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SUMMARY

P2X receptors are trimericATP-gatedcation channels
involved in physiological processes ranging widely
from neurotransmission to pain and taste signal
transduction. The modulation of the channel gating,
including thatbydivalent cations, contributes to these
diverse physiological functions of P2X receptors.
Here,we report thecrystal structureof an invertebrate
P2X receptor from the Gulf Coast tick Amblyomma
maculatum in the presence of ATP and Zn2+ ion,
together with electrophysiological and computational
analyses. The structure revealed two distinct metal
binding sites, M1 and M2, in the extracellular region.
TheM1 site, located at the trimer interface, is respon-
sible for Zn2+ potentiation by facilitating the structural
change of the extracellular domain for pore opening.
In contrast, theM2 site, coupled with the ATP binding
site, might contribute to regulation by Mg2+. Overall,
our work provides structural insights into the divalent
cation modulations of P2X receptors.
INTRODUCTION

P2X receptors are trimeric cation channels that respond to extra-

cellular ATP and play a crucial role in initiating extracellular

ATP signaling (Brake et al., 1994; Chen et al., 1995; Valera

et al., 1994). In vertebrates, the seven subtypes of P2X receptors

form homo- or hetero-trimers, with each protomer consisting

of two transmembrane helices and a large, hydrophilic extracel-

lular domain (North, 2002). The transmembrane domain is

responsible for the formation of a non-selective cation pore,

whereas the extracellular domain includes binding sites for

ATP, regulatory metal ions, and antagonists (Egan et al., 2006).

P2X receptors exhibit various biophysical and pharmacological
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properties and are widely expressed in the human body. Accord-

ingly, P2X receptors are involved in diverse physiological

processes, such as muscle contraction, neurotransmission, in-

flammatory response, and pain and taste signal transduction

(Khakh andNorth, 2012; Surprenant andNorth, 2009). Therefore,

they are associated with numerous human diseases, including

chronic inflammatory and neuropathic pain, depression, and

cancer (Burnstock, 2006; Burnstock and Ralevic, 2014; Gever

et al., 2006; North and Jarvis, 2013).

The activation of ligand-gated ion channels, including P2X re-

ceptors, Cys-loop receptors, and ionotropic glutamate recep-

tors, is modulated by various molecules to diversify their physio-

logical functions (Jarvis and Khakh, 2009; Miller and Smart,

2010; Traynelis et al., 2010). In particular, divalent cations are

important regulatory factors in these ion channel superfamilies.

For instance, in some P2X receptors, such as the P2X2 and

P2X4 receptors, a Zn2+ ion potentiates the ATP-dependent cur-

rents (Garcia-Guzman et al., 1997; Nakazawa and Ohno, 1997;

Séguéla et al., 1996; Soto et al., 1996). The Zn2+ modulation of

P2X4 receptors may play a role in the enhancement of long-

term potentiation (Lorca et al., 2011) and insulin secretion (Ri-

chards-Williams et al., 2008).

The recently determined structures of the zebrafish P2X4

(zfP2X4) receptor in the apo, closed state and the ATP-bound,

open state provided the structural framework for trimer forma-

tion, ATP recognition, and ATP-dependent activation in the

P2X receptor family (Hattori and Gouaux, 2012; Jiang et al.,

2013; Kawate et al., 2009; Samways et al., 2014). The subse-

quent structure-based electrophysiological and computational

analyses provided further clarification of the activation mecha-

nism of P2X receptors (Heymann et al., 2013; Lörinczi et al.,

2012; Roberts et al., 2012; Zhao et al., 2014). However, the mo-

lecular mechanisms of the divalent cation modulation of the P2X

receptors, underlying the diversity of the receptor functions,

have still proved elusive.

P2X receptors have also been cloned from invertebrate species

(Agbohetal., 2004;Bavanetal., 2009;Bavanetal., 2012;Fountain
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Figure 1. Functional Properties of AmP2X and Crystallization Construct AmP2Xcryst

(A) FSEC profiles on a Superdex 200 10/300GL column (GEHealthcare) for the EGFP-fused AmP2XWT (black), the EGFP-fused AmP2Xcryst (blue), and the EGFP-

fused zfP2X4WT (red), expressed in HEK293T cells. The arrows indicate the estimated elution positions of the void volume, the EGFP-fused P2X (trimer), and the

free EGFP.

(B) Representative currents of the AmP2X WT evoked by 100 mM ATP.

(C) Representative current traces of AmP2Xcryst with the application of 100 mM ATP, showing no evoked current.

(D) Measurement of the ATP binding ability of the EGFP-fused AmP2Xcryst by a 3H-ATP binding assay. Error bars indicate ±SEM for triplicate samples. The

calculated Kd for 3H-ATP binding is 0.745 ± 0.238 mM.
et al., 2007; Raouf et al., 2005). They share low sequence identity

with their vertebrate counterparts and seem to represent ortho-

logs to ancestral P2X receptors. Like their vertebrate counter-

parts, the invertebrate P2X receptors function as ATP-gated,

non-selective cation channels, and their biophysical properties

include divalent cationmodulations. Accordingly, the invertebrate

P2X receptors can be a useful model for structural and electro-

physiological studies to clarify the molecular mechanisms of the

divalent cation modulations of the vertebrate P2X receptors.

Here we report the crystal structure of the P2X receptor from

the Gulf Coast tick, Amblyomma maculatum (AmP2X), an inver-

tebrate harboring one copy of the P2X receptor gene. Together

with electrophysiological and computational analyses, our study

provides structural insights into the divalent cation modulations

of P2X receptors.
C

RESULTS

Functional Characterization and Structure
Determination of AmP2X
Fluorescence-detection size-exclusion chromatography (FSEC)

of an N-terminally GFP-tagged P2X receptor from AmP2X

showed a sharp, symmetrical profile (Kawate and Gouaux,

2006), comparable to that of the zfP2X4 receptor with its known

crystal structures (Hattori and Gouaux, 2012; Kawate et al.,

2009), indicating that AmP2X is a promising target for structural

analysis (Figure 1A). The two-electrode voltage clamp (TEVC)

recording of Xenopus oocytes expressing AmP2X revealed

that AmP2X functions as an ATP-gated cation channel with

fast inactivation, or in other words, desensitization (Figure 1B),

while the amino acid sequence of AmP2X is most closely related
ell Reports 14, 932–944, February 2, 2016 ª2016 The Authors 933



to that of the slowly desensitizing P2X4 receptor among the

mammalian P2X receptors (�40% sequence identity) (Figures

S1 and S2). In addition, a huge current decline occurred in the

AmP2X-current amplitude, in response to the second and sub-

sequent ATP applications, even after a 10 min interval (Fig-

ure 1B). This shows the strong channel rundown in the AmP2X

receptor. Channel rundown has been reported for other P2X re-

ceptors, such as P2X1, P2X3, P2X5, and some mutant P2X re-

ceptors, as well as for other ligand-gated ion channels (Bo

et al., 2000; Fujiwara and Kubo, 2006; Jensik and Cox, 2002;

Lewis and Evans, 2000; Mo et al., 2009). It is typically caused

by slow recovery from inactivation or channel internalization,

as observed in other P2X receptors (Bernier et al., 2008; Fujiwara

and Kubo, 2006; Jensik and Cox, 2002; Mo et al., 2009).

To further investigate this channel property of AmP2X, we con-

ducted simultaneous fluorescent imaging and electrical record-

ings of Xenopus oocytes expressing GFP-tagged AmP2X recep-

tors (Figure S3). The results showed that wild-type (WT) AmP2X

was expressed at the cell surface and repetitive ATP applica-

tions did not induce the internalization of AmP2X (Figure S3A),

indicating that fast inactivation and slow recovery from inactiva-

tion caused the strong channel rundown of AmP2X.

The removal of 23 N-terminal and 7 C-terminal residues and

the mutations of Asn171 and Cys374 (AmP2Xcryst, DN23/DC7/

N171Q/C374L) yielded crystals diffracting up to 2.8 Å resolution

in the presence of ATP and Zn2+ ion (Table S1). The deletion of 23

N-terminal and 7 C-terminal residues was designed basically ac-

cording to the zfP2X4-C crystallization construct of zfP2X4 (Hat-

tori and Gouaux, 2012). C374L was designed to remove the free

cysteine residue to avoid non-specific disulfide formation.

Asn171, a putative glycosylation site, was mutated to reduce

the heterogeneity of the construct for crystallization. Although

AmP2Xcryst still exhibited ATP binding activity and cell surface

expression (Figures 1D and S3B), it did not show ATP-depen-

dent gating activity (Figure 1C). The structure of AmP2Xcryst

was solved by molecular replacement, using the ATP-bound

zfP2X4 structure as the search model (Figures S4A–S4C).

Overall Structure and ATP Binding Site
AmP2Xcryst adopts a chalice-like trimeric architecture, and each

subunit of AmP2Xcryst consists of a large extracellular domain

and two transmembrane helices resembling the shape of a dol-

phin, as observed in the zfP2X4 structure (Figures 2A, 2B, and

S4D) (Hattori and Gouaux, 2012; Kawate et al., 2009). We

observed strong electron density peaks corresponding to ATP

molecules at each subunit interface of the extracellular domain

(Figure 2C), consistent with the crystallization conditions con-

taining 1 mM ATP and the ATP binding activity of the AmP2Xcryst

construct (Figure 1D). The ATP molecules adopt a bent confor-

mation and form tight interactions with the receptor (Figure 2C).

The phosphate groups are recognized by the side chains

of Lys66, Lys68, and Lys210 from one subunit and Asn311,

Arg313, and Lys327 from the neighboring subunit, whereas the

adenine ring of ATP forms hydrogen bonds with the side chain

of Thr206 and the main chain carbonyl atoms of Lys66 and

Thr206 (Figure 2C). All of these hydrophilic residues are highly

conserved among P2X receptors (Figure S1) and are important

for their ATP-dependent gating activities (Ennion et al., 2000;
934 Cell Reports 14, 932–944, February 2, 2016 ª2016 The Authors
Jiang et al., 2000; Marquez-Klaka et al., 2007; Roberts et al.,

2008; Roberts and Evans, 2004, 2006, 2007).

While the extracellular domain structure of AmP2Xcryst resem-

bles that of the ATP-bound, open zfP2X4, rather than that of apo,

closed zfP2X4 (Figure S4E), the transmembrane domain of

AmP2Xcryst exhibits a unique feature. The root-mean-square de-

viations (RMSDs) for the 138 Ca atoms from the transmembrane

domain of the trimer are 2.2 Å between AmP2X and ATP-bound

zfP2X4 and 4.9 Å between AmP2X and apo, closed zfP2X4

(Figures 2E, 2F, and 3A–3C). Thus, the structure of the trans-

membrane domain of the AmP2X trimer is closer to that of

ATP-bound, open zfP2X4 (Figures 2E, 2F, and 3A–3C). In

contrast, the transmembrane domain of each AmP2X monomer

resembles that of the apo, closed state of zfP2X4 (Figures 2D

and 3J–3L). The RMSDs for the 46Ca atoms from the transmem-

brane domain of each monomer are 2.1 Å between AmP2X and

ATP-bound zfP2X4 and 1.7 Å between AmP2X and apo, closed

zfP2X4.

The superimposition of the transmembrane architecture of

AmP2Xcryst with those of the previously determined zfP2X4

structures revealed further details about their structural differ-

ences. Consistent with the ATP-dependent expansion of the

extracellular domain, the TM1 and TM2 helices in the AmP2Xcryst

structure are rotated by �5 and �40 degrees counterclockwise

around the pore-center axis, relative to the closed state, whereas

those in the ATP-bound zfP2X4 are rotated by �10 and �55

degrees counterclockwise around the pore-center axis, respec-

tively (Figure 2F). These movements induce an iris-like expan-

sion of the transmembrane helices by �3 Å to form a pore (Fig-

ures 3A–3C). Consistent with the smaller rotation angles, the

pore size at the constriction region is smaller in the AmP2Xcryst

structure (Figures 3D–3I). The TM2 helices are totally straight in

the AmP2Xcryst structure, which restricts the wide pore formation

(Figures 3B, 3E, 3H, 3K, and 3N), while the kink of TM2 at the

highly conserved Gly350 residue in zfP2X4 enables the TM2 he-

lices to form the larger pore (Figures 3C, 3F, 3I, 3L, and 3O). In

AmP2X, the residue corresponding to Gly350 in zfP2X4 is re-

placed by Val (Figure S1). Overall, the ion-conducing pore is

partially opened in the AmP2Xcryst structure with the straight

TM2 helices.

Because the ion-conducting pore is partially opened, the pre-

sent structure of AmP2Xcryst might reflect either a pre-open state

before channel opening or an inactivated state after channel

opening. Considering the loss of the channel gating activity

and the structural features, including the activated extracellular

domain (Figures 1D and S4E), we regard the pre-open state, in

which an ATP-induced conformational change in the extracel-

lular cellular domain is partially propagated to the transmem-

brane domain, to be more likely.

Furthermore, it was proposed that the transmembrane archi-

tecture of the previously determined ATP-bound structure of

the zfP2X4 trimer, including the large inter-subunit gaps, is

partially distorted from that in the membrane-embedded native

state (Heymann et al., 2013). Because the trimeric architecture

of AmP2Xcryst resembles that of the ATP-bound structure of

zfP2X4 (Figures 3E and 3F), similar inter-subunit gaps are

observed in the transmembrane region of the trimeric AmP2Xcryst

structure (Figure 3E). Accordingly, we do not exclude the
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Figure 2. Overall Structure and ATP Binding Sites

(A) The ATP-bound AmP2Xcryst structure viewed parallel to the membrane. The omit Fo � Fc map contoured at 4s, showing the electron density of the ATP.

(B and C) Close-up view of the ATP binding site in the ATP-bound AmP2Xcryst. The amino acid residues and ATP are depicted by stick models. The molecule is

colored according to the dolphin-like model. Dotted black lines (C) indicate hydrogen bonds (<3.3 Å).

(D) Structural transition in the transmembrane helices. The transmembrane helices of the ATP-bound AmP2Xcryst (red) are superimposed on those of apo, closed

DP2X4-B2 (gray) and of ATP-boundDP2X4-C (blue) using the Ca positions of residues 32–51 and 345–370 for AmP2X and residues 36–55 and 334–359 for zfP2X4,

respectively. Gly350 in the two zfP2X4 structures and Val361 in the AmP2X structure are depicted by stick models.

(E and F) Structural comparison of the transmembrane domains as trimers viewed parallel to the membrane (E) and from the intracellular side (F). The trans-

membrane domain of the ATP-bound AmP2Xcryst (red) is superimposed as a trimer on those of apo, closed DP2X4-B2 (gray) and of ATP-bound DP2X4-C (blue)

using the Ca positions of residues 32–51 and 345–370 for AmP2X and residues 36–55 and 334–359 for zfP2X4, respectively. The black arrows and bars denote

the rotation of the transmembrane helices.
possibility that the trimer formation of the transmembrane

domain in the AmP2Xcryst structure is also partially distorted,

possibly because of detergents or truncations employed for

crystallization.

Zn2+ Binding Site and Modulation
In the ATP-bound AmP2Xcryst structure crystallized in the pres-

ence of Zn2+ ion, we observed strong residual electron densities

at two distant sites in the extracellular domain (Figure 4A). The

anomalous difference Fourier map clearly showed that these

densities correspond to Zn2+ ions (Figures 4B–4D). Accordingly,

we identified two distinct metal binding sites in the extracellular

domain of AmP2Xcryst and named them theM1 andM2 sites. The

M1 site is located at the trimer interface at the top part of the up-

per body domain of the dolphin model, in other words, the cen-

tral chamber region (Figure 4A), and is coordinated by the side

chains of Glu105 in one subunit and Glu106 in the neighboring
C

subunit (Figures 4C and 4D). Among the P2X4 receptors, the cor-

responding residues at the M1 site are strictly conserved as Gln

andGlu residues, respectively (Figure S1). TheM2 site is coupled

with the ATP binding site, and is surrounded by the side chain of

Asp188 and the g-phosphate group of ATP, to bridge the recep-

tor and ATP molecules (Figure 4B). Asp188 is strictly conserved

among the P2X1 and P2X3 receptors (Figure S1).

To investigate the functional roles of these metal binding sites,

we first conducted structure-based electrophysiological ana-

lyses of Zn2+ potentiation. Because a huge current decline

occurred in the AmP2X-current amplitudes, in response to the

second and subsequent ATP applications (Figure 1B), AmP2X

would not be suitable to analyze the Zn2+ potentiation by

repetitive ATP applications. Therefore, we employed rat P2X4,

which has well-established electrophysiological properties,

including Zn2+ potentiation (Garcia-Guzman et al., 1997; Soto

et al., 1996). We created the mutants (rE95A, rD170A, and
ell Reports 14, 932–944, February 2, 2016 ª2016 The Authors 935



rE95A/rD170A) of rGlu95 and rAsp170 for the equivalent residues

in rat P2X4, corresponding to Glu106 in the M1 site and Asp188

in the M2 site of AmP2X, respectively (the superscript ‘‘r’’ refers

to rat P2X4). The mutation at the M1 site (rE95A) abolished the

potentiation effect of Zn2+ ion (Figures 5A and 5B), whereas

the mutation at the M2 site (rD170A) did not affect the Zn2+

potentiation of the ATP-dependent currents (Figures 5A and 5B).

Glu105 and Glu106 at the M1 site in AmP2X are conserved

as similar residues, Gln and Glu, respectively, among P2X4 re-

ceptors and some invertebrate P2X receptors (Figure S1). The

Gln and Glu pair in the M1 site of these receptors would also

provide chemically favorable conditions for Zn2+ binding, as

observed in the AmP2X structure (Figures 4C and 4D). Consis-

tently, our electrophysiological analysis revealed that the M1

site is responsible for the Zn2+ potentiation of the rat P2X4 re-

ceptor (Figures 5A and 5B). Furthermore, an invertebrate P2X

receptor, LsP2X from the great pond snail, Lymnaea stagnalis,

which possesses the M1 site (Figure S1), is also reportedly

potentiated by Zn2+ ion (Bavan et al., 2012). Overall, our results

suggest the functional role of the M1 site in zinc potentiation for

the P2X4 receptors and the invertebrate P2X receptors pos-

sessing the M1 site.

The M1 site is overlapped with or neighboring the previously

identified metal binding sites for Gd3+ and Mg2+ in the central

chamber region, which are implicated in the inhibition of P2X re-

ceptors (Figures 4E–4G) (Kawate et al., 2009; Li et al., 2013). The

M1 site shares some residues (rGlu95 in rat P2X4) with the Gd3+

binding site (zfGlu98 in zfP2X4) identified in the previously deter-

mined zfP2X4 structure in the apo, closed state (Figures 4E–4G)

(Kawate et al., 2009). The application of Gd3+ inhibited the ATP-

dependent activation of zfP2X4. Accordingly, the Gd3+ binding

site seemed to play an important role in Gd3+ modulation

(Kawate et al., 2009). However, we found that the mutation of
rGlu95 did not abolish the Gd3+-dependent inhibition (Figures

S5A–S5D). The addition of 1 mM Gd3+ ion to a 100 mM ATP

solution totally depleted the ATP because of precipitation (Fig-

ure S5E). Furthermore, the values of the Hill coefficients were

out of order (about <35), suggesting that GdCl3 does not affect

the specific binding reaction between the ATP and the P2X re-

ceptor. Therefore, the depletion of ATP by Gd3+ addition, rather

than the Gd3+ binding to the receptors, could be mainly respon-

sible for the inhibitory effect of Gd3+ on the ATP-dependent acti-

vation of P2X receptors. More importantly, the Thr87 residue in

the human P2X3 receptor, corresponding to Ser107 in AmP2X

and Asp99 in zfP2X4 (Figures 4F and 4G), is implicated in the

Mg2+-dependent inhibition (Li et al., 2013). The Thr87 residue

is located within the central chamber region and neighbors the

M1 site and the Gd3+ binding site (Figures 4A and 4C–4G).

Accordingly, the central chamber region in the extracellular

domain may provide multiple cation binding sites for both poten-

tiation and inhibition in P2X receptors.

Zn2+ Modulation Mechanism
To investigate how Zn2+ ion at the M1 site modulates channel

gating, we performed all-atommolecular dynamics (MD) simula-

tions of the ATP-bound AmP2Xcryst in the presence and absence

of Zn2+ at theM1 site (Figure 6). To analyze the initial early events

upon zinc binding in the zinc potentiation of P2X receptors, the
936 Cell Reports 14, 932–944, February 2, 2016 ª2016 The Authors
MD simulations were performed for 150 ns. We calculated the

radial distance r of the center axis, and the polar angle q and

the azimuthal angle f of the helical axis, to quantitatively esti-

mate the structural change in the transmembrane region (Figures

S4F and S4G) (Dai and Zhou, 2014). The results of the MD

simulations revealed higher radial distance r and greater polar

angle q in the presence of Zn2+ ion (Figures 6A–6C), indicating

that Zn2+ binding at the M1 site promotes channel opening (Fig-

ures 6D–6F). A further structural comparison of the extracellular

domain revealed how Zn2+ binding to the extracellular domain

facilitates channel opening in the transmembrane domain. First,

Zn2+ binding to the M1 site brings two glutamate residues,

Glu105 from one subunit and Glu106 from the neighboring sub-

unit, toward each other by electrostatic attraction (Figures 6G,

6H, and 6M). This attraction induces the small counterclockwise

rotation of the lower body domain by �2 degrees (Figure 6I),

whereas the side chains of the residues are turned away from

each other in the absence of Zn2 (Figures 6G, 6H, and 6K). The

Zn2+-dependent small structural change within the upper lower

body is magnified into the larger movement in the lower part of

the body domain, which is directly connected to the transmem-

brane domain. Accordingly, the transmembrane domain is

rotated counterclockwise by �10 degrees to open the pore

(Figures 6J and 6M).

Zn2+ potentiation has also been reported for the P2X2 recep-

tors (Wildman et al., 1998). Two histidine residues, His120 and

His213, in the rat P2X2 receptor are involved in the zinc potenti-

ation (Clyne et al., 2002; Nagaya et al., 2005) and are located at

the head and dorsal fin domains forming the ATP binding cleft

(Figures 2B, S1, and S4D), whereas these histidine residues

are not conserved among the P2X4 receptors (Figure S1). The

ATP binding causes the cleft closure motion in the ATP binding

pocket, which in turn induces the structural change of the

body domain for pore opening (Hattori and Gouaux, 2012; Jiang

et al., 2012). Accordingly, Zn2+ binding to these histidine

residues bridges the inter-subunit cleft within the ATP binding

pocket to facilitate channel activation (Jiang et al., 2012). In

contrast, the M1 site is located far from the ATP binding pocket

(Figures 4A, 4C, and 4D), and Zn2+ binding to the M1 site would

be directly coupled to the structural change of the body domain

for pore opening (Figure 6). Therefore, the molecular mechanism

of Zn2+ potentiation in P2X2 receptors is distinct from that in

P2X4 receptors.

Taken together, our results show that allosteric Zn2+ binding to

the M1 site facilitates the ATP-dependent structural change of

the body domain in the extracellular region for pore opening.

Putative Mg2+ Modulation Mechanism
We then investigated the possible function of the M2 site in the

modulations of P2X receptors by other divalent cations. While

ATP exists predominantly as the MgATP2� complex in vivo, a

recent electrophysiological analysis demonstrated that distinct

subtypes of P2X receptors exhibit differential sensitivities to

MgATP2�, leading to modulation by Mg2+ (Li et al., 2013). The

fast-desensitizing P2X receptors, such as P2X1 and P2X3, can

be activated by both MgATP2� and Mg2+-free ATP with similar

efficacies (Li et al., 2013). In contrast, the slowly desensitizing

P2X receptors, such as P2X2, P2X4, and P2X7, can be activated
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by Mg2+-free ATP, but MgATP2� exhibits only low efficacy with

these receptors (Li et al., 2013).

The M2 site in the AmP2X structure is coupled with the ATP

binding site and bridges the receptor and the phosphate groups

of ATP (Figure 4B). The coordination of the divalent cation to the

b- and g-phosphate groups of the ATP in the M2 site is reminis-

cent of the MgATP2� complex. Furthermore, Asp188 in the M2

site is strictly conserved among the fast-desensitizing P2X1

and P2X3 receptors that exhibit similar sensitivities to both

MgATP2� and Mg2+-free ATP (Figure S1). Accordingly, we hy-

pothesized that the M2 site contributes to the accommodation

of the MgATP2� complex at the ATP binding site for the

MgATP2� sensitivity of these receptors.

To test our hypothesis on the functional role of the M2 site,

we performed an electrophysiological analysis with the human

P2X1 receptor, which exhibits similar sensitivities to both

MgATP2� and Mg2+-free ATP (Li et al., 2013). Because we

lack the structure of the P2X1 receptor and the Asp188 at the

M2 site in AmP2X, corresponding to Asp170 in P2X1, is located

on the loop region (Figure S1), we could not exclude the possi-

bilities that the neighboring Asp171 in P2X1 might be involved in

Mg2+ recognition or complement the mutation of Asp170.

Therefore, we introduced the mutations of both Asp170 and

neighboring Asp171 to create the mutant of human P2X1

(hD170A/hD171A) (the superscript ‘‘h’’ refers to human P2X1)

for the analysis of the M2 site. We analyzed the dose-response

relationships to ATP by the hWT and the hD170A/hD171A mutant

in the presence of high (5 mM) and low (0.5 mM) extracellular

Mg2+ concentrations (Figures 5C–5G). The hWT receptor ex-

hibited similar half-maximal effective concentration (EC50)

values for ATP at the high and low extracellular Mg2+ concentra-

tions, consistent with the previous electrophysiological report

(Figures 5C and 5D) (Li et al., 2013). In contrast, the
hD170A/hD171A mutant exhibited a 5-fold reduction in ATP

affinity at the high extracellular Mg2+ concentration (EC50 =

6.55 ± 1.44 mM) compared to that at the low extracellular

Mg2+ concentration (EC50 = 1.34 ± 0.27 mM) (Figures 5E and

5F). The rat P2X2 receptor, which lacks the M2 site (Figure S1),

also showed a Mg2+-dependent shift in the ATP concentration-

current amplitude relationship (Li et al., 2013). In addition, the

estimated log (Kd) value of the P2X2 receptor for Mg2+ calcu-

lated from the shift was consistent with the known stability con-

stant of Mg2+ binding to ATP, indicating the strong preference

for Mg2+-free ATP over MgATP2�. Overall, our results suggest

that the M2 site, which is coupled with the ATP binding site,

may contribute to the differential sensitivities to MgATP2�

among subtypes of P2X receptors.
Figure 3. Structural Comparisons of the Transmembrane Domains

(A–C) The transmembrane domains of apo, closed DP2X4-B2 (A); ATP-bound Am

surface model with a cartoon representation is shown for each structure. Amino

models. In (A) and (C), the distances between the Ca position of Ala347 and the c

distances between the Ca position of Val361 and the center of the pore are show

(D–F) Close-up views of the pore domain in apo, closed DP2X4-B2 (D); ATP-bound

(G–I) Pore radii for apo, closed DP2X4-B2 (G); ATP-bound AmP2Xcryst (H); and AT

(J–L) Close-up views of the TM2 helices in apo, closedDP2X4-B2 (J); ATP-bound A

pore constriction region are depicted by stick models.

(M–O) Cartoon models of the transmembrane regions in apo, closed DP2X4-B2 (
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DISCUSSION

In this work, we determined the crystal structure of the inverte-

brate P2X receptor from the Gulf Coast tick, in the presence of

ATP and Zn2+ ion, and identified two metal binding sites in the

extracellular domain of AmP2X to examine the divalent cation

modulation of P2X receptors.

The M1 site, located at the trimer interface, is responsible for

Zn2+ potentiation by allosterically facilitating the structural

change of the body domain in the extracellular region for pore

opening (Figures 4A–4D and 6). Zn2+ is an essential ion that

modulates numerous ion channels, such as NMDA receptors,

and is implicated in controlling their physiological functions

(Morris and Levenson, 2012). The M1 site is highly conserved

among the P2X4 receptors, and consistently, the Zn2+ modula-

tion of the P2X4 receptors may be involved in long-term poten-

tiation (Lorca et al., 2011), implying the physiological signifi-

cance of the M1 site among the P2X4 receptors. In the

phylogenetic tree, the invertebrate P2X receptors possessing

the M1 site are evolutionarily closer to each other than to the

invertebrate P2X receptors lacking the M1 site (Figure S2).

The invertebrate P2X receptors lacking the M1 site include

those from unicellular organisms, such as the marine green

alga Ostreococcus tauri and the soil amoeba Dictyostelium

discoideum (Figure S2). Furthermore, as we mentioned earlier,

the invertebrate P2X receptor, LsP2X from the great pond snail,

with the M1 site (Figure S1) is also reportedly potentiated

by Zn2+ ion (Bavan et al., 2012). These findings provide possible

insights into how P2X receptors evolutionally acquired the M1

site-mediated Zn2+ potentiation.

In contrast, the other divalent cation binding site, the M2 site,

is coupled with the ATP binding site and may contribute to

MgATP2� sensitivity among some P2X receptors (Figures 5C–

5G). Because ATP predominantly exists as MgATP2� in vivo,

it is reasonable that Mg2+ ion modulates the ATP-dependent re-

ceptor activation in a manner that is directly coupled with ATP

binding, rather than through allosteric modulation.

Overall, this work provides structural insights into the divalent

cation modulations of the P2X receptors, which form the basis

for the diverse physiological functions of this ion channel

superfamily.
EXPERIMENTAL PROCEDURES

Expression and Purification

Expression screening of P2X orthologs and further construct optimization

were performed with GFP-FSEC and FSEC-based thermostability assay
P2Xcryst (B); and ATP-bound DP2X4-C (C) viewed from the intracellular side. A

acid residues involved in the pore constriction region are depicted by stick

enter of the pore are shown by black lines and numbers (angstroms). In (B), the

n by black lines and numbers (angstroms).

AmP2Xcryst (E); and ATP-bound DP2X4-C (F) viewed parallel to the membrane.

P-bound DP2X4-C (I) along the pore center axis.

mP2Xcryst (K); and ATP-boundDP2X4-C (L). Amino acid residues involved in the

M); ATP-bound AmP2Xcryst (N); and ATP-bound DP2X4-C (O).
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Figure 4. Metal Binding Sites of AmP2X and of apo, Closed zfP2X4

(A) Overall view of the zinc binding sites in the AmP2X structure. The omit Fo � Fc map contoured at 6s, showing the electron densities of the zinc ions.

(B–D) Close-up views of the zinc binding sites. The anomalous difference Fourier maps contoured at 4s, showing the electron densities of the zinc ions.

(E) Overall view of the gadolinium binding site in the apo, closed zfP2X4 structure (PDB: 3H9V).

(F and G) Close-up view of the gadolinium binding site. The superscripts ‘‘zf,’’ ‘‘am,’’ and ‘‘h3’’ refer to zfP2X4, AmP2X, and human P2X3, respectively. The amino

acid residues zfGlu98 and zfAsp99 correspond to amGlu106 and amSer107 (h3Thr87), respectively.
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Figure 5. Zn2+ and Mg2+ Effects on the M1 and M2 Sites

(A) Representative currents of rat P2X4 (rWT) and the zinc binding site mutants evoked by 3 mM ATP in the presence and absence of 10 mM Zn2+.

(B) Accumulated data for the relative current amplitudes in the presence and absence of Zn2+. Bars depict mean + SEM (n = 5–7). The superscripts ‘‘r’’ and ‘‘am’’

refer to the rat P2X4 and AmP2X, respectively. The amino acid residues rGlu95 and rAsp170 correspond to amGlu106 and amAsp188, respectively.

(C–F) Effects of MgCl2 on the ATP-activated currents in human P2X1 WT (hWT) and the hD170A/hD171A (amD188A/amY189A) mutant. (C and D) Representative

currents of hWT under the 5 mM MgCl2 conditions (C) and under the 0.5 mM MgCl2 conditions (D). (E and F) Representative currents of hD170A/hD171A

(amD188A/amY189A) mutant under the 5 mMMgCl2 conditions (E) and under the 0.5 mMMgCl2 conditions (F). The numbers above the currents indicate the ATP

concentrations.

(G) Concentration-response relationships of ATP-evoked currents of hWT under the 5 mMMgCl2 conditions (EC50 = 1.65 ± 0.40 mM, n = 6) and under the 0.5 mM

MgCl2 conditions (EC50 = 1.14 ± 0.09 mM, n = 6) and of the hD170A/hD171A (amD188A/amY189A) mutant under the 5mMMgCl2 conditions (EC50 = 6.55 ± 1.44 mM,

n = 7) and under the 0.5 mMMgCl2 conditions (EC50 = 1.34 ± 0.27 mM, n = 6). Error bars depict mean ± SEM. The superscripts ‘‘h’’ and ‘‘am’’ refer to the human

P2X1 and AmP2X, respectively. The amino acid residues hAsp170 and hAsp171 correspond to amAsp188 and amTyr189, respectively.
(Hattori et al., 2012; Kawate and Gouaux, 2006). We found that the construct

(AmP2Xcryst) from AmP2X (Gene ID: 346469461) was biochemically robust and

suitable for crystallization.

The AmP2Xcryst construct was subcloned into the pEG BacMam vector, as

an N-terminal EGFP fusion with an octa-histidine affinity tag (EGFP-8 3 His),

and was expressed in HEK293S GnTI� (N-acetylglucosaminyl-transferase

I-negative) cells (Goehring et al., 2014). Cell collection, disruption, and mem-

brane isolation were performed as described previously (Hattori and Gouaux,

2012), except for the use of Tris-buffered saline (TBS) (50 mM Tris [pH 8.0],

150 mM NaCl) supplemented with 5% glycerol. For the purification of

AmP2Xcryst, all buffers were supplemented with 5% glycerol. The membrane

fraction was solubilized for 1 hr in TBS, containing 40 mM n-dodecyl-b-D-

maltopyranoside (DDM) (Calbiochem). The detergent-soluble fraction was

incubated with Talon metal affinity resin (Clontech) and eluted with 250 mM

imidazole. After TEV protease digestion and Endo H treatment, to remove

the EGFP-8 3 His tag and part of the N glycans, the protein was isolated

by size-exclusion chromatography on a Superdex 200 10/300 GL column

(GE Healthcare) in size-exclusion chromatography buffer (20 mM HEPES

[pH 7.0], 100 mM NaCl) containing 5 mM n-decyl-b-D-maltopyranoside

(DM) (Anatrace). The peak fractions of the protein were collected and concen-

trated to 2 mg/ml using a centrifugal filter device (Millipore, 50 kDa molecular

weight cutoff).
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Crystallization and Data Collection

Before crystallization, 1 mMATP was added to the protein solutions. The crys-

tals were grown at 4�C with mixtures of 1:1 or 2:1 (v/v) ratios of protein and

reservoir solutions by the vapor diffusion method. The crystals of AmP2Xcryst

appeared in 8%–11% (w/v) PEG 8000, 0.05 M zinc acetate, and 0.05 M

MES (pH 6.0). The crystals were flash-frozen in liquid nitrogen for X-ray diffrac-

tion experiments. The X-ray diffraction data were collected at 100 K at BL41XU

of SPring-8 and were processed using HKL2000 (Otwinowski and Minor,

1997).

Structure Determination

The structure of AmP2Xcryst was obtained by molecular replacement with

Phaser (McCoy et al., 2007) using the ATP-bound DP2X4-C structure (PDB:

4DW1) as the template. The determined structure was further refined by using

the programs PHENIX (Afonine et al., 2012) and COOT (Emsley et al., 2010).

Crystallographic data and refinement statistics are presented in Table S1. All

figures were prepared with CueMol software (http://www.cuemol.org). In Fig-

ure 3, the pore plots were generated using HOLE software (Smart et al., 1996).

TEVC Recording

The Xenopus oocytes were incubated at 18�C in Barth’s solution, containing

88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 10 mM HEPES, 0.33 mM

http://www.cuemol.org
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Figure 6. Zinc Modulation Mechanism

(A–C) Distributions of r (A), q (B), andf (C) are displayed. Orange distributions indicate the results of theMD simulations in the presence of Zn2+ at theM1 site, and

cyan distributions indicate the results of the MD simulations in the absence of Zn2+ at the M1 site.

(legend continued on next page)
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Ca(NO3)2, 0.41 mM CaCl2, and 0.82 mM MgSO4 (pH 7.4); supplemented with

50 mg/ml gentamicin; andwere used for recording after 4–7 days. The standard

bath solution for recordings contained 100 mM NaCl, 5 mM HEPES, 2 mM

MgCl2 (pH 7.3), and ATP and was freshly prepared each day. In Figures 5C–

5G, the sensitivity to MgATP2� was analyzed with two recording solutions,

containing 100 mM NaCl, 5 mM HEPES (pH 7.3), and either 5 mM or 0.5 mM

MgCl2. Under these conditions, [MgATP2�] and [Mg2+-free ATP] increase line-

arly with increasing [ATP] applied. [Mg2+-free ATP] in the high (5 mM) Mg2+ so-

lution is about eight or nine times lower than that in the low (0.5 mM) Mg2+ so-

lution, while [MgATP2�] is exactly the same between the two solutions. Hence,

the difference in the ATP dose response is considered to be derived from the

reduction of the MgATP2� binding to the mutant channel (Figure 5G). A small

amount of divalent cation was needed to suppress the endogenous currents of

the oocytes, and 0.5 mM MgCl2 was sufficient in this experiment. Oocytes

were held at �70 mV with a bath-clamp amplifier (OC-725C, Warner) with

the direct current gain booster turned on, and the macroscopic currents

were recorded and analyzed using pClamp 10 software (Molecular Devices),

as described previously (Fujiwara et al., 2009). Actual clamped membrane po-

tentials were also monitored during the recordings, and data with an error of

more than 1 mV from the command potentials were discarded. When the

data were contaminated by endogenous currents and/or leak currents, they

were also discarded. In Figures 5A and 5B, the ratios of the current amplitudes

in the presence or absence of ZnCl2 to the amplitude before Zn2+ application

were analyzed. In Figures S5A–S5D, a dataset from an identical oocyte

was used for the analysis of the half-maximal inhibitory concentration value

for GdCl3.

Confocal Microscopy

The hemagglutinin-tagged, EGFP-fused AmP2X WT and mutants were in-

jected in oocytes. At 3–4 days after injection, the oocytes were imaged using

an FV300 confocal microscope (Olympus) equipped with a320/0.5 numerical

aperture objective under TEVC. The bath solution was the same as that used

for the TEVC recordings (see TEVC Recording). Images were collected every

30 s for 25 min using the Fluoview software (Olympus). Fluorescence intensity

was calculated for each image and plotted against time, and the data were re-

ported as mean ± SEM (Figure S3).

Radiolabeled ATP Binding Experiments

The EGFP-fusion AmP2Xcryst construct was expressed and purified as

described previously; concentrated; dialyzed overnight at 4�C to remove im-

purities in dialysis buffer containing 20 mM HEPES (pH 7.0), 100 mM NaCl,

5% glycerol, and 1 mM DDM; and stored at �80�C before use. ATP binding

experiments were performed in the same manner as described previously

(Hattori and Gouaux, 2012), except for the use of dialysis buffer containing

20 mM HEPES (pH 7.0), 80 mM NaCl, 20 mM KCl, 1 mM DDM, and 1,000–

3,000 nM 3H-ATP (PerkinElmer), in which the radiolabeled ATP was diluted

with unlabeled ATP at a ratio of 1:4. The entire experiment was performed in

triplicate. Data were fit to a sigmoidal dose-response equation.

MD Simulations

The simulation system included the AmP2Xcryst trimer, 1-palmitoyl-2-oleoyl-

phosphatidylcholine (POPC), ATP, Zn2+ ions, water molecules, and 150 mM

NaCl. The missing atoms, including hydrogens in the protein, were added

with the program VMD (Humphrey et al., 1996). The periodic boundary system,
(D and E) The transmembrane domain of ATP-bound AmP2Xcryst after the 150 ns

Zn2+ at the M1 site (E). Each structure is viewed from the extracellular side. A sur

(F) The time course of the pore sizes of ATP-bound AmP2Xcryst through the 150 n

presence of Zn2+ at the M1 site, and the cyan graph shows the results of the simu

triangular dimensions formed by the three Ca positions of Val362 from each sub

(G–J) Subunit comparisons of ATP-bound AmP2Xcryst before the MD simulation (g

(orange) and in the absence of Zn2+ at the M1 sites (cyan). Close-up views of the

(K–M) Cartoon models of the Zn2+-dependent stabilization mechanism of the ATP

the absence of Zn2+ at theM1 site. (L) The crystal structuremodel of ATP, Zn2+-bou

Zn2+ at the M1 site. In cartoon models (K) and (M), the black arrows denote the m
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including the explicit solvent and the POPC lipid bilayer, was prepared. The

size of the simulation box was 128 3 128 3 148 Å. The net charge of the sys-

tem was neutralized by adding chloride and sodium ions. The topologies and

force field parameters from CHARMM36 were used (Klauda et al., 2010). MD

simulations were performed with the program NAMD 2.9 (Phillips et al., 2005).

The system was first energy minimized for 1,000 steps with fixed positions for

the non-hydrogen atoms and then for another 1,000 steps with 10 kcal/mol re-

straints for the non-hydrogen atoms. Next, we performed an equilibration run

for 0.5 ns in the NVT ensemble (310 K, 1283 1283 148 Å volume) with 10 kcal/

mol restraints for protein non-hydrogen atoms, ATP, and Zn2+, followed by an

equilibration run for 1.0 ns in the NPT ensemble (310 K, 1 atm), with the same

restraints. Finally, we performed equilibration runs for 1.0 ns in the NPT

ensemble, with the bond length restraints between Zn2+ ions or ATP and the

protein side chain: (1) ATP N1 and Thr206 OG1, (2) M2 and ATP OG1, (3) M1

and Glu105, (4) M1 and Glu106, and (5) M2 and Asp188 of the adjacent chain.

These restrained bond lengths are based on those observed in the crystal

structure of AmP2Xcryst. The production process was performed for 150 ns,

with the same bond length restraints. Constant temperature was maintained

by using Langevin dynamics. Constant pressure was maintained by using

the Langevin piston Nosé-Hoover method (Feller et al., 1995). Long-range

electrostatic interactions were calculated using the particle mesh Ewald

method (Darden et al., 1993).
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unit.
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