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Abstract

The stable marriage problem is to find a matching be-
tween men and women, considering preference lists in
which each person expresses his/her preference over the
members of the opposite gender. The output matching must
be stable, which intuitively means that there is no man-
woman pair both of which have incentive to elope. This
problem was introduced in 1962 in the seminal paper of
Gale and Shapley, and has attracted researchers in sev-
eral areas, including mathematics, economics, game theory,
computer science, etc. This paper introduces old and recent
results on the stable marriage problem and some other re-
lated problems.

1. Introduction

Consider a bipartite graph G = (U, V, E), where U and
V are sets of vertices and E is a set of edges. A matching M
in G is a subset of E such that each vertex appears at most
once in M . Bipartite matchings are sometimes interpreted
as marriage between men and women: U and V represent
the set of men and women, respectively, and an existence of
an edge between m ∈ U and w ∈ V implies that m and w
are acceptable to each other.

In the stable marriage problem (SM for short), each per-
son expresses not only the acceptability but also a prefer-
ence order of the members of the opposite sex, and an out-
put matching must satisfy the stability condition, which in-
tuitively means that there is no man-woman pair both of
which have incentive to elope. (Formal definitions will be
given in Sec. 2.)

This problem was first introduced by Gale and Shap-
ley in 1962 in their seminal paper [13], and has received

much attention from a lot of researchers in many areas be-
cause of its inherent mathematical structure and rich appli-
cations to the real world. In fact, the introduction of this
problem by Gale and Shapley was motivated by the match-
ing between medical students and hospitals in the US, cur-
rently known as NRMP (National Resident Matching Pro-
gram) [52]. (Readers who are interested in its history can
refer to [16].) Within the knowledge of authors, there are
three other students-hospitals matching systems that use
SM (more precisely, the hospitals/residents problem, intro-
duced in Sec. 6.2); CaRMS [9] in Canada, SPA [58] in Scot-
land, and JRMP [40] in Japan.

In this paper, we survey classical and recent results on
(mainly, but not limited to) the stable marriage problem.

2. Definitions and Basic Results

In this section, we formally define the stable marriage
problem (SM), and introduce some fundamental results. We
consider several variants in this paper, but here we give only
the definition of the most basic model, and will give defini-
tions of other variants at each introduction point.

An instance I of SM consists of the same number, say n,
of men and women. Each person has a preference list that
strictly orders all members of the opposite sex. If a man m
prefers w1 to w2, we write w1 �m w2. A similar notation
is used for women’s preferences.

A matching M of I is a set of disjoint man-woman pairs
of I . In this section, we consider only perfect matchings,
namely, matchings of size n. If, in a matching M , a man m
and a woman w are matched together, we write M(m) = w
and M(w) = m. We say that a man m and a woman w
form a blocking pair for M , (or simply, (m, w) blocks M )
if the following three conditions are met: (i) M(m) �= w;
(ii) w �m M(m); and (iii) m �w M(w). A matching



M is unstable if there is a blocking pair for M , and stable
otherwise.

Gale and Shapley [13] proposed so-called the Gale-
Shapley Algorithm, which runs in time O(n2), and always
finds a stable matching. Hence, this is a constructive proof
of the fact that any instance admits at least one stable match-
ing.

3. Some Extensions of Preference Lists

In this section, we consider two natural extensions of
preference lists. Recall that in the original SM, each per-
son’s preference list must include all members of the op-
posite sex in a strict order. Apparently, this is inconvenient
in applications, especially in a large-scale matching system
mentioned previously. Hence, we can naturally consider
two natural relaxations, namely, incomplete lists and ties in
lists. In the following subsections, we see some properties
of the variants allowing each or both of these relaxations.

3.1. Incomplete Preference Lists

In this variant, each person’s preference list may be in-
complete, i.e, a person can exclude some members whom
he/she does not want to be matched with. We call this prob-
lem SMI (SM with Incomplete lists). If a person p’s list
includes a person q, we say that q is acceptable to p. A
matching is a disjoint set of pairs (m, w) such that m and
w are acceptable to each other. Since we are considering
incomplete lists, a matching this time is not necessarily per-
fect. Hence, we extend the definition of a blocking pair. For
a matching M , (m, w) is a blocking pair if the following
three conditions are met: (i) M(m) �= w but m and w are
acceptable to each other; (ii) w �m M(m) or m is single
in M ; and (iii) m �w M(w) or w is single in M .

One important property of SMI is that we can partition
the set of men (women) into two sets; one is the set of men
(women) who have partners in all stable matchings, and the
other is the set of men (women) who are single in all stable
matchings [14]. (In Sec. 6.2, we will revisit this property in
the context of more general Hospitals/Residents problem.)
This immediately implies that all stable matchings for a sin-
gle instance are of the same size. Furthermore, it is easily
seen that the Gale-Shapley algorithm with a slight modifi-
cation can be applied to find a stable matching.

3.2. Preference Lists with Ties

The other extension is to allow ties in preference lists,
namely, one can include two or more persons with the same
preference in a tie. We call this problem SMT (SM with
Ties). We extend the notation of preference relation. If
women w1 and w2 are in the same tie of man m’s preference

list, we write w1 =m w2. w1 �m w2 means w1 �m w2 or
w1 =m w2. Similar notations are used for women’s prefer-
ences.

In SMT, there are three stability notions: super-stability,
strong stability, and weak stability. In the super-stability, a
blocking pair is defined as a pair (m, w) such that M(m) �=
w, w �m M(m), and m �w M(w). In the strong stability,
(x, y) is a blocking pair if M(x) �= y, y �x M(x), and
x �y M(y). Finally, in the weak stability, a blocking pair
is defined as (m, w) such that M(m) �= w, w �m M(m),
and m �w M(w). Note that a super-stable matching is
strongly stable, and a strongly stable matching is weakly
stable.

It is easy to see that a weakly stable matching always ex-
ists and can be found in polynomial time [22]. In contrast,
there are instances that have no super-stable nor strongly
stable matching. Nevertheless, there is a polynomial time
algorithm that decides if a super-stable (strongly stable,
resp.) matching exists and finds one if any, whose running
time is O(n2) [22] (O(n3), resp. [42]).

3.3. Incomplete Preference Lists with Ties

This extension allows both incompleteness and ties in
preference lists. We call this extension SMTI (SM with Ties
and Incomplete lists). Definitions of blocking pairs (and
hence the stability) can be obtained naturally by combining
the two cases of Secs. 3.1 and 3.2. Hence, we have three
stability notions again, namely, super, strong, and weak sta-
bilities.

For super and strong stabilities, similar results as SMT
hold, namely, there is an algorithm for each case that de-
cides the existence of a stable matching, and finds one if
exists. The running time of algorithms are O(a) for super-
stability [48], and O(na) for strong stability [42], where a
is the total length of all preference lists (which is 2n2 if all
preference lists are complete). Also, under both super and
strong stabilities, all stable matchings for a single instance
have the same size, as in the case of SMI.

For the weak stability, a stable matching exists for any
instance, and can be found in time O(a), but this time, one
instance can have stable matchings of different sizes, and
the problem of finding a largest one (which is called MAX
SMTI) is NP-hard [34, 50]. Also, it is known that there
is no polynomial time 21/19-approximation algorithm un-
less P=NP [19]. (c-approximation algorithm means that it
always finds a stable matching whose size is at least 1/c
fraction of the optimal size.)

For approximability, there are a series of improvements
[35, 37, 38], and the current best algorithm achieves the ra-
tio of 1.875 [38]. The same authors [38] improved it to
1.8 (see [43] for example). Also there have been presented
approximability and complexity results for instances with



some restriction, such as the length and/or the position of
ties [18, 31, 19, 30].

4. The Number of Stable Matchings

As mentioned earlier, any instance of SM has at least
one stable matching, but in general, one instance may have
a lot. Then, what is the maximum number of stable match-
ings an instance of size n (i.e. with n men and n women)
can have? This problem was first raised by Knuth [44]. Irv-
ing and Leather [27] later proved that for any n power of
2, there is an instance of SM of size n that admits at least
2.28n/(1 +

√
3) stable matchings. For small n, Eilers [11]

showed that the maximum number is 10 when n = 4 by
an exhaustive search using computers. However, nontrivial
upper bounds are still open. Readers can refer to [7, 61] for
further information.

5. Optimal Stable Matchings

Recall that the Gale-Shapley algorithm finds a stable
matching in time O(n2). This algorithm is basically a
sequence of proposals from men to women, and finds a
stable matching with an extreme property that every man
gets his best possible partner among all stable matchings
[13]. In this sense, the matching is called the man-optimal
stable matching. Of course, if we exchange the roles of
men and women, the resulting stable matching is woman-
optimal. Unfortunately, by the nature of stable match-
ings, the man-optimal stable matching is simultaneously the
woman-pessimal stable matching, that is, every woman gets
her worst possible partner [46]. Hence, it is natural to try to
seek for a matching which is not only stable but also “good”
in some criterion.

There are a lot of optimization criteria for the quality
of stable matchings, but here we introduce three of them.
Let pm(w) (pw(m), respectively) denote the position of
woman w in man m’s preference list (the position of man
m in woman w’s preference list, respectively). For a stable
matching M , define a regret cost r(M) to be

r(M) = max
(m,w)∈M

max{pm(w), pw(m)}.

Also, define an egalitarian cost c(M) to be

c(M) =
∑

(m,w)∈M

pm(w) +
∑

(m,w)∈M

pw(m),

and a sex-equalness cost d(M) to be

d(M) =
∑

(m,w)∈M

pm(w) −
∑

(m,w)∈M

pw(m).

The minimum regret stable marriage problem (the mini-
mum egalitarian stable marriage problem and the sex-equal
stable marriage problem, respectively) is to find a stable
matching M with minimum r(M) (c(M ) and |d(M)|, re-
spectively) [16].

Note that the number of stable matchings for one in-
stance grows exponentially in general (see Sec. 4). Never-
theless, for the first two problems, Gusfield [15], and Irving,
Leather and Gusfield [28], respectively, proposed polyno-
mial time algorithms by exploiting a lattice structure which
is of polynomial size but contains information of all sta-
ble matchings. In contrast, the sex-equal stable matching
problem is NP-hard [41]. Iwama, et al. gave approximation
algorithms for this problem and some variants [39].

If we allow ties in preference lists, the problem of find-
ing an optimal weakly stable matching in any of the above
three problems becomes hard, even to approximate: For
each problem, there exists a positive constant ε such that
there is no polynomial time approximation algorithm with
approximation ratio εn unless P=NP [17].

6. Other Variants

In this section, we see two major variants of SM, and
other related matching problems.

6.1. Stable Roommates Problem

The stable roommates problem (SR for short) is a non-
bipartite extension of SM and is defined as follows: We are
given an even number 2n of persons, each having a prefer-
ence list over the other 2n−1 people. This problem is to find
a stable matching where the stability conditon is defined
similarly as the case of SM. In addition to a direct applica-
tion of assigning people to twin-rooms, SR has applications
for pairings of players in chess tournaments [45] and pair-
wise kidney exchange between incompatible patient-donor
pairs [55, 25].

In contrast to the case of SM, there is an instance with
no stable matching [13, 16]. Yet, Irving [21] proposed a
polynomial time algorithm to decide if an instance admits
a stable matching, and finds one if exists. The problem of
finding a matching with minimum number of blocking pairs
is NP-hard and hard to approximate [2]. If we allow ties in
the lists, determining whether an instance admits a weakly
stable matching is NP-complete even in complete prefer-
ence lists [57], while the same problems under the super-
stability and the strong stability are solved in polynomial
time [59, 29].

For SR, a new stability notion, called the exchange sta-
bility, was defined and the problem of asking the existence
of a stable matching under this stability was proved to be
NP-complete [10].



6.2. Hospitals/Residents Problem

The hospitals/residents problem (HR for short) is a
many-to-one extension of SM, where we consider men as
residents and women as hospitals. Each hospital declares
the quota, that specifies the number of residents the hospital
can accept. Usually, in this model, preference lists may be
incomplete. As a definition of blocking pairs, we may apply
that of SMI by regarding a hospital as single if the number
of assigned residents is less than its quota.

We can reduce HR into SM by replacing each hospital
with a quota q by its q copies. It is also known that most of
the results established for SM hold for HR (see [16]). Here,
we would give one remark concerning the property we have
seen in Sec. 3.1. This property can be generalized to HR,
and is known as the Rural Hospitals Theorem [14, 54]. It
says that any stable matching assigns the same number of
residents to all hospitals. Furthermore, if a hospital ob-
tains residents fewer than its quota in one stable matching,
then the hospital gets the same set of residents in any stable
matching.

For some nontrivial results on this problem with ties, see
[32] and [33].

6.3. Other Models

Finally, in this section, we see some other related prob-
lems.

Man-Exchange Stable Marriage For the classical SM,
a new stability definition, man-exchange stability was de-
fined. This stability requires, in addition to the original
stability, the property that no two men prefer to exchange
their partners. Irving have proved that the problem of ask-
ing the existence of a man-exchange stable matching is NP-
complete [24].

Many-to-Many Stable Marriage We can consider more
general variant than HR, a many-to-many extension of the
stable marriage, so that both men and women have quota.
One may easily see that the copying technique used in re-
ducing HR to SM cannot be applied any more since if we do
so, the resulting stable matching may create multiple copies
of the same pair.

Baiou and Balinski [5] showed that some properties for
one-to-one and many-to-one case also hold for this case.
Bansal et al. [6] gave an efficient algorithm for finding a
minimum egalitarian stable matching in this setting. Mal-
hotra [47] studied many-to-many stable marriage with ties,
giving an efficient algorithm for finding a strongly stable
matching, and also proving that all strongly stable match-
ings form a distributive lattice.

Student-Project Allocation Problem Student-Project
Allocation Problem (SPA) is a variant of HR, in which
students are assigned to projects based on his/her prefer-
ences over projects. One lecturer may provide two or more
projects, and in that case, all projects that are given by the
same lecturer have the same preference list. Each project
has its own quota, and each lecturer also has his/her quota.
We are asked to find a stable matching that satisfies all
quota-constraints both for projects and lecturers. Abraham
et al. [3] gave two algorithms for solving this problem and
also studied its structural properties.

3-Dimensional Stable Matching The 3-dimensional ex-
tension of SM was proposed by Knuth [44], in which we
are given three sets of agents. There are several freedom
in modeling this problem, such as the form of preference
lists and the stability definitions. Ng and Hirschberg [53]
and Subramanian [60] proposed one model and proved the
NP-completeness result. The complexity of another model,
called cyclic 3D stable matching, is open but partial results
can be found in Boros et al. [8] and Eriksson et al. [12].
Recently, 3-dimensional SR was studied by many groups
[20, 36, 4].

One-Sided Preference Lists There are some matching
problems in which only one party (say, men) have prefer-
ence lists over the other. We introduce here two of them.

A rank-maximal matching (or a greedy matching) is a
matching that matches the maximum number of men to their
first choice partners, and subject to this condition, the maxi-
mum number of men to their second choice partners, and so
on. The problem of finding a greedy matching was studied
by Irving [23] and Irving et al. [26], who gave polynomial
time algorithms.

For two matchings M1 and M2, if the number of men
who prefer M1 to M2 (in terms of the rank of his partner) is
greater than that of men who prefer M2 to M1, we say that
M1 is more popular than M2. A matching M is popular
if there is no matching more popular than M . Abraham et
al. gave a polynomial time algorithm to decide if a given
instance admits a popular matching, and finds a largest one
if any [1]. Mestre [51], and Manlove and Sng [49] solved
the weighted version and many-one version of this problem,
respectively.

7. Conclusions

We have explored some results on the stable marriage
problem and many of its variants. For further information,
readers may refer to the following textbooks [44, 16, 56].
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