Better Bounds for Online k-Frame Throughput Maximization
in Network Switches *

Jun Kawahara!, Koji M. Kobayashi?, Shuichi Miyazaki?

!Graduate School of Information Science, Nara Institute of Science and Technology
2 Corresponding author, National Institute of Informatics,
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, 1018430, Japan, kobaya@nii.ac.jp
3 Academic Center for Computing and Media Studies, Kyoto University

Abstract

We consider a variant of the online buffer management problem in network switches, called
the k-frame throughput maximization problem (k-FTM). This problem models the situation
where a large frame is fragmented into k packets and transmitted through the Internet, and the
receiver can reconstruct the frame only if he/she accepts all the k packets. Kesselman et al.
introduced this problem and showed that its competitive ratio is unbounded even when k& = 2.
They also introduced an “order-respecting” variant of k-FTM, called k-OFTM, where inputs
are restricted in some natural way. They proposed an online algorithm and showed that its

competitive ratio is at most LQBk% + k for any B > k, where B is the size of the buffer. They

also gave a lower bound of ﬁ for deterministic online algorithms when 2B > k and k is a

power of 2.
In this paper, we improve upper and lower bounds on the competitive ratio of k-OFTM. Our
main result is to improve an upper bound of O(k?) by Kesselman et al. to % = O(k)

for B > 2k. Note that this upper bound is tight up to a multiplicative constant factor since

the lower bound given by Kesselman et al. is (k). We also give two lower bounds. First we

give a lower bound of % + 1 on the competitive ratio of deterministic online algorithms

for any k£ > 2 and any B > k — 1, which improves the previous lower bound of ﬁ by a
factor of almost four. Next, we present the first nontrivial lower bound on the competitive ratio
of randomized algorithms. Specifically, we give a lower bound of k — 1 against an oblivious
adversary for any £ > 3 and any B. Since a deterministic algorithm, as mentioned above,
achieves an upper bound of about 10k, this indicates that randomization does not help too
much.

Keywords: Buffer management; Online problem; Competitive Analysis; Packet Fragmentation

1 Introduction

When transmitting data through the Internet, each data is fragmented into smaller pieces, and
such pieces are encapsulated into data packets. Packets are transmitted to the receiver via several
switches and routers over a network, and are reconstructed into the original data at the receiver’s
side. One of the bottlenecks in achieving high throughput is processing ability of switches and

*A preliminary version of this paper was presented at the 24th International Symposium on Algorithms and
Computation (ISAAC 2013).

routers. If the arrival rate of packets exceeds the processing rate of a switch, some packets must be
dropped. To ease this degradation, switches are usually equipped with FIFO buffers that temporar-
ily store packets which will be processed later. In this case, the efficiency of buffer management
policies is important since it affects the performance of the overall network.

Aiello et al. [1] initiated the analysis of buffer management problem using the competitive
analysis [10, 31]: An input of the problem is a sequence of events where each event is an arrival
event or a send event. At an arrival event, one packet arrives at an input port of the buffer (FIFO
queue). Each packet is of unit size and has a positive value that represents its priority. A buffer
can store at most B packets simultaneously. At an arrival event, if the buffer is full, the new packet
is rejected. If there is room for the new packet, an online algorithm determines whether to accept
it or not without knowing the future events. At each send event, the packet at the head of the
queue is transmitted. The gain of an algorithm is the sum of the values of the transmitted packets,
and the goal of the problem is to maximize it. If, for any input o, the gain of an online algorithm
ALG is at least 1/c of the gain of an optimal offline algorithm for o, then we say that ALG is
c-competitive.

Following the work of Aiello et al. [1], there has been a great amount of work related to the
competitive analysis of buffer management. For example, Andelman et al. [5] generalized the two-
value model of [1] into the multi-value model in which the priority of packets can take arbitrary
values. Another generalization is to allow preemption, i.e., an online algorithm can discard packets
existing in the buffer. Results of the competitiveness on these models are given in [17, 32, 19,
4, 3, 12]. Also, management policies not only for a single queue but also for the whole switch
are extensively studied, which includes multi-queue switches [7, 5, 2, 6, 27, 9], shared-memory
switches [14, 18, 26], CIOQ switches [20, 8, 24, 21], and crossbar switches [22, 23]. See [13] for a
comprehensive survey.

Kesselman et al. [25] proposed another natural extension, called the k-frame throughput maxi-
mization problem (k-FTM), motivated by a scenario of reconstructing the original data from data
packets at the receiver’s side. In this model, a unit of data, called a frame, is fragmented into
k packets (where the jth packet of the frame is called a j-packet for j € [1,k]) and transmitted
through the Internet. At the receiver’s side, if all the k packets (i.e., the j-packet of the frame
for every j) are received, the frame can be reconstructed (in such a case, we say that the frame is
completed); otherwise, even if one of them is missing, the receiver can obtain nothing. The goal
is to maximize the number of completed frames. Kesselman et al. [25] considered this scenario on
a single FIFO queue. They first showed that the competitive ratio of any deterministic algorithm
for k-FTM is unbounded even when k = 2 (which can also be applied to randomized algorithms
with a slight modification). However, their lower bound construction somehow deviates from the
real-world situation, that is, although each packet generally arrives in order of departure in a net-
work such as an IP network, in their adversarial input sequence the 1-packet of the frame f; arrives
prior to that of the frame f;/, while the 2-packet of f;; arrives before that of f;. Motivated by this,
they introduced more natural setting for the input sequence, called the order-respecting adversary,
in which, roughly speaking, the arrival order of the j-packets of f; and f; must obey the arrival
order of the j'-packets of f; and fi (j/ < j) (a formal definition will be given in Sec. 2). We call
this restricted problem the order-respecting k-frame throughput mazimization problem (k-OFTM).
For k-OFTM, they showed that the competitive ratio of any deterministic algorithm is at least
B/|2B/k| when 2B > k and k is a power of 2. (Note that this ratio is {2(k).) As for an upper
bound, they designed a non-preemptive algorithm called STATICPARTITIONING (SP), and showed
that it is LQBk/Bl;J + k = O(k?)-competitive for any B > k. They conjecture that the true competitive

ratio is O(k).

1.1 Owur Results

In this paper, we present the following results:

(i) We design a deterministic algorithm MIDDLE-DROP AND FLUSH (MF) for B > 2k, and
show that its competitive ratio is at most %. This ratio is O(k), which improves O(k?)
of Kesselman et al. [25] and matches the lower bound of Q(k) up to a constant factor. Hence we
have solved their conjecture affirmatively.

(ii) For any deterministic algorithm, we give a lower bound of % + 1 on the competitive

ratio for any £ > 2 and any B > k — 1. This improves the previous lower bound of LQTB/kJ by a
factor of almost four. Moreover, we show that the competitive ratio of any deterministic online
algorithm is unbounded if B < k — 2.

(iii) In the randomized setting, we establish the first nontrivial lower bound of k£ — 1 against an
oblivious adversary for any k > 3 and any B. This bound matches our deterministic upper bound
mentioned in (i) up to a constant factor, which implies that randomization does not help too much
for this problem.

1.2 Used Techniques

Let us briefly explain an idea behind our algorithm M F'. The algorithm SP by Kesselman et al.
[25] works as follows: (1) It virtually divides its buffer evenly into k subbuffers, each with size
A= L%J, and each subbuffer (called j-subbuffer for j € [1,k]) is used for storing only j-packets.
(2) If the j-subbuffer overflows, i.e., if a new j-packet arrives when A j-packets are already stored
in the j-subbuffer, it rejects the newly arriving j-packet (the “tail-drop” policy). It can be shown
that SP behaves poorly when a lot of j-packets arrive at a burst, which increases SP’s competitive
ratio as bad as Q(k?) (such a bad example for SP is given in Appendix A).

In this paper, we introduce two major ideas to develop a better algorithm. One is to modify the
tail-drop policy and employ the “middle-drop” policy, which preempts the (| A/2] + 1)st packet in
the j-subbuffer and accepts the newly arriving j-packet. The other is to preempt all of the packets
satisfying some conditions at some moment, which we call the “flush” operation. The two ideas are
crucial in improving the competitive ratio to O(k), as explained in the following. M F' partitions
the whole set of given frames into blocks BL1, BLo, ..., each with about 3B frames, using the rule
concerning the arrival order of 1-packets. (This rule is explained in Sec. 3.1 at the definition of
MF, where the block BL; corresponds to the set of frames with the block number i.) Each block
is categorized into good or bad: At the beginning of the input, all the blocks are good. At some
moment during the execution of M F, if there is no more possibility of completing at least [A/2]
frames of a block BL; (as a result of preemptions and/or rejections of packets in BL;), then BL;
turns bad. In such a case, M F' completely gives up BL; and preempts all the packets belonging to
BL; in its buffer if any (which is called the flush operation). Note that at the end of input, MF
completes at least | A/2] frames of a good block.

Consider the moment when the block BL; turns bad from good, which can happen only when
preempting a j-packet p (for some j) of BL; from the j-subbuffer. Due to the property of the
middle-drop policy, we can show that there exist two integers i1 and iy (i1 < ¢ < i2) such that
(i) just after this flush operation, BL;, and BL;, are good and all the blocks BL;,+1, BLj, 42, ..,
BL;,_ are bad, and (ii) just before this flush operation, there exist two j-packets p; and py in the

buffer such that p; and ps belong to BL;, and BL,,, respectively, and (iii) just before this flush
operation, all the j-packets of BL; (including p) each of which belongs to a frame that still has a
chance of being completed are located between p; and ps. The above (ii) implies that even though
io may be much larger than ¢; (and hence there may be many blocks between BL;, and BL;,),
the arrival times of p; and po are close (since p; is still in the buffer when py arrived). This means
that j-packets of BL;, through BL;, arrived at a burst within a very short span, and hence any
algorithm (even an optimal offline algorithm OPT') cannot accept many of them. In this way, we
can bound the number of packets accepted by OPT (and hence the number of frames completed by
OPT) between two consecutive good blocks. More precisely, if BL;, and BL;, are consecutive good
blocks at the end of the input, we can show that the number of frames in BL;,, BL;, +1,...,BL;,—1
completed by OPT is at most 5B+ A—4 = O(B) using (i), (ii) and (iii). Recall that M F completes
at least |A/2] = Q(B/k) frames of BL;, since BL;, is good, which leads to the competitive ratio
of O(k). (The formal definitions of good and bad blocks are given in Sec. 3.2 and the proof of
Lemma 3.9.)

1.3 Related Results

In addition to the above mentioned results, Kesselman et al. [25] proved that for any B, the
competitive ratio of a preemptive greedy algorithm for k-OFTM is unbounded when k£ > 3. They
also considered the offline version of k-FTM and showed some approximation hardness results.
Recently, Kawahara and Kobayashi [16] proved that the optimal competitive ratio of 2-OFTM is
3, which is achieved by a greedy algorithm.

Scalosub et al. [30] proposed a generalization of k-FTM, called the maz frame goodput problem.
In this problem, a set of frames constitutes a stream, and a constraint is imposed on the arrival
order of packets within the same stream. They established an O((kM B + M)¥*1)-competitive
deterministic algorithm, where M denotes the number of streams. Furthermore, they showed that
the competitive ratio of any deterministic algorithm is Q(kM/B).

Emek et al. [11] introduced the online set packing problem and pointed out that the problem
is related to k-FTM. This problem is different from k-FTM in that each frame may consist of
different number (at most kpax) of packets. Also, a frame f consisting of s(f) packets can be
reconstructed if s(f)(1 —) packets are transmitted, where 8 (0 < 8 < 1) is a given parameter.
There is another parameter ¢ representing the capacity of a switch. At an arrival event, several
packets arrive at an input port of the queue. The switch can transmit ¢ of them instantly, and
operates a buffer management algorithm for the rest of the packets (if any), that is, decides whether
to accept them. Emek et al. designed a randomized algorithm PRIORITY, and showed that it is
Emaxy/0max-competitive when 3 = 0 and B = 0, where opax is the maximum number of packets
arriving simultaneously. They also derived a lower bound of kmaxy/Tmax (loglog k/ log k)? for any
randomized algorithm. If the number of packets in any frame is exactly k, Mansour et al. [2§]
showed that for any § the competitive ratio of PRIORITY is 8ky/0max(1 — §)/c. Moreover, some
variants of this problem have been studied [15, 29].

2 Model Description and Notation

In this section, we give a formal description of the order-respecting k-frame throughput maximization
problem (k-OFTM). A frame f consists of k packets p1,...,pr. We say that two packets p and ¢
belonging to the same frame are corresponding, or p corresponds to q. There is one buffer (FIFO

queue), which can store at most B packets simultaneously. An input is a sequence of phases starting
from the Oth phase. The ith phase consists of the ith arrival subphase followed by the ith delivery
subphase. At an arrival subphase, one or more packets arrive at the buffer, and the task of an
algorithm is to decide for each arriving packet p, whether to accept p or reject p. An algorithm can
also discard a packet p’ existing in the current buffer in order to make space (in which case we say
that the algorithm preempts p’). If a packet p is rejected or preempted, we say that p is dropped.
If a packet is accepted, it is stored at the tail of the queue. Packets accepted at the same arrival
subphase can be inserted into the queue in an arbitrary order. At a delivery subphase, the first
packet of the queue is transmitted if the buffer is nonempty. For a technical reason, we consider
only the inputs in which at least one packet arrives.

If a packet p arrives at the ith arrival subphase, we write arr(p) = i. For every frame f =
{p1,...,pr} such that arr(p;) < --- < arr(pg), we call p; the i-packet of f. Consider two frames
fi=Api1,.-.,pix} and fir = {pi1,...,pix} such that arr(p;1) < --- < arr(p; ;) and arr(py 1) <

- < arr(py). If for every j and j', arr(p;;) < arr(py ;) if and only if arr(p; ;) < arr(py),
then we say that f; and f; are order-respecting. If every two frames in an input sequence o are
order-respecting, we say that o is order-respecting. If all the packets constituting a frame f are
transmitted, we say that f is completed, otherwise, f is incompleted. The goal of k-FTM is to
maximize the number of completed frames. k-OFTM is k-FTM where inputs are restricted to
order-respecting sequences.

For an input o, the gain of an algorithm ALG is the number of frames completed by ALG
and is denoted by Varg(o). If ALG is a randomized algorithm, the gain of ALG is defined as
an expectation E[Varg(o)], where the expectation is taken over the randomness inside ALG. If
Vara(o) > Vopr(o)/c (E[Varc(o)] > Vopr(o)/c) for every input o, we say that ALG is c-
competitive, where OPT is an optimal offline algorithm for ¢. Without loss of generality, we can
assume that OPT never preempts packets and never accepts a packet of an incompleted frame.

3 Upper Bound

In this section, we present our algorithm MIDDLE-DROP AND FLUSH (M F') and analyze its com-
petitive ratio.

3.1 Algorithm

We first give notation needed to describe M F'. Suppose that n packets p1,po, ..., p, arrive at M F’s
buffer at the ith arrival subphase. For each packet, M F' decides whether to accept it or not one by
one (in some order defined later). Let tp; denote the time when MF deals with the packet p;, and
let us call ¢), the decision time of p;. Hence if p1,pe,...,p, are processed in this order, we have
that t,, <tp, <---<tp,. (For convenience, in the later analysis, we assume that OPT also deals
with p; at the same time #,,,.) Also, let us call the time when M F' transmits a packet from the head
of its buffer at the ith delivery subphase the delivery time of the ith delivery subphase. A decision
time or a delivery time is called an event time, and any other moment is called a non-event time.
Note that during the non-event time, the configuration of the buffer is unchanged. For any event
time ¢, t+ denotes any non-event time between ¢ and the next event time. Similarly, t— denotes
any non-event time between t and the previous event time.

Let ALG be either M F or OPT. For a non-event time ¢ and a packet p of a frame f, we say
that p is valid for ALG at t if ALG has not dropped any packet of f before ¢, i.e., f still has a

chance of being completed. In this case we also say that the frame f is valid for ALG at t. Note
that a completed frame is valid at the end of the input. For a j-packet p and a non-event time ¢,
if p is stored in M F’s buffer at ¢, we define £(¢,p) as “14(the number of j-packets located before
p)”, that is, p is the £(¢,p)th j-packet in MF’s queue. If p has not yet arrived at ¢, we define
L(t,p) = oo.

During the execution, M F' virtually runs the following greedy algorithm GR; on the same
input sequence. Roughly speaking, GR; is greedy for only 1-packets and ignores all j(> 2)-packets.
Formally, GR; uses a FIFO queue of the same size B. At the arrival of a packet p, GR; rejects
it if it is a j-packet for j > 2. If p is a 1-packet, GR; accepts it whenever there is a space in the
queue. At a delivery subphase, GR; transmits the first packet of the queue as usual.

MF uses two internal variables Counter and Block. Counter is used to count the number of
packets accepted by GR; modulo 3B. Block takes a positive integer value; it is initially one and
is increased by one each time Counter is reset to zero.

Define A = |B/k]. MF stores at most A j-packets for any j. For j = 1, MF refers to the
behavior of GR; in the following way: Using two variables Counter and Block, M F' divides 1-
packets accepted by GR; into blocks according to their arrival order, each with 3B 1-packets. M F'
accepts the first A packets of each block and rejects the rest. For j > 2, MF ignores j-packets
that are not valid. When processing a valid j-packet p, if M F already has A j-packets in its queue,
then M F preempts the one in the “middle” among those j-packets and accepts p.

For a non-event time ¢, let b(¢) denote the value of Block at ¢. For a packet p, we define the
block number g(p) of p as follows. For a 1-packet p, g(p) = b(t—) where ¢ is the decision time of p,
and for a j(€ [2, k])-packet p, g(p) = g(p’) where p’ is the 1-packet corresponding to p. Hence, all
the packets of the same frame have the same block number. We also define the block number g(f)
of a frame f is the (unique) block number of the packets constituting f. For a non-event time ¢
and a positive integer u, let hara,(t) denote the number of frames f such that f is valid for ALG
at t and g(f) = u.

Recall that at an arrival subphase, more than one packet may arrive at a queue. M F processes
the packets ordered non-increasingly first by their frame indices and then by block numbers. If
both are equal, they are processed in arbitrary order. That is, M F' processes these packets by the
following rule: Consider an i-packet p and an i’-packet p’. If i < 4/, p is processed before p’ and
if ' < i, p' is processed before p. If i = i/, then p is processed before p’ if g(p) < g(p') and p’ is
processed before p if g(p') < g(p). If i =4’ and g(p) = g(p'), the processing order is arbitrary. The
formal description of M F' is as follows. To illustrate an execution of M F', we give an example in
Appendix B.

Middle-Drop and Flush

Initialize: Counter := 0, Block := 1.
Let p be a j-packet to be processed.
Case 1: 7 = 1:
Case 1.1: If GR; rejects p, reject p.
Case 1.2: If GR; accepts p, set Counter := Counter +1 and do the following.
Case 1.2.1: If Counter < A, accept p. (We prove in Lemma 3.5(c) that M E’s buffer has a
space whenever Counter < A.)
Case 1.2.2: If A < Counter < 3B, reject p.
Case 1.2.3: If Counter = 3B, reject p and set Counter := 0 and Block := Block + 1.
Case 2: 5 > 2:

Case 2.1: If p is not valid for M F" at t,—, reject p.
Case 2.2: If p is valid for M F" at t,—, do the following.
Case 2.2.1: If the number of j-packets in M F’s buffer at ¢,— is at most A — 1, accept p.
Case 2.2.2: If the number of j-packets in M F’s buffer at ¢,— is (at least) A, then preempt
the j-packet p’ such that ¢(t,—,p’) = [A/2] + 1, and accept p. Preempt all the packets
corresponding to p’ (if any).
Case 2.2.2.1: If hysp o) (tp—) < [A/2], preempt all the packets p” in M F’s buffer such
that g(p”) = g(p’). (Call this operation “flush”.)
Case 2.2.2.2: If hyp o) (tp—) > [A/2] + 1, do nothing.

3.2 Overview of the Analysis

Let 7 be any fixed time after M F' processes the final event, and let ¢ denote the value of Counter
at 7. Also, we define M = b(7) — 1 if ¢ = 0, and M = b(7) otherwise. Note that for any frame
fy 1 < g(f) < M. Define the set G of integers as G = {M} U {i | MF completes at least | A/2]
frames f such that g(f) =i} and let m = |G|. We call a block number good if it is in G and bad
otherwise. For each j € [1,m], let a; be the jth smallest integer in G. Note that a; denotes the
jth good block number, and in particular that a,, = M since M € G. Our first key lemma is the
following, saying that the first block is always good:

Lemma 3.1 a1 = 1.

Since at the end of the input any valid frame is completed, we have Vopr(o) = Zf\i L hopri(T)
and Virr(o) = YL, harpa(r) 2 S0 harpa, (7).

We first guarantee the gain of M F for good block numbers, which follows from the definition
of G:

hara, (1) > |A/2] for any i € [1,m —1]. (1)
We next focus on the mth good block number M. Since it has some exceptional properties, we

discuss the number of completed frames with block number M independently of the other good
block numbers as follows:

Lemma 3.2 (a) If eitherc =0 orc € [|A/2],3B—1], hypm(T) > |A/2]. (b) Ifc € [1,|A/2] —1]
and M > 2, hypm(t) + B — 1> hoprm(7). (¢) If c € [1,|A)2] — 1) and M =1, hyrpm(T) >
hoprm(T).

Also, we evaluate the number of O PT’s completed frames from a viewpoint of good block numbers:

Lemma 3.3 (CL) hOPT,M(7'> < 4B-1. (b) Zji;ll hOPT,j(T) < 4B+ A-3. (C) Z?:ali_l hopTJ‘(T) <
5B+ A—4 for any i€ [2,m —1].

Using the above inequalities, we can obtain the competitive ratio of M F' by case analysis on the
values of M and c. First, note that since at least one packet arrives, Vopr(o) > 0 holds and M =1
implies ¢ > 1. Now if M =1 and c € [1,|A/2] — 1], harpa(7) > hopra(7) by Lemma 3.2(c). Since
hatpa(7) > hopra(r) = Vopr(e) > 0, Y2exle) = Bortall <4 1f A =1 and c € [|4/2),3B — 1],

harr,1(T)

Vopr(o) _ hopra(r) ~ 4B—1 _ 5B+A—4
then V?;FT(;T) = h?;;:f(ﬂ < T < LX/QJ by Lemma 3.2(a) and Lemma 3.3(a).

If M >2andce{0}U[|A4/2],3B —1],

m—1aj41—1

Vopr(o) = ZhOPTz)=>_ > hopr;(r) + horra,(T)

i=1 j=a;
< (m— 1)(5B+A—4)—B+1+4B—1) <m(5B+ A—4)

by Lemma 3.3 (note that a; = 1 by Lemma 3.1 and a,,, = M). Also, Vayp(o) > > happa, (T) >
m|A/2| by Eq. (1) and Lemma 3.2(a). Therefore, ‘%;T((;)) < 5?;{/‘%]4. Finally, if M > 2 and
S [17 LA/2J - 1]7

m—1Qi+1— 1

Vorr(o) = ZhOPTz Z > hoprj(t) + hopra,(T)

= Jj=a;
(m—)(5B+A_4)_B+1+hOPT,M(T)

<
< (m—-1)(5B+A—4)+ hypu(r)

by Lemmas 3.2(b), 3.3(b) and 3.3(c). Also, Varr(o) = Y it hvre, (1) > (m—1)[A/2] +hapa(T)
by Eq. (1). Therefore,

Vopr(0)
Vur(o)

(m—1)(5B + A —4) + hpyrpa (1) _ 5B+ A—4
(m —1)[A/2] + harpa(7) [A/2]

<

Vopr(o) _ 5B+A—4 - : 5B+A—4 _ 5B+|B/k|—4
We have proved that Vur(o) < 1A/2] B all the cases. By noting that A2] = (Bj2k]

we have the following theorem:

5B+|B/k|—4

Theorem 3.4 When B/k > 2, the competitive ratio of M'F is at most [B/2k]

3.3 Analysis of M F

In this section, we first show the feasibility of Case 1.2.1 of M F'. We then give the proofs of Lemmas
3.1, 3.2, and 3.3 in the subsequent sections.

3.3.1 Feasibility of M F

In this section, we guarantee the feasibility of M F by proving Lemma 3.5(c). At the same time,
we prove Lemma 3.5(a) and (b) for later use. If an algorithm ALG transmits a packet p at the ith
delivery subphase, we write delqrg(p) = 1.

Lemma 3.5 Suppose that GRy accepts z(> 2B) 1-packets. Let p; (i € [1,z]) denote the ith 1-
packet accepted by GRy. Then, the following holds. (a) If z > 2B, then for any j(€ [1,z—2B +1])
such that MF accepts pj, delyr(p;) < arr(pjrop—1). (b) For any uw(> 0), MF accepts all the
1-packets p3pu+1,---,D3Bu+A, and their block number is u+ 1. (¢) If 0 < Counter < A — 1 just
before the decision time of a 1-packet p, M F'’s buffer has a space to accept p.

Proof. (a) Consider a 1-packet p; satisfying the condition of the lemma, and consider the non-
event time ¢+, i.e., the moment just after GR; and M F' accept p;. By definition, M F' certainly
transmits any 1-packet inserted into its buffer. In addition, M F' will transmit p; within B phases,

since the buffer size is B, and only one packet can be transmitted in one phase. That is, the
number of delivery subphases between ¢,.+ and the moment before MF' transmits p; is at most
B — 1, which means that GR; can also transmit at most B — 1 packets during this period. On
the other hand, GR; accepts p; as well, and there exists at least one packet in GR;y’s buffer at
tp,+. Hence there are at most B — 1 vacancies in GR;’s buffer at this moment. Therefore, the
number of packets GR; can accept between ¢, + and the moment before M F' transmits p; is at
most (B —1) 4+ (B — 1) = 2B — 2. In other words, M F transmits p; before GRy accepts pjiop—1.
This proves delyr(pj) < arr(pj2B-1)-

(b) First, recall that M F' can always store up to A x-packets for = € [1,k]. Due to Cases 1.2.1,
1.2.2 and 1.2.3, M F accepts packets p1,p2,---,p4, and rejects pa+1,pat+2, - ,p3p. During this
period, Block stays 1. Just after M F rejects psp, Block is incremented to 2, and Counter is reset
to 0. Since delyp(pa) < arr(parop—1) by the proof of the part (a) of this lemma, dely/p(pa) <
arr(p3p+1), which means that there exists no 1-packet in M F’s queue at the non-event time ¢, . —.

Hence, M F starts accepting psp+1,038+2,---,P38+4. By continuing this argument, we can prove
part (b).

(c) 0 < Counter < A — 1 holds just before the decision times of p3py+1,--.,P3Bu+a for each
u=0,1,.... Thus, (c) is immediate from the proof of part (b). L]

3.3.2 Proof of Lemma 3.1

To prove Lemma 3.1, we use Lemma 3.5 and the following lemmas. Roughly speaking, Lemma 3.6
says that, for each j, block numbers of j-packets are assigned in order of arrival, and Lemma 3.7
says that, for each j’, packets in the j’-subbuffer are stored in order of block number.

Lemma 3.6 (a) Let p be any 1-packet accepted by M F' and q be any 1-packet such that g(p) < g(q).
Then, arr(p) < arr(q). (b) For x € [2,k], let p' and ¢' be any x-packets such that g(p') < g(¢') and
suppose that MF accepts the 1-packet corresponding to p'. Then, arr(p’) < arr(q’).

Proof. (a) Note that p is accepted by also GR;. Let ¢ be the first 1-packet with block number g(q).
Clearly GR;y accepts ¢ and arr(q) < arr(q). Suppose that p and ¢ are the ith and the jth packets,
respectively, accepted by GR;. By Lemma 3.5(b) and the assumption that g(p) < g(q)(= 9(q)),
j—i2 (3Bg(d) — 1)+ 1) — 3B(g(p) — 1) + 4) = 3B(g(d) — g(p)) + 1~ A > 3B+ 1— A >2B.
Then by Lemma 3.5(a), p is transmitted by M F' before ¢ arrives. Therefore, arr(p) < arr(g), which
means that arr(p) < arr(q). This completes the proof.

(b) Let p; and ¢1 be the 1-packets corresponding to p’ and ¢/, respectively. Since g(p') < g(¢'),
g(p1) < g(q1). Therefore, arr(p;) < arr(qi;) by (a). Since the input is order-respecting, arr(p’) <
arr(q’). O

Lemma 3.7 Let t be a non-event time. For any x € [1,k], let p be an x-packet stored in MF'’s
buffer at t, and let q be an x-packet which is stored in M F’s buffer at t. If £(t,p) < £(t,q), then

9(p) < g(q)-

Proof. Since ((t,p) < ¢(t,q), MF processes p earlier than ¢, which means that arr(p) < arr(q).
Thus, in the case of x = 1, if arr(p) < arr(q), then g(p) < g(g) by the contrapositive of Lemma 3.6.
In the same way, using the contrapositive of Lemma 3.6, g(p) < g(q) if x # 1 and arr(p) < arr(q).
In the case where both = # 1 and arr(p) = arr(q), M F processes a packet with a smaller block
number earlier by definition, and hence g(p) < g(q). U

Now we are ready to prove Lemma 3.1. When M = 1, clearly a; = 1 because M € G by
definition. When M > 2, we show that at any moment there are at least | A/2] frames f with
block number 1 such that f is valid for MF. MF accepts at least |A/2] 1-packets with block
number 1 according to Lemma 3.5(b). If M F does not preempt any packet with block number 1,
the statement is clearly true. Then, suppose that at an event time ¢, M F preempts an z(€ [2, k])-
packet with block number 1. By Case 2.2.2 in MF, MF stores A x-packets in its buffer at ¢t—.
Moreover, all the z-packets in M F’s buffer are queued in ascending order of block number by
Lemma 3.7. Thus, for each z-packet p such that ¢(t+,p) € [1,|A/2]], g(p) = 1. As a result,
harri(t+) > | A/2], which proves the lemma. OJ

3.3.3 Proof of Lemma 3.2

In order to prove Lemma 3.2, we bound the number of 1-packets accepted by OPT during a time
interval by the number of 1-packets accepted by GR;.

Lemma 3.8 Let t; and to(> t1) be any non-event times. Suppose that GRy accepts w(> 1) 1-
packets during time [t1,t2], and let p be the first 1-packet accepted by GRy during time [t1,t2]. Then,
the number of 1-packets accepted by OPT during time [t,—,t2] is at most w + B — 1. Moreover,
when t1 is a time before the beginning of the input, the number of 1-packets accepted by OPT during
time [t,—,ta] is at most w.

Proof. Define O PT} as the offline algorithm that accepts exactly the same 1-packets as accepted by
OPT and ignores j(€ [2, k])-packets. Let x (respectively z’) be the number of 1-packets accepted
by GR; but not accepted by OPT; (respectively accepted by OPT; but not accepted by GR;)
during time [t,—,t2]. Also, let 2 be the number of 1-packets accepted by both GR; and OPT}
during time [t,—,t2]. Since GR; accepts w packets during time [t,—, 2], * + 2” = w. In what
follows, we bound 2’ + z” from above.

For a non-event time ¢ and an algorithm ALG'(€ {OPT1,GR1}), let fapc:(t) denote the number
of 1-packets in ALG"’s buffer at t. Since GR; accepts 1-packets greedily and OPT} accepts only
1-packets, far, (t) — fopr (t) > 0 holds for any ¢. Let y (respectively y’) denote the number of 1-
packets transmitted by GR; (respectively OPT}) during time [t,—, t2]. Since far, (t)— fopr (t) >0
for any ¢, GR; transmits a 1-packet whenever OPT] does so, and hence y > 3. By an easy
calculation, far, (t2) = far, (tp,—) +x+ 2" —y and fopr (t2) = fopr, (t,—) +2' + 2" —y'. By the
above equalities and inequalities,

0 < for,(t2) = forr (t2) = far, (tp=) + @+ 2" —y — (forn, (tp—) + 2’ + 2" —¢/)
= Jor(ty=) = forr (=) + @ =o' =y +y' < far (=) = forn (=) + = — 2/,
That is, 2’ < far, (t,—) — forr, (t,—) + x. Hence, 2/ + 2" < far, (t,—) — forn, (tp—) + x + 2" =

far, (tp,—)— fopt, (tp—)+w holds. Furthermore, fgr, (t,—)— forr (t,—) < B—1 since GR; accepts
p, namely, GR;’s buffer is not full just before the decision time of p. Thus, ' + 2" < B — 1 + w.

Finally we consider the case where t; is a time before the beginning of the input. Since
far, (tp=) = forr (tp—) =0, 2’ + 2" < far, (tp—) — forr (tp—) + w = w holds. N

We are ready to give the proof of Lemma 3.2. The proof of (a) is almost the same as that of

Lemma 3.1. By the assumption that ¢ = 0 or ¢ € [|A/2],3B — 1], M F accepts at least |A/2]
1-packets with block number M according to Lemma 3.5(b). If M F does not preempt any packet

10

with block number M, the statement is clearly true. Then, suppose that at an event time ¢, M F
preempts an x(€ [2, k])-packet with block number M. By Case 2.2.2, M F stores A z-packets in
its buffer at t—. Moreover, all the z-packets in M F’s buffer are queued in ascending order by
their block numbers by Lemma 3.7. Thus, for each z-packet p such that ¢(t+,p) € [|A/2] + 1, A],
g(p) = M. As aresult, hayrp s (t+) > | A/2], which proves the part (a) of Lemma 3.2.

As for (b), since ¢ € [1,]|A/2] — 1] by the assumption of (b), all the 1-packets with block
number M which are accepted by MF are the same as those of GR;. Then, let p’ (p”) be the
first (harpa(7)th) 1-packet accepted by MF whose block number is M. If we set t; = t,y— and
ty = t,»+ in Lemma 3.8, then w = hpsp (7). Thus we have that hyrpa(7) + B —1 > hopr v (7).
Part (c) can be proved in a similar way to (b), by applying the latter part of Lemma 3.8. O

3.3.4 Proof of Lemma 3.3

To prove Lemma 3.3, we first show the next three lemmas. We show in Lemma 3.9 that for
non-consecutive two good block numbers a; and aj;1, there must be a moment when an z(€
[2, k])-packet with block number a; and an z-packet with block number a4 exist in M F’s buffer
simultaneously. This is a consequence of using middle-drop policy. We then show in Lemma 3.11
that in such a case, the number of packets accepted by O PT with block number a;,a;+1,...,aj41—
1 can be bounded.

Lemma 3.9 Suppose that aji 1 —a; > 2 for an integer j(€ [1,m — 1]). Then there exist two x-
packets ¢ and ¢’ for some integer x € [2, k| such that g(q) = aj, g(¢') = aj+1, and both q and ¢’ are
stored in M F'’s buffer at the same time.

Proof. For a non-event time ¢, we say that a block number w is good at t if u = M or at least | A/2]
frames with the block number u are valid at ¢, and bad at t otherwise. Note that the set of good
block numbers at the end of the input coincides the set G (see Sec. 3.2 for the definition of G).
Since ajy1 — a; > 2, there must be at least one block number between a; and a;11. Those block
numbers were initially good but turned bad at some event time, since a; and a;41 are good block
numbers that are consecutive at the end of the input. Let u (a; < u < aj41) be the block number
that turned bad lastly among them. The event time when block number v turns bad is the decision
time ¢,; when some z(€ (2, k])-packet p’ arrives. Specifically, M F' accepts p’ at ¢,/, and preempts
an z-packet p” with block number u(= g(p”)) at Case 2.2.2 such that £(t,y—,p") = |A/2] + 1.
Moreover, M F' preempts all the packets with block number u in M F’s buffer by executing Case
2.2.2.1.

Now we discuss the block numbers of packets in M F’s buffer before or after ¢,,. By the definition
of Case 2.2.2 in M F', the number of z-packets in M F’s buffer at ¢,, — is A, and among them, exactly
| A/2| ones are of block number g(p”) (or | A/2|—1 ones excluding p”). In addition, all the z-packets
in M F’s buffer are queued in ascending order by their block numbers by Lemma 3.7. Hence, (a)
g(p") > g(p) holds, where p is the a-packet such that £(t, —,p) = {(t,y+,p) = 1. Also, M F accepts
7/, and preempts all the packets with block number g(p”) at Case 2.2.2.1. Thus, g(p’) # g(p"),
which means that (b) g(p”) < g(p’) holds according to Lemma 3.7.

Now if aj < g(p), then a; < g(p) < g(p”) by (a). This contradicts the definition of u since there
still remains a good block number g(p) between a; and u(= g(p”)). Hence a; > g(p). In the same
way, if aj41 > g(p'), then g(p”) < g(p') < aj41 by (b). We have the contradiction as well, which
means that (¢) aj+1 < g(p').

11

In the following, we prove that ¢ and ¢’ mentioned in this lemma exist in the buffer at time
ty+. We first show the existence of ¢q. Let us consider the case of a; = g(p). In this case, p is
clearly stored in M F’s buffer at ¢,,+, and p satisfies the condition of q. Next, we consider the case
of a; > g(p). Since a; is a good block number by definition, there must be a packet p” such that
aj = g(p") and p"” is valid at t,y+. Then, g(p) < g(p") = a; < aj+1 < g(p') by (c) and hence
arr(p) < arr(p”) < arr(p’) by Lemma 3.6. Note that M F stores both p’ and p in its buffer at ¢+,
and p” is valid at t,y+ by the above definition. Therefore, p” is stored in MF’s buffer at ¢, +,
and thus this p” satisfies the condition of q. The case of ¢’ can be proven in the same way as q.
Namely, if aj11 = g(p'), then let ¢/ = p/. Also, if a;11 < g(p’), then there must be ¢’ satisfying
g(p) <aj <ajr1 =g(q") < g(p'). This completes the proof. O

Lemma 3.10 For any non-event time t and x € [2,k|, let p be an x-packet valid for MF at t.
Then the number of x-packets q such that OPT accepts q, arr(p) < arr(q), and g(q) € [1,9(p) — 1]
s at most B.

Proof. Let p1 be the 1-packet corresponding to p, ¢’ be an a-packet accepted by OPT, and ¢} be
the 1-packet corresponding to ¢’. As we assume that O PT never accepts a packet of an incompleted
frame, ¢} is accepted by OPT. Since the input is order-respecting, arr(p) > arr(q’) if arr(p1) >
arr(q}), that is, such ¢’ does not satisfy the second condition of ¢ in the statement of this lemma.
Since the block numbers of 1-packets are monotonically non-decreasing in an arrival order, g(p;) <
g(qq) if arr(py) < arr(q}), namely, such ¢ does not satisfy the third condition of ¢. Thus, only ¢
such that arr(p;) = arr(q]) can satisfy all the conditions of ¢. Since the buffer size is B, the number
of such ¢} accepted by OPT is at most B, which completes the proof. L]

Lemma 3.11 Let p and p’ be x(€ [2,k])-packets stored in MF’s buffer at the same time, and
suppose that g(p') — g(p) > 2. Then, if g(p) > 2, the number of x-packets p such that g(p) €
l9(p),9(p")—1], and p is accepted by OPT is at most 5B+ A—4. Moreover, if g(p) = 1, the number
of x-packets p such that g(p) € [1,9(p’) — 1], and p is accepted by OPT is at most 4B + A — 3.

Proof. First, we consider the case of g(p) > 2. Let ¢ be an z-packet satisfying the conditions of
the lemma, i.e., an z-packet ¢ such that g(q) € [g(p),g(p’) — 1] and ¢ is accepted by OPT. Note
that arr(p) < arr(p’) by Lemma 3.6 (b) because g(p) < g(p). We count the number of such ¢ for
each of the cases (i) arr(q) < arr(p), (ii) arr(p) < arr(q) < arr(p’), and (iii) arr(p’) < arr(q).

(i) First, note that there is no ¢ such that g(q) € [g(p) + 1,9(p") — 1] by Lemma 3.6, since
arr(q) < arr(p). Hence, we focus on ¢ such that g(¢) = g(p). Let p; and ¢; be the 1-packets
corresponding to p and ¢, respectively, and suppose that py (p}) is the jth (first) 1-packet accepted
by MF with block number g(p). To count the number of ¢ satisfying the condition, we count
the number of corresponding ¢;. Note that g(q1) = g(p1) since g(¢) = g(p). By the definition of
MF, the j(€ [1, A])th 1-packet accepted by M F is also accepted by GR;. If we set t; = ty, — and
to = tp, —, then w = j — 1 in Lemma 3.8, and Lemma 3.8 implies that the number of ¢; such that
arr(q1) < arr(p1) is at most j — 1+ B — 1. This is at most A+ B — 2 since j < A by Lemma 3.5(b).
The number of g; such that arr(q;) = arr(p;) is at most B, since the buffer size is B. Finally,
the number of ¢; such that arr(q;) > arr(p;) is zero by the order-respecting assumption because
arr(q) < arr(p). Hence, the number of ¢ in Case (i) is at most (A+ B —2)+ B=2B + A —2.

(ii) Let ¢t be any non-event time when both p and p’ are stored in M F’s buffer. Let w’ = arr(p)
and suppose that the delivery subphase just before ¢ is in the w”th phase. Then, the number
of delivery subphases during [w’,w”] is w” — w’ + 1. Since p is still stored in MF’s buffer at t,

12

w” —w'+1 < B—1 (as otherwise, M F must have transmitted p before ¢). The number of z-packets
which arrive during [w’, w"] and are accepted by OPT is at most B+w” —w’ < 2B —2 by a similar
argument to the proof of Lemma 3.5(a). Thus, the number of xz-packets ¢ in this case is at most
2B — 2.

(iii) By Lemma 3.10, the number of z-packets ¢ in this case is at most B.

Putting (i), (ii), and (iii) together, the number of xz-packets ¢ is at most (2B + A —2) + (2B —
2)+ B=5B+ A—4.

For g(p) = 1, the argument is the same as the case of g(p) > 2, except that at an application of
Lemma 3.8 in Case (i), we let ¢; be the time before the beginning of the input. Then, the number
of ¢1 such that ¢ is accepted by OPT, g(q1) = g(p1), and arr(¢q;) < arr(p;) is at most A — 1,

instead of A+ B —2 in the case of g(p) > 2. Then the number of z-packets ¢ in question is at most
(B+A-1)+(2B—-2)+B=4B+ A-3. U]

Now we are ready to give the proof of Lemma 3.3. Fix the block number u(# M). We count the
number of 1-packets p accepted by OPT such that g(p) = u. Note that the number of 1-packets
with block number u accepted by GRy is 3B. Let ¢ (¢’) be the first (last, i.e., 3Bth) l-packet
accepted by GR; with block number u. Also, let ¢ be the first 1-packet accepted by GR; after
ty+. Then ¢” has the block number u+ 1 by definition, and hence any packet with block number u
arrives during time [t,—,t,7—]. By applying Lemma 3.8 with t; = t,— and to = tyv—, i.e., w = 3B,
the number of 1-packets p accepted by OPT such that g(p) = u is at most 3B+ B —1=4B — 1.
When v = M, the same upper bound can be obtained by almost the same argument as the above.
We use this fact several times in the following.

(a) By the above discussion, the number of 1-packets p accepted by OPT such that g(p) = am,
is at most 4B — 1, and hence the number of frames f completed by OPT such that g(f) = ay, is
at most 48 — 1.

(b) In the case of as = a1 + 1, by the same argument as (a) we can conclude that the number of
completed frames is at most 4B —1 < 4B+ A —3. If ag > a1 + 2, we know by Lemma 3.9 that two
x-packets p and p such that g(p) = a1 and g(p) = ag are stored in M F’s buffer at the same time.
Then by Lemma 3.11, the number of z-packets p accepted by OPT such that g(p) € [a1, a2 — 1] is
at most 4B + A — 3 (recall that a; = 1). By the same argument as above, we can conclude that
the number of frames completed by OPT such that g(f) € [a1,a2 — 1] is also at most this number.

(c) The argument is almost the same as (b). The only difference is that here we use the fact
that for ¢ > 2, the number of z-packets p accepted by OPT such that g(p) € [a;,a;+1 — 1] is at
most 5B + A — 4, which is due to Lemma 3.11. O

4 Lower Bound for Deterministic Algorithms

In this section, we show a lower bound for deterministic algorithms.

Theorem 4.1 Suppose that k > 2. The competitive ratio of any deterministic algorithm is at least
2B : :

m—l—l if B>k —1, and unbounded if B < k — 2.

Proof. Fix an online algorithm ALG. Let us consider the following input o. (See Figure 1.) At the

Oth phase, 2B 1-packets arrive. ALG accepts at most B 1-packets, and OPT accepts B 1-packets

that are not accepted by ALG. Let C' (D, respectively) be the set of the 1-packets accepted by

13

Accept: X(=B) Y(=B) z(=B) at most B

_E CB.1 eB,1 geq cs,z T CB_k T eB,k gB.Z T gE,k

s :

<

2] -

g i1 11 91 Cra| = | Gkl | Cr2 k|| 912 | 9k
| | | | | | | —>
0 B 2B 3B (k+1)B (k+2)B (k+2)B (2k+1)B phase

£

§ dB1 fX1 hB1 dB 2 dB.k fX? ka

S . :

0 . .

<< e)

g % for hz,1 % Ty Tk fy2 fok

8‘ q, fo hm d1,2 d1,k T2 fm fi2 fik

Accept: B X B B - B X(k-1)=B B B

Figure 1: Lower Bound Instance. Each square denotes an arriving packet accepted by an online
algorithm or OPT'. In the figure X = L%J

ALG (OPT, respectively). At the ith phase (i € [1, B — 1]), no packets arrive. Hence, just after
the (B —1)st phase, both ALG’s and OPT’s queues are empty (since B delivery subphases occur).

At the Bth phase, B + L%J 1-packets arrive in the same manner as the first 2B 1-packets.

ALG can accept at most B 1-packets, and OPT accepts L%J 1-packets that are not accepted by
ALG. Let E (F, respectively) be the set of the packets accepted by ALG (OPT, respectively).
At the ith phase (i € [B + 1,2B — 1]), no packets arrive, and both ALG’s and OPT’s queues are

empty just after the (2B — 1)st phase.

Once again at the 2Bth phase, 2B 1-packets arrive. ALG accepts at most B 1-packets, and
OPT accepts B 1-packets that are not accepted by ALG. Let G (H, respectively) be the set of
the 1-packets accepted by ALG (OPT, respectively). This is the end of the arrivals and deliveries
of 1-packets. At the ith phase (i € [2B + 1,3B — 1]), no packets arrive, and hence just before the
3Bth phase, both ALG’s and OPT’s queues are empty.

For each j = 2, ..., k, the B j-packets corresponding to 1-packets in D arrive at the (j + 1)Bth
phase. OPT accepts and transmits them. (There is no incentive for ALG to accept them.) Next, all
the packets corresponding to all the 1-packets in CUFEUF UG arrive at the (k+2)Bth phase. Since
ALG needs to accept all the k — 1 packets of the same frame to complete it, the number of frames
ALG can complete is at most | Z;|. OPT accepts all the | 21 |(k — 1) packets corresponding to
all the 1-packets in F'. Note that this is possible because |2](k—1) < B. Hence, OPT completes
all the | £;] frames of F.

After which all the packets corresponding to 1-packets in H arrive one after the other, and
OPT can accept and transmit them. Note that the input sequence is order-respecting.

By the above argument, we have Varg(o) < L%J and Vopr(o) = 2B + L%J Therefore, if
B>k—-1 Vorr(o) -, _2B + 1. If B < k — 2, the competitive ratio of ALG is unbounded.]

' Vara(o) = 2]

14

5 Lower Bound for Randomized Algorithms

Theorem 5.1 When k > 3, the competitive ratio of any randomized algorithm is at least k —1 — ¢
for any constant € against an oblivious adversary.

Proof. Fix an arbitrary randomized online algorithm ALG. Let y be a large integer that will be
fixed later. Our adversarial input o consists of (k — 1)yB frames. These frames are divided into
k — 1 groups each with yB frames. Also, frames of each group are divided into y subgroups each
with B frames. For each i(€ [1,k — 1]) and j(€ [1,vy]), let F(i,j) be the set of frames in the jth
subgroup of the ith group and let F'(i) = U;F (4, j). For each z(€ [1,k]), let P(i,j,x) be the set of
x-packets of the frames in F'(7,) and let P(i,x) = U;P(i,], x).

We first give a very rough idea of how to construct the adversary. Among the &k — 1 groups
defined above, one of them is a good group. In the first half of the input (from phase 0 to phase
(k—1)yB—1), the adversary gives packets to the online algorithm in such a way that the algorithm
cannot distinguish the good group. Also, since the buffer size is bounded, the algorithm must give
up many frames during the first half; only yB frames can survive at the end of the first half. In
the second half of the input, remaining packets are given in such a way that k-packets from the
bad groups arrive at a burst, while k-packets from the good group arrive one by one. Hence, if the
algorithm is lucky enough to keep many packets of the good group (say, Group 1) at the end of the
first half, then it can complete many frames eventually. However, such an algorithm behaves very
poorly for an input in which Group 1 is bad. Therefore, the best strategy of an online algorithm
(even randomized one) is to keep equal number of frames from each group during the first half.

Before showing our adversarial input, we define a subsequence of an input. For any ¢, suppose
that B packets of P(i,j,z) arrive at the ¢th phase and no packets arrive during ¢ + 1 through
(t + B — 1)st phases. Let us call this subsequence a subround of P(i,j,x) starting at the tth
phase. Notice that if we focus on a single subround, an algorithm can accept and transmit all the
packets of P(i,j,x) by the end of the subround. A round of P(i,z) starting at the tth phase is a
concatenation of y subrounds of P(i,7,z) (j € [1,y]), where each subround of P(i,j,z) starts at
the (t + (j — 1)B)th phase. (See the left figure in Fig. 2.)

Our input consists of rounds of P(i,z) starting at the (i + x — 2)yBth phase, for i € [1,k — 1]
and z € [1,k—1]. (See Fig. 3.) Note that any two rounds P(i,x) and P(i’, 2) start simultaneously
if i+ 2 = '+ 2. Currently, the specification of the arrival of packets in P(i,z) for z = k is missing.
This is the key for the construction of our adversary and will be explained shortly.

Consider k — 1 rounds (of P(1,k—1),P(2,k—2),---,P(k—1,1)) starting at the (k — 2)yBth
phase, which occur simultaneously. Note that for each j, at the jth subround of these k — 1 rounds,
ALG can accept at most B packets (out of (k — 1)B ones) because of the size constraint of the
buffer. For each j € [1,y], let A;; denote the expected number of packets that ALG accepts from
P(i,j,k —1). By the above argument, we have that ¥;4; ; < B and hence ¥;5;4;; < yB. Let
A; = ¥jA;; and let A, be the minimum among Ai, Ay, -+, Ap_1 (ties are broken arbitrarily).
Note that 4, < If—i since X;A; = 3;3;A; ; < yB. Also, note that since A; is an expectation, z is
determined only by the description of ALG (and not by the actual behavior of A).

We now explain the arrival of packets in P(i,k) (i € [1,k — 1]). (See the right figure in Fig. 2.)
For i # z, all the yB packets in P(i, k) arrive simultaneously at the (i + k — 2)yBth phase. As for
i = z, packets are given as a usual round, i.e., we have a round of P(z, k) starting at (z+k —2)yB.
It is not hard to verify that this input is order-respecting. Also, it can be easily verified that our
adversary is oblivious because the construction of the input does not depend on the actual behavior

15

round

»»fubr?ound burSt round

a a a a
a a a a
L
T

t+(y‘- 1)B ph’ase t ph’ase
round burst round
P a,x P ak
t} ph}ase t phase

Figure 2: P(a,x) is written as P, , in this figure. The left figure shows a round of P(a,x) except
for the case where a # z and x = k. On the other hand, the right figure shows a round of P(a, k)
for each a(€ [1,k — 1]) such that a # =.

of ALG. Specifically, z depends on only the values of A;; (i € [1,k —1],j € [1,y]), and o can be
constructed not with time but in advance.

First, note that OPT can accept and transmit all the packets in P(z,z) for any x. Therefore,
OPT can complete all the yB frames in F(z) and hence Vopr(o) > yB. On the other hand,
since all the packets in P(i, k) (i # z) arrive simultaneously, ALG can accept at most B packets
of them and hence can complete at most B frames of F(i) for each i. As for F(z), ALG can
complete at most A, < é/—i frames of them and hence E[Varg(o)] < ky—ﬁ + (k — 2)B. If we take

y > w — (k—1)(k — 2), we have that

Vopr(o) yB a4 (k—1)%(k —2) 1.
EViza(o) ~ WB)JE-D+(k-2B "~ Ty rekonE-y T

6 Conclusion

In this paper, we have improved an upper bound on the competitive ratio for k-OFTM, showing
the ©(k)-competitiveness of the problem when B > 2k. We also have presented lower bounds for
deterministic and randomized settings. When £ — 1 < B < 2k, our proof for the upper bound
does not work because there exists a j-subbuffer whose size is one and hence it is impossible for
two j-packets to exist in the buffer simultaneously. Developing competitive algorithms for this case
is one of interesting future work. Moreover, M F is a preemptive algorithm whereas the O(k?)-
competitive algorithm SP in [25] is non-preemptive. Therefore it is interesting to design (or prove
the non-existence of) a non-preemptive algorithm whose competitive ratio is O(k).

16

7

P P2 Pis P14 Pkt Py | "o
| | | | | ~ bad rounds
e || pe || P | Pu| | P |] P
. good rounds | | P [P || P [P [P
| P | Pz | | P | P | s P
| | | | | | | | |
0 y‘B (i-7‘)yB (k-2‘)yB (k-1‘)yB k}‘/B (k+1‘)yB (k+‘2)yB (2k-\">’)yB e

Figure 3: Lower bound instance for randomized algorithms

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 24500013 and 26730008.

References

1]

[2]

W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén, “Competitive queue policies for differ-
entiated services,” Journal of Algorithms, Vol. 55, No. 2, pp. 113-141, 2005.

S. Albers and M. Schmidt, “On the performance of greedy algorithms in packet buffering,”
SIAM Journal on Computing, Vol. 35, No. 2, pp. 278-304, 2005.

N. Andelman, “Randomized queue management for DiffServ,” In Proc. of the 17th ACM
Symposium on Parallel Algorithms and Architectures, pp. 1-10, 2005.

N. Andelman and Y. Mansour, “Competitive management of non-preemptive queues with
multiple values,” Distributed Computing, Vol. 2848, pp. 166-180, 2003.

N. Andelman, Y. Mansour and A. Zhu, “Competitive queueing policies for QoS switches,” In
Proc. of the 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 761-770, 2003.

Y. Azar and A. Litichevskey, “Maximizing throughput in multi-queue switches,” Algorithmica,
Vol.45, No.1, pp, 69-90, 2006.

Y. Azar and Y. Richter, “Management of multi-queue switches in QoS networks,” Algorithmica,
Vol.43, No.1-2, pp, 81-96, 2005.

Y. Azar and Y. Richter, “An improved algorithm for CIOQ switches,” ACM Transactions on
Algorithms, Vol. 2, No. 2, pp. 282-295, 2006,

M. Bienkowski, “An optimal lower bound for buffer management in multi-queue switches,”
Algorithmica, Vol.68, No.2, pp, 426—447, 2014.

A. Borodin and R. El-Yaniv, “Online computation and competitive analysis,” Cambridge Uni-
versity Press, 1998.

17

[11]

[12]

[13]

[14]

Y. Emek, M. Halldérsson, Y. Mansour, B. Patt-Shamir, J. Radhakrishnan and D. Rawitz,
“Online set packing and competitive scheduling of multi-part tasks,” In Proc. of the 29th
ACM Symposium on Principles of Distributed Computing, pp. 440-449, 2010.

M. Englert and M. Westermann, “Lower and upper bounds on FIFO buffer management in
QoS switches,” Algorithmica, Vol.53, No.4, pp, 523-548, 2009.

M. Goldwasser, “A survey of buffer management policies for packet switches,” ACM SIGACT
News, Vol.41, No. 1, pp.100-128, 2010.

E. Hahne, A. Kesselman and Y. Mansour, “Competitive buffer management for shared-memory
switches,” In Proc. of the 13th ACM Symposium on Parallel Algorithms and Architectures, pp.
53-58, 2001.

M. M. Halldérsson, B. Patt-Shamir and D. Rawitz, “Online Scheduling with Interval Con-
flicts,” Theory of Computing Systems, Vol.53, No.2, pp, 300-317, 2013.

J. Kawahara, and K. M. Kobayashi, “Optimal Buffer Management for 2-Frame Throughput
Maximization,” Computer Networks, Vol. 91, pp. 804-820, 2015.

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko, “Buffer
overflow management in QoS switches,” SIAM Journal on Computing, Vol. 33, No. 3, pp. 563—
583, 2004.

A. Kesselman and Y. Mansour, “Harmonic buffer management policy for shared memory
switches,” Theoretical Computer Science, Vol. 324, No.2-3, pp. 161-182, 2004.

A. Kesselman, Y. Mansour and R. van Stee, “Improved competitive guarantees for QoS buffer-
ing,” Algorithmica, Vol.43, No.1-2, pp. 63-80, 2005.

A. Kesselman and A. Rosén, “Scheduling policies for CIOQ switches,” Journal of Algorithms,
Vol. 60, No. 1, pp. 60-83, 2006.

A. Kesselman and A. Rosén, “Controlling CIOQ switches with priority queuing and in mul-
tistage interconnection networks,” Journal of Interconnection Networks, Vol. 9, No. 1/2, pp.
53-72, 2008.

A. Kesselman, K. Kogan and M. Segal, “Packet mode and QoS algorithms for buffered crossbar
switches with FIFO queuing,” Distributed Computing, Vol.23, No.3, pp. 163-175, 2010.

A. Kesselman, K. Kogan and M. Segal, “Best effort and priority queuing policies for buffered
crossbar switches,” Chicago Journal of Theoretical Science, pp. 1-14, 2012.

A. Kesselman, K. Kogan and M. Segal, “Improved competitive performance bounds for CIOQ
switches,” Algorithmica, Vol.63, No.1-2, pp, 411-424, 2012.

A. Kesselman, B. Patt-Shamir and G. Scalosub, “Competitive buffer management with packet
dependencies,” Theoretical Computer Science, Vol.489-490, pp. 75-87, 2013.

K. Kobayashi, S. Miyazaki and Y. Okabe, “A tight bound on online buffer management for two-
port shared-memory switches,” In Proc. of the 19th ACM Symposium on Parallel Algorithms
and Architectures, pp. 358-364, 2007.

18

[27] K. Kobayashi, S. Miyazaki and Y. Okabe, “Competitive buffer management for multi-queue
switches in QoS networks using packet buffering algorithms,” In Proc. of the 21st ACM Sym-
posium on Parallel Algorithms and Architectures, pp. 328-336, 2009.

[28] Y. Mansour, B. Patt-Shamir, and D. Rawitz, “Overflow management with multipart packets,”
In Proc. of the 31st IEEE Conference on Computer Communications, pp. 2606-2614, 2011.

[29] Y. Mansour, B. Patt-Shamir, and D. Rawitz, “Competitive router scheduling with structured
data,” Theoretical Computer Science, Vol. 530, pp. 12-22, 2014.

[30] G. Scalosub, P. Marbach and J. Liebeherr, “Buffer management for aggregated streaming data
with packet dependencies,” IEEFE Transactions on Parallel and Distributed Systems, Vol. 24,
No. 3, pp. 439-449, 2013.

[31] D. D. Sleator, and R. E. Tarjan, “Amortized efficiency of list update and paging rules,”
Communications of the ACM, Vol. 28, No. 2, pp. 202-208, 1985.

[32] M. Sviridenko, “A lower bound for on-line algorithms in the FIFO model,” unpublished
manuscript, 2001.

A Lower bound for SP

We give an input o for which SP’s competitive ratio is as bad as Q(k?). For ease of presentation,
let D =3B and N = 3 x 2¥"1, 5 consists of NB frames fi,..., fyp. For any i(€ [1, NB]) and any
j(e [1,k]), let p; ; denote the j-packet of f;. Fig. 4 shows a pseudocode of generating o. Note that
in o, all the 1-packets arrive first. After that, all the 2-packets arrive, then all the 3-packets do,
and so on. An example of ¢ for k = 5 is depicted in Figs. 5 through 9, corresponding to 1- through
5-packets, respectively. Each figure consists of two graphs. An upper graph shows the arrival phase
of each packet, where the horizontal axis shows the packet index and vertical axis shows the phase.
For example, Fig. 5 shows that 1-packets p;1 (i € [1, B]) arrive at the Oth phase, indicated as (1),
1-packets p; 1 (¢ € [B + 1,2B]) arrive at the Bth phase, indicated as (2), and so on. (We assume
that Figs. 5 through 9 are printed in color. Please refer to the PDF version if necessary.)

First, consider SP’s behavior. Without loss of generality, we assume that S P prioritizes frames
with smaller indices, e.g., if two packets p;; and py; with ¢ < i’ arrive at the same time and
SP is able to accept only one packet, then SP accepts p;; and rejects py ;. The lower graphs of
Figs. 5 through 9 show the behaviors of SP and OPT. For example, Fig. 5 shows that SP accepts
1-packets p; 1 (i € [1,A]), indicated as (5’), pi1 (¢ € [B+ 1, B + A]), indicated as (6’), and so on.
Now, for each w € [1, N], SP accepts A 1-packets p(,—1)B+1,1,P(w—1)B+2,1> - - - » P(w—1)B+A,1, hence
NA 1-packets in total, and rejects the rest. Next, for each integer j(€ [2,k]) and each integer
y(€ 0,257 —1]), SP accepts A j-packets Py2i-1D41js - - »Py2i-1p+A,; but rejects others. Note
that the number of j-packets accepted by SP is 27JA. In particular, the number of k-packets
accepted by SP is A. Therefore, Vgp(o) = A.

Next, consider OPT’s behavior. Let by = 0 and b, = Z]Z;% 2k=J=1D for each integer z(&
2,k — 1]). OPT completes fu.+p+1s---, fo.+p+B for each integer z(€ [1,k — 1]). Therefore,

Vopr(o) = (k- 1)B and Y228} = W=D — 0(k2) since A = | B/k|.

On the other hand, MF completes fy 11,..., fy,4|4/2) for each integer z(€ [L,k — 1]) and
fbk+LA/2J+1’ N fbk+A~ Therefore, VMF(O') = (k—l)LA/QJ—i—A— LA/QJ > kLA/QJ and VOPT(O')/VMF(O') <
(k—1)B/(k|A/2]) < B/|A/2] hold.

19

t:=0.
forw=1,...,N do
1-packets p(y—1)B41,15- - - s PwB,1 arrive at the ¢th phase.
t:=t+ B.
end for
for j=2,...,kdo
t:=(j—1)NB.
fory=0,...,2"7 —1 do
J-packets pyoi-1pi1 s -+ Py2i-1p42i-2p+p,; arrive at the tth phase.
t:=t+ B.
forz=1,...,2272—-1do
J-packets pyoi-1pyoi-2pyaD414y- - > Py2i-1D+2i-2D+aD+D,; arTive at the ¢th phase.
t:=t+ B.
end for
end for
end for

Figure 4: Pseudocode of arriving packets in o

B Execution Example of M F

In this section, we give an execution example of M F' for a given input ¢ in Tables 1 and 2. We
suppose that k = 3 and B = 12, which means A = 12/3 = 4. ¢ includes 120 frames fi,..., fi20.
For each i(€ [1,120]), p;,¢; and r; denote the 1-packet, 2-packet and 3-packet in f;, respectively.
We suppose that arr(p;) < arr(ps) < --- < arr(pigo). All the 1-packets (all the 2-packets and 3-
packets) arrive as shown in Table 1 (Table 2). Columns starting from the left in the tables present
the arrival times of packets, the names of arriving packets, actions by GR; for arriving packets
(only in Table 1), actions by M F' for arriving packets, the names of cases executed by M F and the
block numbers of arriving packets (only in Table 1).

For example, 1-packets p1, po, p3 and py4 arrive at phase 0, M F executes Case 1.2.1, and accepts
these packets. (See Figure 10.) The block numbers of these 1-packets are 1. In particular, MF
accepts 2-packet ggs at phase 120, and preempts g¢s; that is stored in its buffer at ¢4, —. (That is,
MF discards ¢5; using a “middle-drop” policy.) Moreover, when M F' accepts 3-packet rg5 at the
120th phase, M F' executes Case 2.2.2, and preempts r49. Hence, fi9 becomes invalid for M F. At
this time, M F' preempts 2-packet g9 as well. In addition, the frames f such that the 1-packets in
f are accepted by M F', and g(f) = 2 are fag, f50, f51 and fso. At event times t4e, and g, g51 and
¢52 are preempted, respectively. That is, the number of valid frames of M F with block number 2
decreases to less than |A/2]| = 2 at event time ¢,,,. Thus, M F further executes Case 2.2.2.1, and
preempts all the packets whose block numbers are 2 in its buffer.

20

phase

[}
5
” | | | | il aE [| | | | 1
roeeee- oo B Rt BRIt g
I 7 7 7 7 o - b~ 7 7 7
,— [,’ [
I I S PR R e e P S N
o 1 f | —— e T 1 i S I T "
I ' ! ' — L R o | ! R N U]M:,
L =R = | TEST A8 T
| g |]M]wﬂﬁﬂﬂ o . M$+Hmwmﬁm Nﬂmfﬁ
| Y | B,r,fﬂ,mw..ﬂiw% e | o ZR322d838 7 2387
| ,_ R TATRYA T |) | A e~
Iy 248444888 1Ty, glecgzdzon EhE
| I o | b A =
4 | cassgecss D T e
1 — [1 ' ~P [
| | N | | o | | s | S| S
| | I | | i | | o
L\‘\‘i\‘\‘\.ﬂ ‘‘‘‘‘ R A R N i~ L\‘\‘i\‘\‘___.rﬁ ‘‘‘‘‘ [S R
| ! ' ! ! o —_ | ! ' —_ ,]B.,JD., o
| | LS | | o | | AR RIS
| | | | | i | | - =¥ i
, | L | , | | A IR
| , , ho , o | , S S-S =A
. N B . N Jetg i
] | g | 1] | o N
o i :_ i 0] i B, 1S
| | | N 1% ” | | L P
I . SR IR I I I S b]
| 4 H | ol T | 4 g I
| | | | | 1 | | | | R
1 ! ' ! — [1 ! ! E | .L,,,
] | I T] | ok T
I ! @\NLV— o | ! ! ‘M)ll,vﬁb o
” | 7 | o | o ” | 7 | ST e MR
R — - R — S OREUTERERS IS R S S ook Ll
m | | g, TR | | | g, L ohs
| I --- [| X~ -~ [
choeeaes feeeneees feeenoene fooeeanoes gl A e frreeeeneees penoeeeeees poreeanoes jog il
I) — I 1 ~—% F
[| | , Qo) L el o RN o]
S i — — -1 10 b R | % 1%
(]
2 £ 2 2 8 SRS Zz 2 £ 8 2 8
<t < on e\ — .ml <t <t N [e\ —

frame

15D 16D

10D
[i;x] in the figure denotes all the 1-packets in

D.
21

5D

2D

0B D
.y fite—1 for any integers i and x.

Figure 5: Arriving 1-packets in o when k

s

phase

1, +7B

1,+2B
t2+ B

phase

t,+7B

t2+ZB
L+ B

OPT

| | | | | | | [
| | | | | | e || DI
,,,,,,,,,,,,,,,,,,, @ [
| | | | | _D | O
| | | | L © | |] @
Ly ==
| e | | | NGY
””””” L S A R e R A B N |
Ty T T 7 [7 o [M
ﬁ 7777777 I \\ ”””””” [R [
0 Z‘D 4‘D 6‘D S‘D 1 O‘D 1 Z‘D 1 4‘D 1 61‘)
frame
1 1 1 1 1 1 1 1
S I I o enes
				(226 (12)@)
			(B 113	
	A 2000) @)			
o L (7)) (g e o				
T syaefmy 1T P fro P froe ™				
RS 1	!	!		
Ghay ! A o I -				
0 Z‘D 4‘D 6‘D S‘D IO‘D 12‘D 14‘D 16Dfr
(1) [D+1:B] ((5) [1:4 [(137) [1:14/2] Q1) [8D+134/2]]
(2°)[9D+1;B] 6 [2D+l A (14) [D+HARK1[4/2]] (227) [9D+A/21+1;[4/2]]
(3)[13D+1;B] (7)) [4D+1;4] (15°) [2D+1;14/2]] (23°) [10D+1:4/2]]
@)[15D+1;B] .) (8°) [6D+1:4] (16°) [3D+A/21+1;[4/2]] (24°) [11D+4/2}+1;[4/2]]
P4 (9°) [8D+1:4] MF< (17°) [4D+1:14/2]] (257 [12D+1:14/2]]
(10°) [10D+1;4] (18°) [SD+HA2F1;[4/2]] (267) [13D+A4/2)+1;[4/2]]
(11°) [12D+1;A4] (19%) [6D+1;A4/2]] 27 [14D+1;|4/2]]
\(12))[14D+134] \ (20") [TDHA21[4/2]] (28") [15D+4/21 14/21]

Figure 6: Arriving 2-packets in ¢ when k =5

22

1;2D]
2D+1;2D
4D+1:2D
6D+1:2D
8D+1;2D]
10D+1;2D]
12D+1;2D]
14D+1;2D]

phase

13+7B

t3+23
L+ B

phase

13+7B

t3+23
t3+B

| T | | | | | I
‘ | | | (1) [1;3D]
,,,,,,,,,, “““‘&‘ (2) [3D+1;D]
I | | | UL | (3) [4D+1;3D]
I | | ()\ 0] | | (4) [7D+1;D]
o | 5) | | (5) [8D+1;3D]
| | | | 4) —_— | | (6) [11D+1;D]
S e | | | " [12p+13D]
********** O e e e e e LR (Rt
U S IS S O SO
1 R e [e [-
. | |
0 2‘D 3D 4D 6‘D 8‘D IO‘D 12‘D 14‘D 16Df
| ! T | | | | \ \
,,,,,,,,, S S N SR O NN NN C. o
o | | | (189, [199@ |
. | | IERRICRYCHN |
O T N B W 1. B
3 - e ‘ | |
o ‘Wiw‘az) a0 - - - Fm
‘ (ar (6) r ﬁ ‘ * ‘
'(9737(1")"‘7(1705,,,, E N S R S S
G N
0 2D 3D 4D 6D 8D 10D 12D 14D 16Dfr
ame
(1") [D+1;B] (9%) [1;14/2]] (15%) [8D+1;14/2]]
oprd 20 [9D+1:B] (10°) [2D+1;14/2]] (16”) [10D+1:14/2]]
(3°) [13D+1;B] (11°) [3D+A21+1:[4/2]] (17°) [11D+A/21+1;[4/2]]
@) [15D+1;8] MY (12°) [4D+134/2]] (18°) [12D+1:14/2]]
(5) [1:4] (13°) [6D+1;14/2]] (19°) [14D+1:14/2]]
o J (6) [4D+1:A] (147) [ID+A21+14/2]] (207) [15D+A/2)+1574/21]

(7°) [8D+1;4]
(8) [12D+1;4]

Figure 7: Arriving 3-packets in ¢ when k =5

23

phase

1,+7B

t4+ZB
I,+B

phase

1,+7B

1 T 1 * * w 1
,,,,,,,,,, S S S S A R BN S)1
| IR | | | KON
I)	
R	1O		
S			
T e T o e e n			
""""" NN o e e [N			
I o I N			
0 Z‘D 41‘) 5D 6‘D 8‘D IO‘D 12‘D 14b 16Df			
1 T 1 * * w 1			
,,,,,,,,,, SR N A SR RO NN A ¢ w1			
o			SRICON
I			@)
I . L {2			
L e
T e P o e e n
(yay [e [I [I
—_— e R ROEE TP
)] o | | | | |
0 Z‘D 41‘) 5D 6‘D S‘D IO‘D 12‘D 14b 16Df
(I') [D+1:8] ((7) [1:1472]
oprd () [9D+1:B] (8) [4D+1;4/2]]
(3”) [13D+1;B] (9°) [6D+1:14/2]]
(4°) [15D+1;B] (10°) [7D+A/2+1:4/2]]
o {(5') [1:4] w4 (11°) [8D+1:14/2]]
U6 [8D+1:4] (12°) [12D+1;|4/2]]
(13°) [14D+1;14/2]]
\(14’) [15D+]A/21+1;[4/2]]

Figure 8: Arriving 4-packets in ¢ when k =5

24

(D) [1;5D]

(2) [SD+1;D]
(3) [6D+1;D]
(4) [7D+1;D]
(5) [8D+1;5D]
(6) [13D+1;D]
(7) [14D+1;D]
(8) [15D+1;D]

phase

ts+7B

15+ZB
t5+B

phase

t5+7B

Z‘5-9—23
Is+B

Figure 9: Arriving 5-packets in ¢ when k =5

25

| | | | | | | | I
| | | o | o ® | () [19D]
********** T @ | @ enein)
| | L | 6~ | @ [opD)
| | | o | S (_l | @) [11p+1;0)]
| | | I R RN A R | & n20+10]
| | | IR 2 | | (O [3D+ED]
7777777777 () [14D+1;D]
| T 1)] | L T (®) [15D+1:D]
""""" - RO T e e -
| | | I B -
|
0 2‘D 4‘D 6‘D S‘D 9D IO‘D 12‘D 14‘D 16Df
| | | T | | |
,,,,,,,,,, e QO
| | | N BN SRRTL)
O R ee A
N
| | | L | |
gy e
@yay T | T 7y T [| [
L— ‘ ‘ ‘ B L
S | | o | | |
0 2‘D 4‘D 6‘D S‘D 9b IO‘D 12‘D 14‘D 16‘D
frame
(1) [D+1;B] (6) [1:472]]
oprd () [9D+1:B] (7°) [8D+1;l4/2]]
(3°) [13D+1;8] MF< (8) [12D+1;/4/2]]
(4)[15D+1 ;B] (9°) [14D+1;/4/2]]
sp{ (5) [1x (10°) [15D+|4/21+1;[4/2]]

phase
T
oL I [T TTTTITT]T] B
ot §
A LT T T T TTTTT [
N
P [T T T T T [eep
P :
L T T T T[] ek
o :
i T[T][] el :
o ;
A T T T T T T T T [eileep
T
ATTTTTITTTT [eiep
LT TTTTTTITTT [
st T
AT TTTTTTTITTT B
e O
LTI T T T T [eelekp
e
{TTT T 1] ey

Y

11 EeEmE

preempt

phase

120—42 to
-
é tqas
| [

121

[1] HeEE

11 e :

:)

'

. '
|.r4 |..I‘3 |..l’2 |..r, |..%6|..%5|.@|.@I' E
'

H)

.
))

.

o T) o e [s
.

.

:)

-)

.
RRERCEEEE ¥
.

.

:]

:)

:

:

| [[EEEEEp
:

H)

: 1

.
.

[e EEEEE :
.

.

- 1
|
.
BEEEEEEE ¥

.

M 1

...............

")

.
.

BEREEEEER ¥
.

H)

Figure 10: Execution example of M F'. tg4, denotes the ith delivery time.

26

Table 1: Arriving 1-packets in o

Arrival GRi’s | MPF’s

Time Packets Action | Action | Case | Block
Ply---, P4 accept | accept | 1.2.1 1
0 D5, ..., D12 accept | reject | 1.2.2 1
D13, - - -, P24 reject reject 1.1 1
12 P25, - -+ D36 accept | reject | 1.2.2 1
2 D37, - - -, D47 accept | reject | 1.2.2 1
D4s accept | reject | 1.2.3 1
36 P49y - - -y P52 accept | accept | 1.2.1 2
P53, - - - 5 P60 accept | reject | 1.2.2 2
48 P61, - - -5 D72 accept | reject | 1.2.2 2
60 D73, - - -, P83 accept | reject | 1.2.2 2
Ps4 accept | reject | 1.2.3 2
79 P85 - - - PSS accept | accept | 1.2.1 3
P89, - - - s P96 accept | reject | 1.2.2 3
84 Po7,--.,P108 | accept | reject | 1.2.2 3
96 P1og, - --,P119 | accept | reject | 1.2.2 3
P120 accept | reject | 1.2.3 3

27

Table 2: Arriving 2-packets and 3-packets in o
Arrival ME’s
Time Packets Action Case
108 di,---,44 ac§ept 2.2.1
qs5,---,448 reject 2.1
q49, - - -, 452 accept 2.2.1
453, - -+, 484 reject 2.1
preempt gs1
qss accept ggs 2.2.2
preempt gs2
qse accept gg 2.2.2
Tlyeen, T4 accept 2.2.1
T5y...,748 reject 2.1
120 ra9 preempt rs 2.2.2
accept 149
preempt 74
750 accept 5 2.2.2
T515.--,784 reject 2.1
preempt 749,449 | 5 9 5
T85 accept rgs
preempt r59,q50 | 2.2.2.1
786 accept 2.2.1
487, 488 accept 2.2.1
489, - - -, 4120 reject 2.1
preempt rgs
121 87 accept e 2.2.2
Tag preempt gse, 7’86 999
accept rgg
789, - -,7120 reject 2.1

28

