of a particle (–) 

n' number of collisions of a particle per unit pipe length (m –1) 

n0 relaxation number of collisions (–) 

(q/mp)0 charge-to-mass ratio at x=0 (C kg –1) 

(q/mp)∞ charge-to-mass ratio at x=∞ (C kg –1) 

u average air velocity (m s –1) 

X length from a point (m) 

Δx length of detecting pipe (m)  

Wp powder flow rate (kg s –1) 

Greek 

Α ratio of space charge effect to image charge effect (–) 

ρ specific resistance (Ω m) 

ψ relative humidity (–) 
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1. INTRODUCTION 

In a gas–solids pipe flow, particles are charged as a result of particle collision with the 

pipe wall. On the basis of the static electrification, a method for measuring the powder 

flow rate was proposed [1]. The electrical method takes advantage of high sensitivity 

without obstructing the pipe flow. However, the method has fundamental problems – 

the charge transfer between a particle and a wall depends both on the initial charge of 

the particle and on the electrostatic properties [2]. To resolve the problems, we 

proposed a new electrical method by analyzing the electric currents generated from two 

detecting pipes in series, which were made of different materials. From the experiments 

using mineral powders (fiy-ash and alumina), it was found that the dual-detecting 

system had high performance for the measurement of mass flow rate [3, 4]. 

Polymer powders as well as mineral powders are generally used in industry. 

Electrostatic powder coating [5], which receives attention for disuse of volatile organic 

compounds (VOC), will be taken as an example of the application of polymer pow- der. 

The powders, which are usually made from thermosetting resin, readily form a stiff 

coating layer on the wall surface in gas–solids pipe flow. This phenomenon is 

especially remarkable if a pipe wall is made of hard material like metal. There- fore, 

detecting pipes made of such materials like stainless steel, nickel, titanium nitride, etc., 

used for mineral powders [3, 4, 6] cannot be used for polymer powders. 

In this study, we use new detecting pipes made of various polymer materials to 

prevent the coating layer forming on the wall and conduct experiments to clarify the 

electrification of polymer powder in a pipe flow, and, moreover, evaluate the 

dual-detecting system for measuring the mass flow rate. 

 

2. THEORY 

When a pipe of a length of Δx that is electrically isolated is grounded, the charge 

transferred from the particles to the pipe per unit time is measured as an electric current. 

Under conditions that the particle-particle interactions and particle-wall adhesion are 

negligible, the electric current per unit mass flow rate I/Wp is represented by the 

following equation [2]: 
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where (q/mp) 0 and (q/mp)∞ are charge-to-mass ratio at x = 0 and x = ∞, respectively, n is 

the number of collisions of a particle, and no is the relaxation number. Equation (1) is a 

general equation, in which the length x is not restricted. In the case of x = 0 at the inlet 

of a current detecting pipe, the following equation is derived from equation (1): 

 

On the assumption that the charge transfer is due to the difference of the work function 

between contact bodies, the image charge effect, and the space charge effect, equation 

(2) can be rewritten as follows [3, 4, 6] 

 

where a and b are constants, a is the ratio of the space charge effect to the image charge 

effect. For α « 1, equation (3) is simplified as follows: 

 

When the two detecting pipes are set in series with electrical isolation, the following 

equations are obtained from equation (4) [3, 4]: 

 

and 

 

Since the charge at the outlet of the first pipe should be equal to that at the inlet of the 

second, the following equation is obtained: 

 

From equations (5)-(7), the powder flow rate Wp is given by the following equation: 

 

In equation (8), the denominator of the right-hand side must not be zero. Therefore, the 

characteristic value of the first detecting pipe -bo/ao must differ from that of the second 

–b1/a1 [3, 4]. 
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3. EXPERIMENTAL APPARATUS AND PROCEDURE 

Figure 1 shows the experimental apparatus. Test powder (epoxy resin for electrostatic 

powder coating; mass median diameter: 33 /tm; particle density: 1450 kg m-3) was fed 

by use of a table feeder (Sankyo Pio-tech, MFOV-1) to an ejector-type disperser 

(Nippon Pisco, VHL15-1002J). The pipe was 6 mm in inner diameter and the average 

air velocity was constant at 29 m s –1. Electric current detecting pipes, which were the 

test section of particle electrification, were set behind a fore-flow region of 400 mm. 

The detecting pipes were made of three different polymer materials, i.e. 

polytetrafluoroetylene (pure PTFE; specific resistance: ρ > 1016 Ω m), electrically 

conductive PTFE containing carbon filler (ρ = 8 × 102 Ω m) and electrically conductive 

nylon containing carbon filler (ρ= 5 Ω m). The polymer materials were cut in the shape 

of a cylinder (ID: 6 mm; OD: 18 mm; length: 100 mm) and the outer cylinder was 

tightly covered by metal (brass). Each detecting pipe was electrically isolated from 

other pipes using small joints made of pure PTFE; the distance between pipe edges was 

less than 1 mm in the joint and an electric shield was set around the detecting pipes to 

prevent electric noise in the field. The currents generated from a detecting pipe were 

measured with an electrometer (Advantest, TR8651) and the data were automatically 

sampled into a computer (10 data/s). In the experiments for evaluation of the effect of 

pipe length, we used a maximum of three detecting pipes made of the same material in 

series. Furthermore, in the experiments for measurement of the powder flow rate, we 

used a scanner controlled by the computer to measure the currents generated from two 

detecting pipes by use of the single electrometer. Actual average powder flow rate was 

measured by weighing directly the powder dis- charged from the table feeder for a 

given while and the charge-to-mass ratio (q/mp)0 at the inlet of a detecting pipe was 

measured with a vacuum-type Faraday cage. All experiments were conducted at room 

conditions (temperature: 289–296 K; relative humidity: 44–64%). 

 

4. RESULTS AND DISCUSSION 

4.1 Stability of currents generated from a polymer detecting pipe 

Figure 2 shows the currents generated from three kinds of polymer detecting pipes as a 

function of time elapsed. Although all the average currents were negative, large positive 

pulse currents were randomly generated from the pure PTFE detecting pipe, as shown 

in Fig. 2a. Such reverse currents were not detected from conductive detecting pipes (see 

Fig. 2b and c) or from the metallic detecting pipes [3, 4, 6]. When conductive nylon 
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pipes were connected before and behind the pure PTFE detecting pipe, large negative 

pulse currents were generated from the conductive nylon pipes. An example of the 

typical currents generated from the first conductive nylon pipe is shown in Fig. 3. 

Furthermore, when all the currents generated from the three detecting pipes were 

measured at a time, large pulse currents disappeared, as shown in Fig. 4. As a result of 

these facts, the following feature was deduced; since pure PTFE has high specific 

resistance, charge transferred from particles is stored in the pipe wall, and when the 

electric potential exceeds a critical value, electric discharge occurs toward the 

connected pipes and large pulse currents are detected. Therefore, to obtain stable 

currents, one should select a conductive material that does not store electric charge in 

the body 

4.2 Characteristic line of particle electrification 

Figure 5 shows the relationship between current per unit mass flow rate I/Wp and 

charge-to-mass ratio (q/mp)0 of the conductive nylon pipe and the conductive PTFE 

pipe. The solid line shows an experimental characteristic line of particle electrification 

and the broken line shows the standard deviation of the scattered data. The results of 

our previous experiments using mineral powders showed that the relationship between 

I/Wp and (q/mp)0 was linear (see equation (4)) when particles were fully dispersed in air, 

and particle-particle interactions and particle-wall adhesion are negligible. The present 

results also show that the relationship is adaptable for polymer powder, i.e. the 

characteristic lines of the conductive nylon pipe and the conductive PTFE pipe are 

represented by the following equations, respectively:  

Conductive nylon pipe 

 

Conductive PTFE pipe 

 

In addition, the characteristic values –b/a of the conductive nylon and the conductive 

PTFE pipe are 5.0 × 10–4 and 1.0 × 10–3 respectively. 

4.3 Effect of pipe length on particle electrification 
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Figure 6 shows the effect of pipe length on particle electrification by use of a maximum 

of three detecting pipes in series. As for the conductive nylon pipe, current per unit 

mass flow rate 1/Wp was proportional to pipe length Ax (see Fig. 6a), but in the 

conductive PTFE pipe, the increasing ratio of I/Wp decreases with increasing pipe 

length. This is because the value of I/Wp of the conductive PTFE pipe is much larger 

than that of the conductive nylon pipe, i.e. the cumulative charge in a particle is very 

large in the conductive PTFE pipe. Therefore, the amount of charge transferred will 

decrease due to the image charge effect. The phenomenon can be explained 

theoretically as follows. Since the number of particle collisions with an inner pipe wall 

will be proportional to the pipe length, when n' is defined as the collision number per 

unit pipe length, equation (2) is rewritten as the following equation: 

 

where is equal to the characteristic value –b/a (see equations (2) and (4)). When the 

value of –b/a obtained in Section 4.2 and the experimental value of (q/mp)0 are 

substituted into equation (11), the theoretical lines are calculated (solid line and broken 

line in Fig. 6), where n'/no is a fitting parameter. Since n'/n0 corresponds to charging 

efficiency, the value for conductive PTFE would be larger than that for conductive 

nylon. Also, Fig. 6 shows that the experimental values agree well with the theoretical 

values regarding the effect of charge-to-mass ratio (q/mp)0. 

4.4 Measurement of mass flow rate of polymer powder 

When the conductive nylon pipe and the conductive PTFE pipe were set in series, the 

powder flow rate corresponding to equation (8) is represented by the following 

equation: 

 

The comparison between the calculated powder flow rate and measured value is shown 

in Fig. 7. For reference, the scale of the powder-to-air mass flow ratio m is also shown 

on the right and upper sides. The calculated values agree with the measured values over 

a wide range; the relative error in the measurements was within 20%. Thus, this system 

is applicable to on-line measurement of polymer powder as well as mineral powder by 

use of appropriate materials for the detecting pipes. 

5. CONCLUSION 
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We have conducted experiments on the electrification of polymer powder and on the 

measurements of powder flow rate based on particle electrification and the following 

conclusions were drawn.  

(1) Although large pulse currents are randomly generated from the polymer pipe wall, 

stable currents are only detected using conductive polymer materials containing 

carbon filler.  

(2) When particle-particle interactions and particle-wall adhesion are negligible, the 

relationship between current per unit mass flow rate and charge-to-mass ratio is 

linear for polymer powder as well as mineral powder. The characteristic line of 

particle electrification depends on the wall materials.  

(3) The effect of pipe length on particle electrification is explained by a theoretical 

equation based on the characteristic line of particle electrification and on the initial 

charge of particles.  

(4) The dual-detecting system is applicable for the on-line measurement of the mass 

flow rate of polymer powder over a wide range by use of appropriate materials for 

the detecting pipes. 
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Figure 1. Experimental apparatus. 
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