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Abstract. We give a brief summary of Yang-Baxter deformations of the AdS5×S5 superstring
by focusing upon four examples, 1) gravity duals for noncommutative gauge theories, 2) γ-
deformations of S5, 3) Schrödinger spacetimes and 4) abelian twists of the global AdS5 .

1. Introduction

The most prototypical example of AdS/CFT correspondences [1] is the conjectured equivalence
between type IIB superstring on the AdS5×S5 background and the four-dimensional N = 4
SU(N) super Yang-Mills (SYM) theory in the large N limit. A great progress on this subject
is that an integrable structure behind this duality was unveiled (For a comprehensive review,
see [2]). Motivated by this discovery, we are interested in the associated classical integrability on
the string-theory side. The classical string action on the AdS5×S5 background was constructed
by adopting the Green-Schwarz formulation [3] with the supercoset representation

super AdS5 × S5 =
PSU(2, 2|4)

SO(1, 4)× SO(5)
. (1)

This supercoset enjoys the Z4-grading property, which ensures the classical integrability [4]
in the sense of kinematical integrability that means the existence of Lax pairs (For excellent
reviews, see [5, 6]). However, it should be remarked that the complete integrability in the sense
of Liouville has not been shown due to the ambiguity stemming from non-ultra local terms in
the Poisson structure.

As the next issue, it is intriguing to study integrable deformations of the AdS5×S5 superstring.
In fact, there is a long history along this direction and a vast number of the deformations are
already known. Thus it is desirable to study them with the most systematic and efficient way.
A promising way is to follow the Yang-Baxter sigma model description proposed by Klimcik [7].
This is such a way to study integrable deformations of 2D non-linear sigma models. By following
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this approach, the integrable deformations are specified by skew-symmetric linear R-operators
which satisfy the modified classical Yang-Baxter equation (mCYBE). The original work [7] was
invented for principal chiral models, but it was recently generalized to the symmetric cosets
by Delduc-Magro-Vicedo [8]1. Then it was straightforwardly applied to construct a q-deformed
action of the AdS5×S5 superstring [14] with the classical r-matrix of Drinfeld-Jimbo type [15].
The metric in the string frame and NS-NS two-form have been obtained in [16] (Here “NS” is
an abbreviation of Neveu-Schwarz). For generalizations to AdSn×Sn , see [17]. For the recent
progress towards the full solution, see [18–20]. This issue is closely related to our interest here.

As a possible generalization, Jordanian deformations of the AdS5×S5 superstring action were
presented in [21] by adopting the homogeneous classical Yang-Baxter equation (CYBE). Here
the Lax pair and kappa transformation are different from the ones of the work [14] and this
generalization is not so difficult but not so obvious. One of the advantages of this formulation
is that partial deformations of AdS5×S5 are possible, because the zero map R = 0 is allowed
as a solution of the CYBE, but not of the mCYBE. Then, many skew-symmetric solutions of
the CYBE have been identified with well-known solutions of type IIB supergravity in a series
of papers [22–30]. The list of the solutions includes γ-deformations of S5 [31, 32], gravity duals
for noncommutative (NC) gauge theories [33] , Schrödinger spacetimes [34], abelian twists of the
global AdS5 [35] and further new backgrounds [22]. These identifications may be regarded as
a new perspective of Yang-Baxter deformations. The conjectured relation between solutions of
type IIB supergravity and classical r-matrices are called the gravity/CYBE correspondence [23]
(For a short summary of the works in 2014, see [36]. This review is the update of [36] in 2015).

To establish this correspondence, it is necessary to do much effort. However, if it has been
established, then it indicates that the moduli space of a certain class of solutions of type IIB
supergravity can be described by the CYBE. Due to the fact that the size of classical r-matrices
is finite and then the number of the solutions is also finite, the number of the associated solutions
of type IIB supergravity should also be finite. It is also analogous to the bubbling scenario [37],
where 1/2 BPS solutions of type IIB supergravity preserving a certain symmetry are specified
by droplet configurations in a free fermion system.

Recently, Yang-Baxter deformations are further generalized to 4D Minkowski spacetime [38].
In this case, there is an obstacle that the inner product entering into the YB sigma model
action is degenerate. A possible way around is to employ an embedding of 4D Minkowski
spacetime into the bulk AdS5 space. By adopting this resolution, a Yang-Baxter sigma model
providing deformations of 4D Minkowski spacetime was proposed in [38]. Then classical r-
matrices have been identified with a lot of gravity solutions such as Melvin backgrounds [39–42],
pp-wave backgrounds [43], Hashimoto-Sethi backgrounds [44] and Spradlin-Takayanagi-Volovich
backgrounds [45]. More interestingly, T-duals of dS4 and AdS4 also have been reproduced.
In addition, new backgrounds generated by the standard q-deformation were also presented.
Furthermore, the above result has an intimate connection with kappa-Minkowski spacetime [46]
via preceding works e.g., [47]. For an argument with gravity duals, see [29].

It is worth noting that the gravity/CYBE correspondence may work beyond the integrability.
There are many examples of non-integrable AdS/CFT correspondences. A landmark example is
the AdS5× T 1,1 background [48], for which the complete integrability is broken because chaotic
string solutions appear on the R × T 1,1 geometry [49, 50]. Hence TsT transformations of T 1,1

[31, 51] give rise to non-integrable deformations. Interestingly enough, these deformations can
be reproduced as Yang-Baxter deformations with abelian classical r-matrices [52]. This result
indicates that such Yang-Baxter deformations work well even for non-integrable backgrounds of
type IIB supergravity.

1 For earlier arguments concerned with this generalization, see [9–13].
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In this article, we will give a summary for a series of our works with some updates by focusing
upon four examples of classical r-matrices. The explanation includes Lax pairs as well as the
metric and NS-NS two-form.

This article is organized as follows. Section 2 is a brief review of Yang-Baxter deformations
of the AdS5×S5 superstring. In the subsequent sections, we explain four examples of classical
r-matrices: (i) gravity duals of non-commutative gauge theories [in sec. 3] , (ii) γ-deformations of
S5 [in sec. 4] , (iii) Schrödinger spacetimes [in sec. 5] , and (iv) abelian twists of the global AdS5

[in sec. 6] . Section 7 is summary and outlooks. In Appendix A, our notation and convention are
summarized.

2. Jordanian deformations of the AdS5×S5 superstring

We give a brief review of Yang-Baxter deformations of the AdS5×S5 superstring with the
CYBE [21]. The deformations are often called Jordanian deformations.

First of all, the deformed classical action of the AdS5×S5 superstring is given by

S = −
√
λc
4

∫ ∞
−∞

dτ

∫ 2π

0
dσ (γαβ − εαβ)STr

[
Aα d ◦

1

1− ηRg ◦ d
(Aβ)

]
. (2)

The left-invariant one-form Aα is defined as

Aα ≡ g−1∂αg , g ∈ SU(2, 2|4) . (3)

Here α = (τ, σ) is the world-sheet index. Then the world-sheet metric is taken as

γαβ = diag(−1,+1) (4)

with the conformal gauge, in which there is no coupling of the dilaton to the world-sheet scalar
curvature. The anti-symmetric tensor εαβ is normalized as ετσ = +1 . The constant parameter
λc in front of the action (2) is defined as√

λc ≡ 2πL2T =
L2

α′
, T =

1

2πα′
,

where T is the string tension and L is the curvature radius of the undeformed AdS5 . Note that
η is a deformation parameter and hence the undeformed action [3] is reproduced when η = 0 .

A key ingredient appearing in (2) is a chain of operations Rg , which is defined as

Rg(X) ≡ g−1R(gXg−1)g , X ∈ su(2, 2|4) . (5)

A linear operator R : su(2, 2|4)→ su(2, 2|4) is a solution of the CYBE2,

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = 0 . (6)

This R-operator is related to a skew-symmetric classical r-matrix in the tensorial notation
through the following supertrace operation on the second site:

R(X) = STr2[r(1⊗X)] =
∑
i

(ai STr[biX]− bi STr[aiX]) . (7)

2 In the original work [21], a wider class of R-operators whose image is given by gl(4|4) has been proposed. The
gl(4|4) image is restricted on su(2, 2|4) in essential under the coset projection d , as pointed out in [28]. We will
concentrate here on a restricted class in which the image is su(2, 2|4) from the beginning, so as to deal with
pre-projected quantities like the deformed current J itself, without introducing extra generators. For general
cases argued in [22,25], a more detailed study would be necessary.
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Here the classical r-matrix is represented by

r =
∑
i

ai ∧ bi ≡
∑
i

(ai ⊗ bi − bi ⊗ ai) with ai, bi ∈ su(2, 2|4) . (8)

If ai and bj (do not) commute with each other, then r is called (non-)abelian.

The coset (1) enjoys the Z4-grading property with the projections Pi (i = 0, 1, 2, 3) to the
graded components of the decomposition

su(2, 2|4) = su(2, 2|4)(0) ⊕ su(2, 2|4)(1) ⊕ su(2, 2|4)(2) ⊕ su(2, 2|4)(3) , (9)

where Pi(su(2, 2|4)) ≡ su(2, 2|4)(i) . Note that

su(2, 2|4)(0) = so(1, 4)⊕ so(5) (10)

is a local symmetry of the classical action (2). Then d is defined as a linear combination of P1 ,
P2 and P3 like

d ≡ P1 + 2P2 − P3 . (11)

The numerical coefficients have been fixed by requiring the kappa-symmetry [21]. This d is the
same in the undeformed case [3], while it depends on η in the case of the mCYBE [14].

In the following analysis, it is convenient to introduce the light-cone expression of Aα on the
world-sheet like

A± ≡ Aτ ±Aσ . (12)

In particular, it makes the expression of Lax pair much simpler.

2.1. The bosonic part of the Lagrangian

Le us study the bosonic part of the deformed action (2) , which can be rewritten as

L =

√
λc
2

STr(A− P2(J+)) . (13)

Here J± is a deformed current defined as

J± ≡
1

1∓ 2ηRg ◦ P2
A± . (14)

Note here that the factor 2 in front of η comes from the projection operator d given in (11) .
The deformed current J± is determined by solving the following equations:3

(1∓ 2ηRg ◦ P2) J± = A± . (15)

Then the metric in the string frame and NS-NS two-form can be evaluated from the Lagrangian
(13) .

3 In order to derive the metric and NS-NS two-form, it is enough to determine the projected current P2(J±) by
solving the projected conditions

(1∓ 2ηP2 ◦Rg)P2(J±) = P2(A±) .

On the other hand, the unprojected current J± itself is necessary to derive the explicit form of Lax pair.
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Taking a variation of the Lagrangian (13), the equation of motion is obtained as

E ≡ ∂+P2(J−) + ∂−P2(J+) + [J+, P2(J−)] + [J−, P2(J+)] = 0 . (16)

By definition, the undeformed current A± satisfies the flatness condition,

Z ≡ ∂+A− − ∂−A+ + [A+, A−] = 0 . (17)

Then, in terms of the deformed current J± , this condition can be rewritten as

∂+J− − ∂−J+ + [J+, J−] + 2η Rg(E) + 4η2 CYBEg(P2(J+), P2(J−)) = 0 , (18)

where we have introduced a new quantity defined as

CYBEg(X,Y ) ≡ [Rg(X), Rg(Y )]−Rg([Rg(X), Y ] + [X,Rg(Y )]) . (19)

Note that CYBEg(X,Y ) vanishes if the R-operator satisfies the CYBE in (6). Then the relation
(18) indicates that J± also satisfies the flatness condition with the equation of motion E = 0 .
That is, J± is the on-shell flat current, while A± is the off-shell flat one.

It is helpful to decompose J± with the projections P0 and P2 like

J± = P0(J±) + P2(J±) ≡ J (0)
± + J

(2)
± , (20)

with the completeness condition P0 + P2 = 1 . The concrete expressions of the projections are
given in Appendix A. Then the equation of motion (16) can be rewritten as

E = ∂+J
(2)
− + ∂−J

(2)
+ + [J

(0)
+ , J

(2)
− ] + [J

(0)
− , J

(2)
+ ] = 0 . (21)

The flatness condition (17) can also be rewritten in a similar way:

Z = P0(Z) + P2(Z) = 0 . (22)

With the help of the linear independence of the grade 0 and grade 2 parts, one can obtain the
following two conditions:

P0(Z) = ∂+J
(0)
− − ∂−J

(0)
+ + [J

(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] + 2η P0(Rg(E)) = 0 ,

P2(Z) = ∂+J
(2)
− − ∂−J

(2)
+ + [J

(0)
+ , J

(2)
− ] + [J

(2)
+ , J

(0)
− ] + 2η P2(Rg(E)) = 0 . (23)

Note here that the terms proportional to η vanish under the equation of motion, i.e., E = 0 .

Then the three conditions in (21) and (23) can be recast into the following set of the equations
Ci = 0 (i = 1, 2, 3) :

C1 ≡ ∂−J
(2)
+ − [J

(2)
+ , J

(0)
− ] ,

C2 ≡ ∂+J
(2)
− + [J

(0)
+ , J

(2)
− ] ,

C3 ≡ ∂+J
(0)
− − ∂−J

(0)
+ + [J

(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] . (24)

Namely, the relations Ci = 0 (i = 1, 2, 3) are equivalent to the equation of motion (16) and the
flatness condition (17).
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2.2. Lax pair

Finally, let us introduce a Lax pair for the deformed Lagrangian (13) , which is given by

L± = J
(0)
± + λ±1J

(2)
± (25)

with a spectral parameter λ ∈ C . Note that the existence of the Lax pair (25) is based on the
Z2-grading property of the bosonic AdS5×S5 group manifold.

As usual, the flatness condition of L±

0 = ∂+L− − ∂−L+ + [L+,L−] (26)

is equivalent to the equation of motion E = 0 [in (16)] and the flatness condition Z = 0 [in (17)] .
In order to confirm the equivalence, it is helpful to notice that the right-hand side of (26) can
be rewritten in terms of Ci as follows:

∂+L− − ∂−L+ + [L+,L−] = −λ C1 +
1

λ
C2 + C3 . (27)

Thus the equivalence is now obvious.

In the following sections, we will explain classical r-matrices associated with four backgrounds,
1) gravity duals for noncommutative gauge theories, 2) γ-deformations of S5, 3) Schrödinger
spacetimes, and 4) abelian twists of the global AdS5 . For each of the examples, we show the
metric (in the string frame) and NS-NS two-form, and present an explicit form of the associated
Lax pair (25) . For the conventions of the generators, see Appendix A.

3. Gravity duals of noncommutative gauge theories

Firstly, we will describe gravity duals of noncommutative gauge theories [33] from the viewpoint
of Yang-Baxter deformations.

The backgrounds are associated with abelian Jordanian classical r-matrices [24]

r = c1 p2 ∧ p3 + c2 p0 ∧ p1 , (28)

which consist of the translation generators pµ in su(2, 2) . The constant parameters c1 and c2
are related to magnetic and electric NS-NS two-forms in the solutions [33], respectively.

Note that pµ’s commute with each other and pµpν = 0 (µ, ν = 0, 1, 2, 3) . Then the square
of the associated R-operator vanishes and the classical r-matrices (28) are of Jordanian type.
Since the r-matrices include no su(4) generator, only the AdS5 part is deformed. Hence, we will
concentrate on the AdS5 part below, while ignoring the S5 part.

3.1. The deformed metric and NS-NS two-form

Let us derive the metric and NS-NS two-form from the Lagrangian (13) .

We first introduce a coordinate system through a parametrization of an SU(2, 2) element,

ga(τ, σ) = exp
[
p0 x

0 + p1 x
1 + p2 x

2 + p3 x
3
]

exp

[
γa5

1

2
log z

]
∈ SU(2, 2) . (29)

By solving the relations in (15) , the deformed current Jα is determined as

J± =
z

z4 − 4c22η2

[
(z2∂±x

0 ± 2c2η∂±x
1) p0 + (z2∂±x

1 ± 2c2η∂±x
0) p1

]
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+
z

z4 + 4c12η2

[
(z2∂±x

2 ± 2c1η∂±x
3) p2 + (z2∂±x

3 ∓ 2c1η∂±x
2) p3

]
+

1

2z
∂±z γ

a
5 . (30)

Then the resulting metric and NS-NS two-form are given by

ds2 =
z2[−(dx0)2 + (dx1)2]

z4 − 4c22η
2

+
z2[(dx2)2 + (dx3)2]

z4 + 4c21η
2

+
dz2

z2
,

B = − 2c2η

z4 − 4c22η
2
dx0 ∧ dx1 +

2c1η

z4 + 4c21η
2
dx2 ∧ dx3 . (31)

This result exactly agrees with the solutions in [33]. When c1 = c2 = 0 , the Poincaré AdS5 is
reproduced.

The result in (31) can also be reproduced as a special limit of the q-deformed AdS5×S5 [19].
This limit has been further confirmed at the level of Lax pairs [30].

3.2. Lax pair

Then let us see the associated Lax pair LNC
± . It is explicitly given by [24,30]

LNC
± =

z

z4 − 4c22η
2

[
(z2∂±x

0 ± 2c2η∂±x
1)
(λ±1

2
γa0 − na05

)
+(z2∂±x

1 ± 2c2η∂±x
0)
(λ±1

2
γa1 − na15

)]
+

z

z4 + 4c21η
2

[
(z2∂±x

2 ± 2c1η∂±x
3)
(λ±1

2
γa2 − na25

)
+ (z2∂±x

3 ∓ 2c1η∂±x
2)
(λ±1

2
γa3 − na35

)]
+
λ±1∂±z

2z
γa5 . (32)

In the undeformed limit c1, c2 → 0 , the above expression is reduced to

LPAdS5
± =

∂±x
µ

z

(λ±1
2
γaµ − naµ5

)
+
λ±1∂±z

2z
γa5 . (33)

This is nothing but a Lax pair for the Poincaré AdS5 .

3.3. Twisted boundary condition

In fact, the deformations with the r-matrices (28) can be regarded as twisted boundary conditions
with the undeformed AdS5×S5 , as argued in [32].

For simplicity, suppose c1 6= 0 and c2 = 0 . The analysis for the case with c2 6= 0 is quite
similar, though there is a subtlety for the signature of the metric (For the detail, see [33]).

After performing the Yang-Baxter deformation (equivalently the associated TsT transforma-
tion) , the original coordinates x̃2 and x̃3 for the undeformed AdS5×S5 are mapped to x2 and
x3 . Then the relations between the coordinates are given by

1

z2
∂±x̃

2 =
z2

z4 + 4c12η2

[
∂±x

2 ± 2c1η

z2
∂±x

3

]
,

1

z2
∂±x̃

3 =
z2

z4 + 4c12η2

[
∂±x

3 ∓ 2c1η

z2
∂±x

2

]
. (34)
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These relations indicate the following equivalence of Noether currents

P̃αi = Pαi (i = 2, 3) . (35)

Here Pαi and P̃αi are conserved currents associated with translation invariance for the xi and
x̃i directions, respectively. The τ -component of (35) indicates that the momentum pi ≡ P τi is

identical to p̃i ≡ P̃ τi , namely pi = p̃i . Then the σ-component of (35) leads to the relations:

∂σx̃
2 = ∂σx

2 +
2c1η√
λc
p3 , ∂σx̃

3 = ∂σx
3 − 2c1η√

λc
p2 . (36)

By integrating both relations, one can realize that the deformed backgrounds with the
periodic boundary condition are equivalent to the undeformed AdS5×S5 with twisted boundary
conditions:

x̃2(σ = 2π) = x̃2(σ = 0) +
2c1η√
λc
P3 , x̃3(σ = 2π) = x̃3(σ = 0)− 2c1η√

λc
P2 . (37)

Here Pi are Noether charges obtained by integrating pi .

Thus the Yang-Baxter deformations with the classical r-matrices (28) can be reinterpreted
as twisted boundary conditions with the usual AdS5×S5 background.

4. γ-deformations of S5

An example of marginal deformations of N = 4 SYM, which preserves an N = 1 superconformal
symmetry, is called the β-deformation [53]. The gravity dual for the β-deformation was
constructed in [31], and then it was generalized to three-parameter cases called the γ-
deformations [32]. The AdS5 part is not deformed due to the conformal symmetry, while the S5

part is deformed due to the reduced supersymmetry.

Let us study here the γ-deformations [31,32] from the viewpoint of Yang-Baxter deformations.
In the following, the AdS5 part will be dropped off.

The backgrounds are associated with abelian classical r-matrices [23] ,

r = µ3 h4 ∧ h5 + µ1 h5 ∧ h6 + µ2 h6 ∧ h4 . (38)

Here h4 , h5 and h6 are the three Cartan generators of su(4) , and µi (i = 1, 2, 3) are the
deformation parameters.

4.1. The deformed metric and NS-NS two-form

It is useful to employ the following parametrization of a group element gs of SU(4) ,

gs(τ, σ) = exp

[
i

2
(φ1 h4 + φ2 h5 + φ3 h6)

]
exp
[
−ζns13

]
exp
[
− i

2
r γs1

]
. (39)

In the undeformed case, this describes the round S5 with the coordinates r , ζ and φi (i = 1, 2, 3) .

By solving the equations in (15) , the deformed current J γ̂1,γ̂2,γ̂3α is determined as

J γ̂1,γ̂2,γ̂3± = −i∂±r
γs1
2
− ∂±ζ

[
i sin r

γs3
2

+ cos r ns13

]
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−G(γ̂i)
[
∂±φ1 ± (γ̂3 sin2 r sin2 ζ∂±φ2 − γ̂2 cos2 r∂±φ3)

+γ̂1 sin2 r cos2 r sin2 ζ
3∑
i=1

γ̂i∂±φi

]
×
[
cos ζ(i sin r

γs2
2

+ cos r ns12) + sin ζ ns23

]
−G(γ̂i)

[
∂±φ2 ± (γ̂1 cos2 r∂±φ3 − γ̂3 sin2 r cos2 ζ∂±φ1)

+γ̂2 sin2 r cos2 r cos2 ζ

3∑
i=1

γ̂i∂±φi

]
×
[
sin ζ(i sin r

1

2
γs4 + cos r ns14) + cos ζ ns34

]
+G(γ̂i)

[
∂±φ3 ± (γ̂2 sin2 r cos2 ζ∂±φ1 − γ̂1 sin2 r sin2 ζ∂±φ2)

+γ̂3 sin4 r sin2 ζ cos2 ζ

3∑
i=1

γ̂i∂±φi

]
×
[
i cos r

γs5
2
− sin r ns15

]
. (40)

Here the constant parameters γ̂i are defined as

γ̂i ≡ 8 ηµi , (41)

and the scalar function G(γ̂i) is given by

G−1(γ̂i) ≡ 1 + sin2 r(γ̂21 cos2 r sin2 ζ + γ̂22 cos2 r cos2 ζ + γ̂23 sin2 r sin2 ζ cos2 ζ) . (42)

By substituting (40) into the Lagrangian (13) , the deformed background is obtained as

ds2 =
3∑
i=1

(
dρi

2 +G(γ̂i)ρi
2dφi

2
)

+G(γ̂i)ρ1
2ρ2

2ρ3
2

(
3∑
i=1

γ̂idφi

)2

,

B2 = G(γ̂i) (γ̂3ρ1
2ρ2

2dφ1 ∧ dφ2 + γ̂1ρ2
2ρ3

2dφ2 ∧ dφ3 + γ̂2ρ3
2ρ1

2dφ3 ∧ dφ1) . (43)

Here new coordinates ρi (i = 1, 2, 3) are defined as

ρ1 ≡ sin r cos ζ , ρ2 ≡ sin r sin ζ , ρ3 ≡ cos r . (44)

The metric and NS-NS two-form in (43) agree with the ones of γ-deformations of S5 [32].

A particular one-parameter case with

γ̂1 = γ̂2 = γ̂3 ≡ γ̂ (45)

corresponds to the metric and NS-NS two-form of the Lunin-Maldacena solution [31] ,

ds2 =
3∑
i=1

(
dρi

2 +Gρi
2dφi

2
)

+Gγ̂2ρ1
2ρ2

2ρ3
2

(
3∑
i=1

dφi

)2

,

B2 = G γ̂(ρ1
2ρ2

2dφ1 ∧ dφ2 + ρ2
2ρ3

2dφ2 ∧ dφ3 + ρ3
2ρ1

2dφ3 ∧ dφ1) , (46)

where the scalar function G(γ̂) is defined as

G−1(γ̂) ≡ 1 +
γ̂2

4
(sin2 2r + sin4 r sin2 2ζ) . (47)

This background is a holographic dual of the β-deformation of the N = 4 SYM [53].
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4.2. Lax pair

Next, the explicit form of the Lax pair is given by [23,30]

Lγ̂1,γ̂2,γ̂3± = −iλ
±1

2
∂±r γ

s
1 − ∂±ζ

[
i sin r

λ±1

2
γs3 + cos r ns13

]
−G(γ̂i)

[
∂±φ1 ± (γ̂3 sin2 r sin2 ζ∂±φ2 − γ̂2 cos2 r∂±φ3)

+γ̂1 sin2 r cos2 r sin2 ζ
3∑
i=1

γ̂i∂±φi

]
×
[
cos ζ(i sin r

λ±1

2
γs2 + cos r ns12) + sin ζ ns23

]
−G(γ̂i)

[
∂±φ2 ± (γ̂1 cos2 r∂±φ3 − γ̂3 sin2 r cos2 ζ∂±φ1)

+γ̂2 sin2 r cos2 r cos2 ζ
3∑
i=1

γ̂i∂±φi

]
×
[
sin ζ(i sin r

λ±1

2
γs4 + cos r ns14) + cos ζ ns34

]
+G(γ̂i)

[
∂±φ3 ± (γ̂2 sin2 r cos2 ζ∂±φ1 − γ̂1 sin2 r sin2 ζ∂±φ2)

+γ̂3 sin4 r sin2 ζ cos2 ζ

3∑
i=1

γ̂i∂±φi

]
×
[
i cos r

λ±1

2
γs5 − sin r ns15

]
. (48)

This result is equivalent to the Lax pair obtained in [32]. Note here that, in the undeformed

limit γ̂i → 0, Lγ̂1,γ̂2,γ̂3± is reduced to

LS± = −i ∂±r
λ±1

2
γs1 − ∂±ζ

[
i sin r

λ±1

2
γs3 + cos r ns13

]
−∂±φ1

[
cos ζ(i sin r

λ±1

2
γs2 + cos r ns12) + sin ζ ns23

]
− ∂±φ2

[
sin ζ(i sin r

λ±1

2
γs4 + cos r ns14) + cos ζ ns34

]
+∂±φ3

[
i cos r

λ±1

2
γs5 − sin r ns15

]
. (49)

This is just a Lax pair for the round S5 .

4.3. Twisted boundary condition

Again, the deformations can be regarded as the undeformed AdS5×S5 with twisted boundary
conditions [32]. The twisted boundary conditions are given by

φ̃1(σ = 2π) = φ̃1(σ = 0) + γ3J2 − γ2J3 + 2πn1 ,

φ̃2(σ = 2π) = φ̃2(σ = 0) + γ1J3 − γ3J1 + 2πn2 ,

φ̃3(σ = 2π) = φ̃3(σ = 0) + γ2J1 − γ1J2 + 2πn3 , (50)

with γi ≡ γ̂/
√
λc . Here Ji are the Noether charges for rotation invariance in the φi directions.

The integers ni are winding numbers along the φi directions.
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5. Schrödinger spacetimes

We are concerned with Schrödinger spacetimes here. Originally, 3D Schrödinger spacetimes were
introduced as light-like deformations of AdS3 [55]. Higher-dimensional Schrödinger spacetimes
were constructed as holographic duals for non-relativistic conformal field theories [56]. For the
coset construction of the metrics, see [54]. Then the backgrounds have been embedded into type
IIB supergravity [34]4.

In the following, let us study Schrödinger spacetimes embedded in type IIB supergravity [34]
from the viewpoint of Yang-Baxter deformations. Then the backgrounds are associated with
the following abelian r-matrix [27]:

r =
i

4
√

2
(p0 − p3) ∧ (h4 + h5 + h6) . (51)

It contains generators of both su(2, 2) and su(4) and hence deforms both AdS5 and S5 parts.

5.1. The deformed metric and NS-NS two-form

Let us parametrize group elements of SU(2, 2) and SU(4) like

ga(τ, σ) = exp
[
x0p0 + x1p1 + x2p2 + x3p3

]
exp

[
γa5

1

2
log z

]
∈ SU(2, 2) ,

gs(τ, σ) = exp

[
i

2
(ψ1h4 + ψ2h5 + ψ3h6)

]
exp
[
−ζns13

]
exp

[
− i

2
r γs1

]
∈ SU(4) . (52)

The deformed current J± can be expanded in terms of the generators of su(2, 2)⊕ su(4) . Then,
by solving the equations in (15) , J± is determined as

Ja± =
1

z
∂±x

1p1 +
1

z
∂±x

2p2 +
1

2z
∂±z γ

a
5

+
1√
2 z
∂±x

+ (p0 + p3)

+
1√
2 z

[
∂±x

− ± η∂±χ±
η

2
sin2 µ(∂±ψ + cos θ∂±φ) +

η2

z2
∂±x

+

]
(p0 − p3) ,

Js± = − i
2
∂±µγ

s
1 −

1

2
∂±θ

[
i

2
sinµγs3 + cosµns13

]
−
[
∂±χ±

η ∂±x
+

z2

] [
sin

θ

2

(
i

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
i

2
sinµγs2 + cosµns12 + ns34

)
− i

2
cosµγs5 + sinµns15

]
+

1

2
∂±φ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns14 − ns23

)
− cos

θ

2

(
i

2
sinµγs2 + cosµns12 − ns34

)]
−1

2
∂±ψ

[
sin

θ

2

(
i

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
i

2
sinµγs2 + cosµns12 + ns34

)]
. (53)

4 For another embedding into type IIB supergravity, see [57].
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Here we have performed a coordinate transformation,

x± =
x0 ± x3√

2
,

r = µ , ζ = 1
2θ , ψ1 = χ+ 1

2(ψ + φ) , ψ2 = χ+ 1
2(ψ − φ) , ψ3 = χ .

With the deformed current (53) , the resulting background is given by

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− η2 (dx+)2

z4
+ ds2

S5
,

B2 =
η

z2
dx+ ∧ (dχ+ ω) . (54)

Here the S5 metric is written as an S1-fibration over CP2 ,

ds2S5 = (dχ+ ω)2 + ds2CP2 ,

ds2CP2 = dµ2 + sin2 µ
(
Σ2
1 + Σ2

2 + cos2 µΣ2
3

)
. (55)

Now χ is the fiber coordinate and ω is a one-form potential of the Kähler form on CP2 . The
symbols Σi (i = 1, 2, 3) and ω are defined as

Σ1 ≡ 1
2(cosψ dθ + sinψ sin θ dφ) ,

Σ2 ≡ 1
2(sinψ dθ − cosψ sin θ dφ) ,

Σ3 ≡ 1
2(dψ + cos θ dφ) , ω ≡ sin2 µΣ3 . (56)

It is remarkable that only the AdS5 metric is deformed while the S5 part is not, in spite of the
expression of the classical r-matrix (51) . On the other hand, the NS-NS two-form carries two
indices, one of which is from AdS5 and the other is S5 .

So far, we have considered the one-parameter deformation, but it is easy to reproduce three-
parameter deformations of [58] and non-Cartan deformations of [59] (For the detail, see [27]) .

5.2. Lax pair

In the present case, the associated Lax pair is a bit messy but given by [27,30]

LSch± =
1

z
∂±x

1

[
λ±1

2
γa1 − na15

]
+

1

z
∂±x

2

[
λ±1

2
γa2 − na25

]
+
λ±1

2z
∂±z γ

a
5

+
1√
2 z
∂±x

+

[
λ±1

2
γa0 +

λ±1

2
γa3 − na05 − na35

]
+

1√
2 z

[
∂±x

− ± η∂±χ±
η

2
sin2 µ(∂±ψ + cos θ∂±φ) +

η2

z2
∂±x

+

]
×
[
λ±1

2
γa0 −

λ±1

2
γa3 − na05 + na35

]
− iλ

±1

2
∂±µγ

s
1 −

1

2
∂±θ

[
iλ±1

2
sinµγs3 + cosµns13

]
−
[
∂±χ±

η ∂±x
+

z2

] [
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 + ns34

)
− iλ±1

2
cosµγs5 + sinµns15

]
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+
1

2
∂±φ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 − ns23

)
− cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 − ns34

)]
−1

2
∂±ψ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 + ns34

)]
. (57)

As η → 0 , the above Lax pair LSch± is reduced to the following:

L± =
1

z
∂±x

1

[
λ±1

2
γa1 − na15

]
+

1

z
∂±x

2

[
λ±1

2
γa2 − na25

]
+
λ±1

2z
∂±z γ

a
5

+
1√
2 z
∂±x

+

[
λ±1

2
γa0 +

λ±1

2
γa3 − na05 − na35

]
+

1√
2 z
∂±x

−
[
λ±1

2
γa0 −

λ±1

2
γa3 − na05 + na35

]
− iλ

±1

2
∂±µγ

s
1 −

1

2
∂±θ

[
iλ±1

2
sinµγs3 + cosµns13

]
−∂±χ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 + ns34

)
− iλ±1

2
cosµγs5 + sinµns15

]
+

1

2
∂±φ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 − ns23

)
− cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 − ns34

)]
−1

2
∂±ψ

[
sin

θ

2

(
iλ±1

2
sinµγs4 + cosµns14 + ns23

)
+ cos

θ

2

(
iλ±1

2
sinµγs2 + cosµns12 + ns34

)]
. (58)

5.3. Twisted boundary condition

The deformations can be reinterpreted as twisted boundary conditions, again. The following
twisted boundary conditions

x̃−(σ = 2π) = x̃−(σ = 0) +
η√
λc
Jχ + 2πnχ ,

χ̃(σ = 2π) = χ̃(σ = 0)− η√
λc
P− (59)

with the undeformed AdS5×S5 is equivalent to the deformed background with the periodic
boundary condition. Here P− and Jχ are the Noether charges for translation and rotation
invariance for the x− and χ directions, respectively. The integer nχ is a winding number for the
χ direction. It may be interesting to consider a relation between the above argument and the
symmetric two-form studied in [54].
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6. Abelian twists of the global AdS5

In section 3, we have considered gravity duals for gauge theories on noncommutative planes.
Thus the deformed backgrounds have been described as deformations of the Poincaré AdS5 .

On the other hand, one may consider noncommutative deformations of the global AdS5 [35],
in which the dual gauge theories are living on R×deformed S3 . The deformed backgrounds can
be realized by performing abelian twists (equivalently TsT transformations) as in section 4 for
the global AdS5 .

Here, let us consider abelian twists of the global AdS5 as Yang-Baxter deformations. The
twists are associated with the classical r-matrix [24],

r = − i
2
na12 ∧ na03 . (60)

This r-matrix is composed of two Cartan generators of su(2, 2) and deforms only the AdS5 part.
Hence we will omit the S5 part hereafter.

6.1. The deformed metric and NS-NS two-form

Let us consider the following parameterization of a group element of SU(2, 2):

ga(τ, σ) = exp

[
i

2
(φ1 h1 + φ2 h2 + τ h3)

]
exp [−θ na13] exp

[
−ρ γ

a
1

2

]
∈ SU(2, 2) . (61)

The deformed current J± is expanded in terms of the basis of su(2, 2) . Then, by solving the
equations in (15) , J± can be determined as

J± = −∂±ρ
1

2
γa1 − ∂±θ

[
1

2
sinh ρ γa3 + cosh ρna13

]
+i∂±τ

[
1

2
cosh ρ γa5 + sinh ρna15

]
−Ĝ

(
∂±φ1 ∓ η sin2 θ sinh2 ρ ∂±φ2

)
×
[
cos θ

(
1

2
sinh ρ γa2 + cosh ρna12

)
+ sin θ na23

]
+iĜ

(
∂±φ2 ± η cos2 θ sinh2 ρ ∂±φ1

)
×
[
sin θ

(
1

2
sinh ρ γa0 − cosh ρna01

)
− cos θ na03

]
, (62)

where Ĝ(η) is a scalar function defined as

Ĝ−1(η) ≡ 1 + η2 sin2 θ cos2 θ sinh2 ρ . (63)

By using the current (62) , the deformed metric and NS-NS two-form are obtained as

ds2 = − cosh2 ρ dτ2 + dρ2 + sinh2 ρ
(
dθ2 +

cos2 θ dφ21 + sin2 θ dφ22
1 + η2 sin2 θ cos2 θ sinh4 ρ

)
,

B2 = − η sin2 θ cos2 θ sinh4 ρ

1 + η2 sin2 θ cos2 θ sinh4 ρ
dφ1 ∧ dφ2 . (64)

This result precisely agrees with the ones of abelian twists of the global AdS5 [35]. Incidentally,
three-parameter cases have been discussed in [24].
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6.2. Lax pair

The next is to determine the associated Lax pair. By using the deformed current (62) , the Lax
pair can be explicitly evaluated. The resulting expression is given by [24,30]

LAT± = −∂±ρ
λ±1

2
γa1 − ∂±θ

[
λ±1

2
sinh ρ γa3 + cosh ρna13

]
+i∂±τ

[
λ±1

2
cosh ρ γa5 + sinh ρna15

]
−Ĝ

(
∂±φ1 ∓ η sin2 θ sinh2 ρ∂± φ2

)
×
[
cos θ

(
λ±1

2
sinh ρ γa2 + cosh ρna12

)
+ sin θ na23

]
+iĜ

(
∂±φ2 ± η cos2 θ sinh2 ρ∂± φ1

)
×
[
sin θ

(
λ±1

2
sinh ρ γa0 − cosh ρna01

)
− cos θ na03

]
. (65)

The existence of the Lax pair was anticipated in [35], but the explicit form has been derived
in [24,30]. In the η → 0 limit, the above Lax pair is reduced to the following form:

LGAdS5
± = −∂±ρ

λ±1

2
γa1 − ∂±θ

[
λ±1

2
sinh ρ γa3 + cosh ρna13

]
+i∂±τ

[
λ±1

2
cosh ρ γa5 + sinh ρna15

]
−∂±φ1

[
cos θ

(
λ±1

2
sinh ρ γa2 + cosh ρna12

)
+ sin θ na23

]
+i∂±φ2

[
sin θ

(
λ±1

2
sinh ρ γa0 − cosh ρna01

)
− cos θ na03

]
. (66)

This is nothing but a Lax pair for the global AdS5 . It may be possible to consider the three-
parameter generalization, up to a subtlety of the signature for the time direction.

6.3. Twisted boundary condition

As in the previous three examples, the deformations can be reinterpreted as twisted boundary
conditions again. After performing a similar analysis, one can see that the deformed backgrounds
with the periodic boundary condition is equivalent to the undeformed theory with the following
twisted boundary conditions:

φ̃1(σ = 2π) = φ̃1(σ = 0) +
η√
λc
J2 + 2πn1 ,

φ̃2(σ = 2π) = φ̃2(σ = 0)− η√
λc
J1 + 2πn2 . (67)

Here Ji are the Noether charges for rotation invariance in the φi directions. The integers ni are
winding numbers along the φi directions.
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7. Summary and Outlooks

In this article, we have given a short summary of Yang-Baxter deformations of the AdS5×S5

superstring by focusing upon four type IIB supergravity backgrounds, 1) gravity duals for
noncommutative gauge theories, 2) γ-deformations of S5, 3) Schrödinger spacetimes and 4)
abelian twists of the global AdS5 . All of them are associated with abelian classical r-matrices.

For all of the examples presented here, it has been shown that the deformed backgrounds
with the periodic boundary condition are equivalent with the undeformed one with twisted
boundary conditions. This result has been anticipated by the preceding works [32, 60], because
these backgrounds can also be realized as TsT transformations of the AdS5×S5 . Thus it
seems likely that the abelian classical r-matrices can be seen as abelian twists (equivalently
TsT transformations). In fact, there are general arguments supporting this statement [29, 61].
This would be the case even in non-integrable cases like T 1,1 [52].

However, in non-abelian cases, it would not be the case. Then non-local gauge transformations
should enter into the argument and one needs to take account of the global structure like
an integration constant matrix as argued in the case of 3D Schrödinger spacetime [12]. In
particular, periodic boundary conditions are not suitable for non-local gauge fields and further
the undeformed geometry cannot be reproduced even after undoing the twist for the affine
extended algebra. The resulting geometry is described in terms of the dipole-like coordinates [12].

More interesting observation is that the gravity/CYBE correspondence may contain S-duality
as argued in [25]. It is quite natural that the integrability survives T-dualities, but it is not
certain for S-dualities. It would be very nice to reveal a relation between the integrability and
S-dualities from the viewpoint of Yang-Baxter deformations.

Thus there are a lot of open problems in the case of non-abelian classical r-matrices. As
a matter of course, it is of significance to study Jordanian deformations of the AdS5×S5

superstring. However, as a simpler exercise, it may be interesting to consider non-abelian
classical r-matrices in the context of Yang-Baxter-deformations of 4D Minkowski spacetime [38].
An intriguing example is the κ-deformations of the Poincaré algebra. For the progress along
this line, see the upcoming work [62].

So far, we have concentrated on the metric and NS-NS two-form. One of the most important
issues to be confirmed is the Ramond-Ramond (R-R) sector and the dilaton. These can be
investigated by including the fermionic sector and then performing supercoset construction.
The κ-symmetry is preserved even after the deformations have been performed. Hence, one may
expect that the R-R sector and the dilaton would be reproduced as well. However, it is still
necessary to be confirmed directly5. A nice candidate is the Schrödinger spacetimes, where the
dilaton is constant and the R-R sector is the same as the undeformed AdS5×S5 background.

Still, one need to make much effort towards establishing the gravity/CYBE correspondence.
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Appendix A. Notation and convention

We summarize here our notation and convention of the su(2, 2) and su(4) generators.

The gamma matrices

Let us first introduce the following gamma matrices:

γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , γ2 =


0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

γ0 = iγ4 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , γ5 = iγ1γ2γ3γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

To embed su(2, 2) and su(4) into su(2, 2|4) , we follow an 8× 8 matrix representation as

γaµ =

(
γµ 0
0 0

)
, γa5 =

(
γ5 0
0 0

)
with µ = 0, 1, 2, 3 ,

γsi =

(
0 0
0 γi

)
, γs5 =

(
0 0
0 γ5

)
with i = 1, 2, 3, 4 . (A.2)

Note that each block of the matrices is a 4× 4 matrix.

The su(2, 2) and su(4) generators

The Lie algebras su(2, 2) ∼ so(2, 4) and su(4) ∼ so(6) are spanned as follows:

su(2, 2) = spanR

{
1

2
γaµ ,

1

2
γa5 , n

a
µν =

1

4
[γaµ , γ

a
ν ] , naµ5 =

1

4
[γaµ , γ

a
5 ] | µ , ν = 0, 1, 2, 3

}
,

su(4) = spanR

{
1

2
γsi ,

1

2
γs5 , n

s
ij =

1

4
[γsi , γ

s
j ] , n

s
i5 =

1

4
[γsi , γ

s
5] | i, j = 1, 2, 3, 4

}
. (A.3)

The subalgebras so(1, 4) and so(5) in the spinor representation are formed as

so(1, 4) = spanR{naµν , naµ5 | µ , ν = 0, 1, 2, 3 } ,
so(5) = spanR{nsij , nsi5 | i, j = 1, 2, 3, 4 } . (A.4)

For a coset construction of Poincaré AdS5 , it is useful to employ the following basis:

su(2, 2) = spanR{ pµ , kµ , h1 , h2 , h3 , na13 , na10 , na23 , na20 | µ = 0, 1, 2, 3 } . (A.5)

Here the generators pµ , kµ and the Cartan generators h1 , h2 , h3 are defined as

pµ ≡ 1

2
γaµ − naµ5 , kµ ≡

1

2
γaµ + naµ5 ,

h1 ≡ 2i na12 = diag(−1, 1,−1, 1, 0, 0, 0, 0) ,

h2 ≡ 2na30 = diag(−1, 1, 1,−1, 0, 0, 0, 0) ,
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h3 ≡ γa5 = diag(1, 1,−1,−1, 0, 0, 0, 0) .

Note that the generators pµ and kµ commute each other,

[pµ , pν ] = [kµ , kν ] = [pµ , kν ] = 0 for µ , ν = 0, 1, 2, 3 . (A.6)

For the S5 part, the Cartan generators h4 , h5 , h6 of su(4) are given by

h4 ≡ 2i ns12 = diag(0, 0, 0, 0,−1, 1,−1, 1) ,

h5 ≡ 2i ns34 = diag(0, 0, 0, 0,−1, 1, 1,−1) ,

h6 ≡ γs5 = diag(0, 0, 0, 0, 1, 1,−1,−1) . (A.7)

Since non-Cartan generators of su(4) are not used in our analysis here, we will not write them
down explicitly.

The bosonic coset projectors

In deriving the bosonic part of Lax pairs, it is necessary to employ the coset projectors P0 and
P2 regarding the Z2-grading property. The projectors P0 and P2 are decomposed into the AdS5

part and the S5 part like

P0(x) = P a0 (x) + P s0 (x) , P2(x) = P a2 (x) + P s2 (x) , (A.8)

where P a,s0 and P a,s2 are the following coset projectors for so(2, 4) and su(4) ,

P a0 : su(2, 2) −→ so(1, 4) , P a2 : su(2, 2) −→ su(2, 2)

so(1, 4)
,

P s0 : su(4) −→ so(5) , P s2 : su(4) −→ su(4)

so(5)
. (A.9)

These coset projectors can be represented by the su(2, 2) and su(4) generators as follows:

P a0 (x) =
1

2

3∑
µ,ν=0

Tr[naµνx]

Tr[naµνn
a
µν ]

naµν +
3∑

µ=0

Tr[naµ5x]

Tr[naµ5n
a
µ5]
naµ5 ,

P a2 (x) =
3∑

µ=0

Tr[γaµx]

Tr[γaµγ
a
µ]
γaµ +

Tr[γa5x]

Tr[γa5γ
a
5 ]
γa5 ,

P s0 (x) =
1

2

4∑
µ,ν=1

Tr[nsµνx]

Tr[nsµνnµν ]
nsµν +

4∑
µ=1

Tr[nsµ5x]

Tr[nsµ5n
s
µ5]
nsµ5 ,

P s2 (x) =

4∑
µ=1

Tr[γsµx]

Tr[γsµγ
s
µ]
γsµ +

Tr[γs5x]

Tr[γs5γ
s
5]
γs5 . (A.10)

The projectors are utilized in evaluating the deformed metric, NS-NS two-form and Lax pair.
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