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Abstract The Hospitals/Residents problem is a many-to-one extension of the
stable marriage problem. In an instance, each hospital specifies a quota, i.e.,
an upper bound on the number of positions it provides. It is well-known that
in any instance, there exists at least one stable matching, and finding one can
be done in polynomial time. In this paper, we consider an extension in which
each hospital specifies not only an upper bound but also a lower bound on its
number of positions. In this setting, there can be instances that admit no stable
matching, but the problem of asking if there is a stable matching is solvable in
polynomial time. In case there is no stable matching, we consider the problem
of finding a matching that is “as stable as possible”, namely, a matching with
a minimum number of blocking pairs. We show that this problem is hard to
approximate within the ratio of (|H |+|R|)1−ǫ for any positive constant ǫ where
H and R are the sets of hospitals and residents, respectively. We then tackle
this hardness from two different angles. First, we give an exponential-time
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exact algorithm whose running time is O((|H ||R|)t+1), where t is the number of
blocking pairs in an optimal solution. Second, we consider another measure for
optimization criteria, i.e., the number of residents who are involved in blocking
pairs. We show that this problem is still NP-hard but has a polynomial-time
√

|R|-approximation algorithm.

Keywords The stable marriage problem · The Hospitals/Residents problem ·
Stable matching · Approximation algorithm

1 Introduction

The stable marriage problem is a widely known problem first studied by Gale
and Shapley [13]. We are given sets of men and women, and each person’s
preference list that strictly orders the members of the other sex according
to his/her preference. The question is to find a stable matching, that is, a
matching containing no pair of man and woman who prefer each other to their
partners. Such a pair is called a blocking pair. Gale and Shapley proved that
any instance admits at least one stable matching, and gave an algorithm to
find one, known as the Gale-Shapley algorithm.

In the same paper [13], they also proposed a many-to-one extension of the
stable marriage problem, which is currently known as the Hospitals/Residents
problem (HR for short). In HR, the two sets corresponding to men and women
are residents and hospitals. Each hospital specifies its quota, which means that
it can accept at most this number of residents. Hence in a feasible matching, the
number of residents assigned to each hospital is no more than its quota. Most
properties of the stable marriage problem carry over to HR, e.g., any instance
admits a stable matching, and we can find one by the appropriately modi-
fied Gale-Shapley algorithm. As the name of HR suggests, it has real-world
applications in assigning residents to hospitals in many countries. Centralized
matching schemes for accomplishing this task incorporate algorithms for solv-
ing underlying HR instances and include NRMP in the U.S. [16], CaRMS in
Canada [8], and SFAS in Scotland [22]. HR also arises in the assignment of
students to schools in Singapore [29]. Along with these applications and due to
special requirements in reality, several useful extensions have been proposed,
such as HR with couples [28,27,3,26], and the Student-Project Allocation
problem [2].

In this paper, we study another extension of HR where each hospital de-
clares not only an upper bound but also a lower bound on the number of
residents it accepts. Consequently, a feasible matching must satisfy the con-
dition that the number of residents assigned to each hospital is between its
upper and lower quotas. This restriction seems quite relevant in several sit-
uations. For example, the shortage of doctors in hospitals in rural area is a
critical issue; it is sometimes natural to guarantee some number of residents
for such hospitals in the residents-hospitals matching. Also, when determining
supervisors of students in universities, it is quite common to consider that the
number of students assigned to each professor should be somehow balanced,
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which can be achieved again by specifying both upper and lower bounds on
the number of students accepted by each professor. We call this problem HR
with Lower Quota (HRLQ for short).

The notion of lower quota was first raised in [18] and followed by [6,21]
(see “Related Work” below). In this paper, we are interested in a most natural
question, i.e., how to obtain “good” matchings in this new setting. In HRLQ,
stable matchings do not always exist. However, it is easy to decide whether or
not there is a stable matching for a given instance, since in HR the number
of students a specific hospital h receives is identical for any stable matching
(this is a part of the well-known Rural Hospitals Theorem [14]). Namely, if this
number satisfies the upper and lower bound conditions of all the hospitals, it
is a feasible (and stable) matching, and otherwise, no stable matching exists.
In case there is no stable matching, it is natural to seek for a matching that
is “as stable as possible”.

Our Contributions. We first consider the problem of minimizing the number
of blocking pairs, which is quite popular in the literature (e.g., [25,1,7]). As
shown in Sec. 2, it seems that the introduction of the lower quota intrinsically
increases the difficulty of the problem. Actually, we show that this problem is
NP-hard and cannot be approximated within a factor of (|H |+ |R|)1−ε for any
positive constant ε unless P=NP, where H and R denote the sets of hospitals
and residents, respectively. This inapproximability result holds even if all the
preference lists are complete (i.e., include all the members of the other side),
all the hospitals have the same preference list, (e.g., determined by scores of
exams and known as the master list [23]), and all the hospitals have an upper
quota of one. On the positive side, we give a polynomial-time (|H | + |R|)–
approximation algorithm, which shows that the above inapproximability result
is almost tight.

We then tackle this hardness from two different angles. First, we give an
exponential-time exact algorithm with running time O((|H ||R|)t+1), where t
is the number of blocking pairs in an optimal solution. Note that this is a
polynomial-time algorithm when t is a constant. Second, we consider another
measure for optimization criteria, i.e., the number of residents who are in-
volved in blocking pairs. We show that this problem is still NP-hard, but give
a quadratic improvement, i.e., we give a polynomial-time

√

|R|-approximation
algorithm. We also give an instance showing that our analysis is tight up to
a constant factor. Furthermore, we show that if our problem has a constant
approximation factor, then the Densest k-Subgraph Problem (DkS) has a con-
stant approximation factor also. Note that the best known approximation fac-
tor of DkS has long been |V |1/3 [10] in spite of extensive studies, and was
recently improved to |V |1/4+ǫ for an arbitrary positive constant ǫ [5]. The
reduction is somewhat tricky; it is done through a third problem, called the
Minimum Coverage Problem (MinC), and exploits the best approximation al-
gorithm for DkS. MinC is relatively less studied and only NP-hardness was
previously known for its complexity [30]. As a by-product, our proof gives a
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similar inapproximability result for MinC (Lemma 12), which is of independent
interest.

Related Work. Biró, et al. [6] also considered HR with lower quotas. In
contrast to our model, which requires the lower quotas of all the hospitals to
be satisfied, their model allows some hospitals to be closed, i.e., to receive no
residents. They proved that the problem of deciding whether there is a feasible
solution is NP-complete. Huang [21] considered classified stable matchings, in
which each hospital defines a family of subsets of residents and declares upper
and lower quotas for each of the subsets. He proved a dichotomy theorem
for the problem of deciding the existence of a stable matching; namely, if
the subset families satisfy some structural property, then the problem is in P,
otherwise, it is NP-complete. Recently, Fleiner and Kamiyama [11] generalized
Huang’s result to many-to-many case, where not only hospitals’ side but also
the residents’ side can declare upper and lower quotas.

2 Preliminaries

An instance of the Hospitals/Residents Problem with Lower Quota (HRLQ for
short) consists of a set R of residents and a set H of hospitals. Each hospital
h has lower and upper quotas, p and q (p ≤ q), respectively. We sometimes
say that the quota of h is [p, q], or h is a [p, q]-hospital. For simplicity, we also
write the name of a hospital with its quotas, such as h[p, q]. Each member
(resident or hospital) has a preference list that orders a subset of the members
of the other party.

A matching is an assignment of residents to hospitals (possibly leaving some
residents unassigned), where matched residents and hospitals are in the prefer-
ence list of each other. Let M(r) be the hospital to which resident r is assigned
under a matching M (if it exists), and M(h) be the set of residents assigned
to hospital h. A feasible matching is a matching such that p ≤ |M(h)| ≤ q
for each hospital h[p, q]. We may sometimes call a feasible matching simply a
matching when there is no fear of confusion. For a matching M and a hospital
h[p, q], we say that h is full if |M(h)| = q, under-subscribed if |M(h)| < q, and
empty if |M(h)| = 0.

For a matching M , we say that a pair comprising a resident r and a hospital
h who include each other in their lists forms a blocking pair for M if the
following two conditions are met: (i) r is either unassigned or prefers h to
M(r), and (ii) h is under-subscribed or prefers r to one of the residents in
M(h). We say that r is a blocking resident for M if r is involved in a blocking
pair for M .

Minimum-Blocking-Pair Hospitals/Residents Problem with Lower Quota
(Min-BP HRLQ for short) is the problem of finding a feasible matching with
the minimum number of blocking pairs. Min-BP 1ML-HRLQ (“1ML” standing
for “1 Master List”) is the restriction of Min-BP HRLQ so that in a given
instance, preference lists of all the hospitals are identical. 0-1 Min-BP HRLQ
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is the restriction of Min-BP HRLQ where a quota of each hospital is either
[0, 1] or [1, 1]. 0-1 Min-BP 1ML-HRLQ is Min-BP HRLQ with both “1ML”
and “0-1” restrictions.

Minimum-Blocking-Resident Hospitals/Residents Problem with Lower
Quota (Min-BR HRLQ for short) is the problem of finding a feasible matching
with the minimum number of blocking residents. Min-BR 1ML-HRLQ, 0-1
Min-BR HRLQ, and 0-1 Min-BR 1ML-HRLQ are defined similarly.

We assume without loss of generality that the number of residents is at
least the sum of the lower quotas of all the hospitals, since otherwise there
is no feasible matching. We call this assumption the Number of Residents as-
sumption (or the NR-assumption for short). Also, in this paper we impose the
following restriction, the Complete List restriction (or the CL-restriction for
short), to guarantee existence of a feasible solution: every hospital with a posi-
tive lower quota must have a complete preference list, and every resident’s list
must include all such hospitals. (We remark in Sec. 5 that allowing arbitrarily
incomplete preference lists makes the problem extremely hard.)

We say that an algorithm A is an r(n)-approximation algorithm for a min-
imization (maximization, respectively) problem if it satisfies A(x)/opt(x) ≤
r(n) (opt(x)/A(x) ≤ r(n), respectively) for any instance x of size n, where
opt(x) and A(x) are the costs (e.g., the number of blocking pairs in the case
of Min-BP HRLQ) of the optimal and the algorithm’s solutions, respectively.

As a starting example, consider n residents and n+1 hospitals, whose pref-
erence lists and quotas are as follows. Here, “· · · ” in the residents’ preference
lists denotes an arbitrary order of the remaining hospitals.

r1 : h1 hn+1 · · ·
r2 : h1 h2 hn · · ·
r3 : h2 h1 h3 · · ·
r4 : h3 h1 h4 · · ·
...

ri : hi−1 h1 hi · · ·
...

rn : hn−1 h1 hn · · ·

h1[0, 1] : r1 r2 · · · rn

h2[1, 1] : r1 r2 · · · rn

...
hn[1, 1] : r1 r2 · · · rn

hn+1[1, 1] : r1 r2 · · · rn

Note that we have n [1, 1]-hospitals all of which have to be filled by the
n residents. Therefore, let us modify the instance by removing the [0, 1]-
hospital h1 and apply the Gale-Shapley algorithm (see e.g., [16] for the Gale-
Shapley algorithm; in this paper it is always the residents-oriented version,
namely, residents make and hospitals receive proposals). Then the resulting
matching is M1 = {(r1, hn+1), (r2, h2), (r3, h3), · · · , (rn, hn)}, which contains
at least n blocking pairs (between h1 and every resident). However, the match-
ing M2 = {(r1, hn+1), (r2, hn), (r3, h2), (r4, h3), . . . , (rn, hn−1)} contains only
three blocking pairs, namely (r1, h1), (r2, h1), and (r2, h2).
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3 Minimum-Blocking-Pair HRLQ

In this section, we consider the problem of minimizing the number of blocking
pairs.

3.1 Inapproximability

We first prove a strong inapproximability result for the restricted subclass, as
mentioned in Sec. 1.

Theorem 1 For any positive constant ε, there is no polynomial-time (|H | +
|R|)1−ε-approximation algorithm for 0-1 Min-BP 1ML-HRLQ unless P=NP,
even if all the preference lists are complete.

Proof We demonstrate a polynomial-time reduction from the well-known NP-
complete problem Vertex Cover (VC for short) [15]. In VC, we are given a
graph G = (V, E) and a positive integer K ≤ |V |, and asked if there is a subset
C of vertices of G such that |C| ≤ K, which contains at least one endpoint
of each edge. Let I0 = (G0, K0) be an instance of VC where G0 = (V0, E0)
and K0 is a positive integer. Define n = |V0|. For a constant ε, define c = ⌈ 8

ε⌉,
B1 = nc, and B2 = nc − |E0|.

We construct the instance I of 0-1 Min-BP 1ML-HRLQ from I0. The set
of residents is R = C ∪F ∪S, and the set of hospitals is H = V ∪T ∪X . Each
set is defined as follows:

C = {ci | 1 ≤ i ≤ K0}

F = {fi | 1 ≤ i ≤ n − K0}

Si,j = {si,j
0,a | 1 ≤ a ≤ B2} ∪ {si,j

1,a | 1 ≤ a ≤ B2} ((vi, vj) ∈ E0, i < j)

S =
⋃

Si,j

V = {vi | 1 ≤ i ≤ n}

T i,j = {ti,j0,a | 1 ≤ a ≤ B2} ∪ {ti,j1,a | 1 ≤ a ≤ B2} ((vi, vj) ∈ E0, i < j)

T =
⋃

T i,j

X = {xi | 1 ≤ i ≤ B1}

Each hospital in X has a quota [0,1], and other hospitals have a quota
[1,1]. Note that |C| + |F | = |V |(= n) and |S| = |T |(= 2|E0|B2). Since any
hospital in V ∪ T has a quota [1,1], any feasible matching is a one-to-one
correspondence between R and V ∪T , and every hospital in X must be empty.
Note that |H | = n + 2|E0|B2 + B1 and |R| = n + 2|E0|B2; hence |H | + |R| =
2n + 4|E0|B2 + B1 = 2n− 4|E0|2 + (4|E0|+ 1)nc < n2 + 4nc+2 + nc ≤ 6nc+2,
which is polynomial in n.
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Next, we construct preference lists. Fig. 1 shows preference lists of resi-
dents, where [[V ]] (respectively [[X ]]) denotes a total order of elements in V
(respectively X) in an increasing order of indices. The symbol “· · · ” denotes an
arbitrarily ordered list of all the other hospitals that do not explicitly appear
in the list.

ci : [[V ]] [[X]] . . . (1 ≤ i ≤ K0)

fi : [[V ]] [[X]] . . . (1 ≤ i ≤ n − K0)

s
i,j
0,1 : t

i,j
0,1 vi t

i,j
1,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

s
i,j
0,2 : t

i,j
0,2 vi t

i,j
0,3 [[X]] . . . ((vi, vj) ∈ E0, i < j)

.

..

s
i,j
0,B2−1

: t
i,j
0,B2−1

vi t
i,j
0,B2

[[X]] . . . ((vi, vj) ∈ E0, i < j)

s
i,j
0,B2

: t
i,j
0,B2

vi t
i,j
0,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

s
i,j
1,1 : t

i,j
0,2 vj t

i,j
1,2 [[X]] . . . ((vi, vj) ∈ E0, i < j)

s
i,j
1,2 : t

i,j
1,2 vj t

i,j
1,3 [[X]] . . . ((vi, vj) ∈ E0, i < j)

...

s
i,j
1,B2−1

: t
i,j
1,B2−1

vj t
i,j
1,B2

[[X]] . . . ((vi, vj) ∈ E0, i < j)

s
i,j
1,B2

: t
i,j
1,B2

vj t
i,j
1,1 [[X]] . . . ((vi, vj) ∈ E0, i < j)

Fig. 1 Preference lists of residents

Preference lists of hospitals are identical and are obtained from the master
list “[[C]] [[S]] [[F ]]”. Here, [[C]] and [[F ]] are as before a total order of all
the residents in C and F , respectively, in an increasing order of indices. [[S]]
is a total order of [[Si,j ]] ((vi, vj) ∈ E0, i < j) in any order, where [[Si,j ]] =

si,j
1,1 si,j

0,1 si,j
0,2 · · · si,j

0,B2
si,j
1,2 · · · si,j

1,B2
.

Now the reduction is completed. Before showing the correctness proof, we
will see some properties of the reduced instance. For a resident r and a hospital
h, if h appears to the right of the [[X ]]-part of r’s list, we call (r, h) a prohibited
pair.

Lemma 1 If a matching M contains a prohibited pair, then the number of
blocking pairs in M is at least B1.

Proof Suppose that a matching M contains a prohibited pair (r, h). By the
definition of prohibited pairs, r prefers any hospital x ∈ X to h. On the other
hand, recall that any hospital x ∈ X is empty in any feasible matching, and
hence, under-subscribed. Hence, (r, x) is a blocking pair for every x ∈ X . Since
|X | = B1, the proof is completed. ⊓⊔

Now, recall that for each edge (vi, vj) ∈ E0 (i < j), there are the set of
residents Si,j and the set of hospitals T i,j. We call this pair of sets a gi,j-
gadget, and write it as gi,j = (Si,j , T i,j). For each gadget gi,j, let us define two
perfect matchings between Si,j and T i,j as follows:
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M0
i,j = {(si,j

0,1, t
i,j
0,1), (s

i,j
0,2, t

i,j
0,2), . . . , (s

i,j
0,a, ti,j0,a), . . . , (si,j

0,B2−1, t
i,j
0,B2−1),

(si,j
0,B2

, ti,j0,B2
), (si,j

1,1, t
i,j
1,2), (s

i,j
1,2, t

i,j
1,3), . . . ,

(si,j
1,a, ti,j1,a+1), . . . , (s

i,j
1,B2−1, t

i,j
1,B2

), (si,j
1,B2

, ti,j1,1)}, and

M1
i,j = {(si,j

0,1, t
i,j
1,1), (s

i,j
0,2, t

i,j
0,3), . . . , (s

i,j
0,a, ti,j0,a+1), . . . , (s

i,j
0,B2−1, t

i,j
0,B2

),

(si,j
0,B2

, ti,j0,1), (s
i,j
1,1, t

i,j
0,2), (s

i,j
1,2, t

i,j
1,2), . . . ,

(si,j
1,a, ti,j1,a), . . . , (si,j

1,B2−1, t
i,j
1,B2−1), (s

i,j
1,B2

, ti,j1,B2
)}.

Fig. 2 shows M0
i,j and M1

i,j on preference lists of Si,j , where the [[X ]]-part and
thereafter are omitted.

�
�

�
si,j

0,1 : ti,j
0,1 vi ti,j

1,1�
�

�
si,j

0,2 : ti,j

0,2 vi ti,j

0,3

.

.

.

�
�

�
si,j

0,B2−1
: ti,j

0,B2−1
vi ti,j

0,B2�
�

�
si,j

0,B2
: ti,j

0,B2
vi ti,j

0,1�
�

�
si,j

1,1 : ti,j
0,2 vj ti,j

1,2�
�

�
si,j

1,2 : ti,j
1,2 vj ti,j

1,3

.

.

.

�
�

�
si,j

1,B2−1
: ti,j

1,B2−1
vj ti,j

1,B2�
�

�
si,j

1,B2
: ti,j

1,B2
vj ti,j

1,1

�
�

�
si,j

0,1 : ti,j
0,1 vi ti,j

1,1�
�

�
si,j

0,2 : ti,j

0,2 vi ti,j

0,3

.

.

.

�
�

�
si,j

0,B2−1
: ti,j

0,B2−1
vi ti,j

0,B2�
�

�
si,j

0,B2
: ti,j

0,B2
vi ti,j

0,1�
�

�
si,j

1,1 : ti,j
0,2 vj ti,j

1,2�
�

�
si,j

1,2 : ti,j
1,2 vj ti,j

1,3

.

.

.

�
�

�
si,j

1,B2−1
: ti,j

1,B2−1
vj ti,j

1,B2�
�

�
si,j

1,B2
: ti,j

1,B2
vj ti,j

1,1

Fig. 2 Matchings M0

i,j (left) and M1

i,j (right)

Lemma 2 For a gadget gi,j = (Si,j , T i,j), M0
i,j and M1

i,j are the only perfect

matchings between Si,j and T i,j that do not include a prohibited pair. Fur-
thermore, each of M0

i,j and M1
i,j contains only one blocking pair (r, h) such

that r ∈ Si,j and h ∈ T i,j. (Hereafter, we simply state this as a “blocking pair
between Si,j and T i,j”.)

Proof Construct a bipartite graph Gi,j , where each vertex set is Si,j and T i,j,
and there is an edge between r(∈ Si,j) and h(∈ T i,j) if and only if (r, h) is not
a prohibited pair. One can see that Gi,j is a cycle of length 4B2. Hence there
are only two perfect matchings between Si,j and T i,j, and they are actually
M0

i,j and M1
i,j . Also, it is easy to check that M0

i,j contains only one blocking

pair (si,j
1,1, t

i,j
0,2), and M1

i,j contains only one blocking pair (si,j
0,1, t

i,j
0,1). ⊓⊔
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We are now ready to show the gap for inapproximability.

Lemma 3 If I0 is a “yes” instance of VC, then I has a solution with at most
n2 + |E0| blocking pairs.

Proof Suppose that G0 has a vertex cover of size at most K0. If its size is
less than K0, add arbitrary vertices to make the size exactly K0, which is,
of course, still a vertex cover. Let this vertex cover be V0c(⊆ V0), and let
V0f = V0 \V0c. For convenience, we use V0c and V0f also to denote the sets of
corresponding hospitals.

We construct a matching M of I according to V0c. First, match each resi-
dent in C with each hospital in V0c, and each resident in F with each hospital
in V0f , in an arbitrary way. Since |C ∪ F | = |V | = n, there are at most n2

blocking pairs between C ∪ F and V .
For each gadget gi,j = (Si,j , T i,j) ((vi, vj) ∈ E0, i < j), we use one of

the two matchings in Lemma 2. Since V0c is a vertex cover, either vi or vj is
included in V0c. If vi is in V0c, use M1

i,j, otherwise, use M0
i,j. It is then easy

to see that there is no blocking pair between Si,j and H \ T i,j or R \ Si,j and
T i,j. Also, as proved in Lemma 2, there is only one blocking pair between Si,j

and T i,j in either case.
Therefore, the number of blocking pairs is at most n2 between C ∪ F and

V , and exactly |E0| within gi,j-gadgets, and hence n2 + |E0| in total, which
completes the proof. ⊓⊔

Lemma 4 If I0 is a “no” instance of VC, then any solution of I has at least
B1 blocking pairs.

Proof Suppose that I admits a matching M with less than B1 blocking pairs.
We show that I0 has a vertex cover of size K0.

First, recall that any feasible matching must be a one-to-one correspon-
dence between R and V ∪ T . Also, by Lemma 1, if M contains a prohibited
pair then there are at least B1 blocking pairs, contradicting the assumption.
Thus, M does not contain a prohibited pair. Since |C ∪F | = |V | and any res-
ident r ∈ C ∪ F includes only V to the left of the [[X ]]-part in the preference
list, M must include a perfect matching between C ∪ F and V .

Next, consider a gadget gi,j = (Si,j , T i,j) and observe the preference lists
of Si,j. Since vi and vj are matched with residents in C ∪F , for M to contain
no prohibited pairs, all residents in Si,j must be matched with hospitals in
T i,j. By Lemma 2, there are only two possibilities, namely, M0

i,j and M1
i,j ,

and either matching admits one blocking pair within each gi,j . Hence there
are |E0| such blocking pairs for all gi,j-gadgets.

Suppose that the matching between Si,j and T i,j is M0
i,j . Then, if the hos-

pital vj is matched with a resident in F , there are B2 blocking pairs between

vj and si,j
1,1, . . . , s

i,j
1,B2

. Then, we have |E0| + B2 = B1 blocking pairs, contra-
dicting the assumption. Hence, vj must be matched with a resident in C. On
the other hand, suppose that the matching for gi,j is M1

i,j . If the hospital vi

is matched with a resident in F , again there are B2 blocking pairs, between
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vi and si,j
0,1, . . . , s

i,j
0,B2

. Therefore, vi must be matched with a resident in C.
Namely, for each edge (vi, vj), either vi or vj is matched with a resident in C.
Hence, the collection of vertices whose corresponding hospitals are matched
with residents in C is a vertex cover of size K0. This completes the proof. ⊓⊔

Finally, we estimate the gap obtained by Lemmas 3 and 4. As observed
previously, nc < |H | + |R| ≤ 6nc+2. Hence, B1/(n2 + |E0|) ≥ nc/2n2 =

8nc+22−4n−4 ≥ 8nc+2n−8 > (|H | + |R|)1−
8

c ≥ (|H | + |R|)1−ε. Hence a
polynomial-time (|H |+|R|)1−ε-approximation algorithm for 0-1 Min-BP 1ML-
HRLQ solves VC, implying P=NP. ⊓⊔

3.2 Approximability

The following theorem shows that an almost tight upper bound can be achieved
by a simple approximation algorithm for the general class.

Theorem 2 There is a polynomial-time (|H |+ |R|)–approximation algorithm
for Min-BP HRLQ.

Proof Before showing an algorithm, we introduce some terms used to describe
the algorithm. In a matching M , define a deficiency of a hospital hi[pi, qi] to be
max{pi−|M(hi)|, 0}. We say that a hospital hi[pi, qi] has surplus if hi satisfies
|M(hi)| − pi > 0. The following simple algorithm (Algorithm I) achieves the
approximation ratio of |H | + |R|.

Algorithm I

1: Consider an instance I of Min-BP HRLQ as an instance of HR by ignoring lower quotas.
Then apply the Gale-Shapley algorithm to I and obtain a matching M .

2: If there is an unassigned resident in M , output M .
3: Move residents from hospitals with surplus to the hospitals with positive deficiencies

in an arbitrary way (but so as not to create new positive deficiency) to fill all the
deficiencies. Then output the modified matching.

Obviously, Algorithm I runs in polynomial time. Note that because of the
NR-assumption and the CL-restriction, Step 3 is executable, namely, there are
sufficiently many residents in hospitals with surplus to fill all the deficiencies.

We first show that if a matching M is returned at Step 2, M is an optimal
solution. Let r be a resident unassigned in M . Then r must have been rejected
by all the hospitals with a positive lower quota, since r includes all such hos-
pitals in the list because of the CL-restriction. Therefore, any such hospital is
full in M , that is, M is a feasible matching. Hence, we obtain a feasible stable
matching, which is clearly an optimal solution.

In the following, we assume that all the residents are assigned in M . Let
k be the sum of the deficiencies over all the hospitals. Then, k residents are
moved. Suppose that resident r is moved from hospital h to another hospital.
Then, it is easy to see that a new blocking pair includes either r or h since only
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they can become worse off. Hence, there arise at most |H |+ |R| new blocking
pairs per resident movement and there are at most k(|H |+ |R|) blocking pairs
in total. On the other hand, we show in the following that if there are k
deficiencies in M , an optimal solution contains at least k blocking pairs. These
observations give an (|H | + |R|)-approximation upper bound.

Let Mopt be an optimal solution. For convenience, we think that a hospi-
tal hi[pi, qi] has qi distinct positions, each of which can receive at most one
resident. Define the bipartite graph GM,Mopt

= (VR, VH , E) as follows: Each
vertex in VR corresponds to a resident in I, and each vertex in VH to a posi-
tion (so, |VH | =

∑

qi). If resident r is assigned by M to hospital h, then in
GM,Mopt

, we include an edge (called an M -edge) between r ∈ VR and some
position p ∈ VH of h, and similarly, if resident r is assigned by Mopt to hospital
h, then we include an edge (called an Mopt-edge) between r and some position
p of h, so that a single vertex p receives at most one M -edge and at most
one Mopt-edge. Without loss of generality, we may assume that if a resident
r is assigned to the same hospital by M and Mopt, r is assigned to the same
position p. (In this case, we have parallel edges between r and p.) Hence, if
a resident is assigned to different positions by M and Mopt, then he/she is
assigned to different hospitals. Note that each vertex of GM,Mopt

has degree
at most two.

Note that Mopt satisfies all the lower quotas, while M has k deficiencies.
This means that there are at least k vertices in VH that are matched in Mopt

but not in M . It is easy to see that these k vertices are endpoints of k disjoint
paths in GM,Mopt

, in which Mopt-edges and M -edges appear alternately. By a
standard argument (for example, see the proof of Lemma 4.2 of [17]), we can
show that each such path contains at least one blocking pair for M or Mopt,
but all of them are for Mopt because M is stable. This completes the proof. ⊓⊔

3.3 Exponential-Time Exact Algorithm

Our goal in this section is to design non-trivial exponential-time algorithms by
using the parameter t denoting the optimal cost, i.e., the number of blocking
pairs in an optimal solution. Perhaps a natural idea is to set the number ci of
residents (pi ≤ ci ≤ qi) assigned to each hospital hi[pi, qi], so that the sum of
ci’s over all the hospitals is equal to the number of residents. However, there
is no obvious way of setting such ci’s rather than exhaustive search, which will
result in blow-ups of the computation time even if t is small. Furthermore,
even if we would be able to find suitable setting of ci’s, we are still not sure
how to assign the residents to hospitals optimally (see the example of Sec. 2).

However, once we guess a set of blocking pairs included in a matching, we
can easily test whether it is a correct guess or not by using the Gale-Shapley
algorithm and the Rural Hospitals Theorem. Based on this observation, we
will show an O((|H ||R|)t+1)-time exact algorithm for Min-BP HRLQ.
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Theorem 3 There is an O((|H ||R|)t+1)-time exact algorithm for Min-BP
HRLQ, where t is the number of blocking pairs in an optimal solution of a
given instance.

Remark. This theorem is better than the conference version [20] in two
senses: (i) The running time is improved from O(t2(|H |(|R| + t))t+1) to
O((|H ||R|)t+1). (ii) The current algorithm can be applied to general Min-BP
HRLQ, while one in the conference version can be applied only to 0-1 Min-BP
HRLQ.

Proof For a given integer k > 0, the following procedure A(k) finds a solution
(i.e., a matching between residents and hospitals) whose cost (i.e., the number
of blocking pairs) is at most k if any. Starting from k = 1, our algorithm
(Algorithm II) runs A(k) until it finds a solution, by increasing the value of k
one by one. A(k) is quite simple, for which the following informal discussion
suffices.

Let I be a given instance. First, we guess a set B of k blocking pairs. Since
there are at most |H ||R| pairs, there are at most (|H ||R|)k choices of B. For
each (r, h) ∈ B, we remove h from r’s preference list (and r from h’s list). Let
I ′ be the modified instance. We then apply the Gale-Shapley algorithm to I ′.
If all the lower quotas are satisfied, then it is a desired solution, otherwise, we
fail and proceed to the next guess.

We show that Algorithm II runs correctly. Consider any optimal solution
Mopt and consider the execution of A(k) for k = t for which our current guess
B contains exactly the t blocking pairs of Mopt. Then, it is not hard to see
that Mopt is stable in I ′ and satisfies all the lower quotas. Then by the Rural
Hospitals Theorem, any stable matching for I ′ satisfies all the lower quotas.
Hence if we apply the Gale-Shapley algorithm to I ′, we find a matching M
that satisfies all the lower quotas. Note that M has no blocking pair in I ′.
Then, M has at most t blocking pairs in the original instance I because, when
a removed hospital h is returned back to the preference list of r, only (r, h)
can be a new blocking pair.

Finally, we bound the time-complexity of Algorithm II. For each k, we
apply the Gale-Shapley algorithm to at most (|H ||R|)k instances, where each
execution can be done in time O(|H ||R|). Therefore, the time-complexity is
O((|H ||R|)k+1) for each k. Since we find a solution when k is at most t, the
whole time-complexity is at most Σt

k=1O((|H ||R|)k+1) = O((|H ||R|)t+1). ⊓⊔

4 Minimum-Blocking-Resident HRLQ

In this section, we consider the problem of minimizing the number of blocking
residents.

4.1 NP-hardness

We first show a hardness result.
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Theorem 4 Min-BR 1ML-HRLQ is NP-hard even if all the preference lists
are complete.

Proof We will show a polynomial-time reduction from the NP-complete prob-
lem CLIQUE [15]. In CLIQUE, we are given a graph G = (V, E) and a positive
integer K ≤ |V |, and asked if G contains a complete graph with K vertices as
a subgraph.

Let I0 = (G0, K0) be an instance of CLIQUE where G0 = (V0, E0) and
0 < K0 ≤ |V0|. We will construct an instance I of Min-BR 1ML-HRLQ. Let
n = |V0|, m = |E0|, and B be a positive integer such that B > 2K0. Let R =
C∪E be the set of residents and H = V ∪{x} be the set of hospitals of I. Each
set is defined as C = {ci | 1 ≤ i ≤ K0}, E = {ek

i,j | (vi, vj) ∈ E0, 1 ≤ k ≤ B},
and V = {vi | 1 ≤ i ≤ n}. (There is a one-to-one correspondence between the
set V of hospitals and the set V0 of vertices, so we use the same symbol vi to
refer to both vertex and the corresponding hospital.)

Corresponding to each edge (vi, vj) ∈ E0, there are B residents ek
i,j(1 ≤

k ≤ B). We will call them residents associated with (vi, vj). Preference lists and
quotas are given in Fig. 3. For a set X , “[X ]” means an arbitrarily (but fixed)
ordered list of the members in X , and “. . .” means an arbitrarily ordered list
of all the other hospitals that do not appear explicitly in the list. Note that all
the preference lists are complete, and all the hospitals have the same preference
list.

ci : [V ] x (1 ≤ i ≤ K0)
ek
i,j : vi vj x . . . ((vi, vj) ∈ E0, 1 ≤ k ≤ B)

vi[0, 1] : [C] [E] (1 ≤ i ≤ n)
x[mB, mB] : [C] [E]

Fig. 3 Preference lists of residents and preference lists and quotas of hospitals

Lemma 5 If I0 is a “yes” instance of CLIQUE, then there is a feasible match-
ing of I having at most (m −

(

K0

2

)

)B + K0 blocking residents.

Proof Suppose that G0 has a clique V ′
0 of size K0. We will construct a matching

M of I from V ′
0 . We assign all the residents in C to the hospitals in V ′

0 in an
arbitrary way, and all the residents in E to the hospital x. Since V ′

0 is a
clique, (vi, vj) ∈ E0 for any pair of vi, vj ∈ V ′

0(i 6= j). There are B residents
ek

i,j (1 ≤ k ≤ B) associated with the edge (vi, vj). These residents are assigned
to the hospital x inferior to the hospitals vi and vj in M , but the hospitals
vi and vj are assigned residents in C, better than ek

i,j . Hence all ek
i,j are non-

blocking residents. There are B
(

K0

2

)

such residents ek
i,j and the total number

of residents is mB + K0. Hence there are at most (m−
(

K0

2

)

)B + K0 blocking
residents in M . ⊓⊔
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Lemma 6 For a matching X of I, let cost(X) be the number of blocking
residents of X. For an arbitrary feasible matching M of I, there is a feasible
matching M ′ of I such that (i) M ′ assigns every resident in C to a hospital
in V and (ii) cost(M ′) ≤ cost(M) + K0.

Proof First, if some residents are unassigned in M , we modify M by assigning
them to arbitrary hospitals. This is possible because all the preference lists are
complete and the number of residents is at most the sum of the upper quotas.
Clearly, this does not increase the cost. Let Cx = {c | c ∈ C, M(c) = x} and
Ev = {e | e ∈ E, M(e) ∈ V }. Then, |Cx| = |Ev| since |M(x)| = |Cx| + (|E| −
|Ev|) and |M(x)| = mB = |E| by the lower quota of x. If Cx is empty, we are
done because we can let M ′ = M . Hence, suppose that Cx is nonempty. Let
M ′ be a matching obtained by M by exchanging assigned hospitals between
Cx and Ev arbitrarily. Then M ′ is feasible and the following (1)–(3) are easy
to verify:

(1) Any resident in C \ Cx does not change its assigned hospital, and no
hospital in V becomes worse off. Therefore, no new blocking resident arises
from C \ Cx. (2) Any resident r in Cx is a blocking resident in M because r
is assigned to x and there is a hospital in V that receives a resident from Ev.
Therefore, no new blocking resident arises from Cx. (3) For the same reason
as (1), no new blocking resident arises from E \ Ev.

Hence, only residents in Ev can newly become blocking residents. Since
|Ev| = |Cx| ≤ |C| = K0, we have that cost(M ′) ≤ cost(M) + K0. ⊓⊔

Lemma 7 If I0 is a “no” instance of CLIQUE, then any feasible matching of
I contains at least (m −

(

K0

2

)

+ 1)B − K0 blocking residents.

Proof Suppose that there is a matching M of I that contains less than (m −
(

K0

2

)

+1)B−K0 blocking residents. We will show that G0 contains a clique of
size K0. We first construct a matching M ′ using Lemma 6. Then M ′ contains
less than (m−

(

K0

2

)

+1)B blocking residents, and any resident in C is assigned
to a hospital in V . Note that every resident in E is now assigned to x since x’s
lower quota is mB = |E|. Define V ′

0 ⊆ V0 be the set of vertices corresponding
to the assigned hospitals in V . Clearly, |V ′

0 | = K0. We claim that V ′
0 is a clique.

Recall that there are mB+K0 residents. Since we assume that there are less
than (m−

(

K0

2

)

+1)B blocking residents, there are more than K0 +
(

K0

2

)

B−B

non-blocking residents, and since |C| = K0, there are more than
(

K0

2

)

B − B
non-blocking residents in E. Consider the following partition of E into B
subsets: Ek = {ek

i,j | (vi, vj) ∈ E0} (1 ≤ k ≤ B). Then the above observation
on the number of non-blocking residents in E implies that there is a k such
that Ek contains at least

(

K0

2

)

non-blocking residents. Since every resident in
E is assigned to x, only ek

i,j such that both vi and vj are in V ′
0 can be non-

blocking. This means that any pair of vertices in V ′
0 causes such a non-blocking

resident, implying that V ′
0 is a clique. ⊓⊔

Because B > 2K0, we have (m −
(

K0

2

)

+ 1)B − K0 > (m −
(

K0

2

)

)B + K0.
Hence by Lemmas 5 and 7, Min-BR 1ML-HRLQ is NP-hard. ⊓⊔
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We can prove the NP-hardness for more restricted case using the following
Lemma 8. Since the same reduction will be used in the approximability part
(Sec. 4.2), we state the lemma in a stronger form than is needed here.

Lemma 8 If there is a polynomial-time α–approximation algorithm for 0-1
Min-BR HRLQ, then there is a polynomial-time α–approximation algorithm
for Min-BR HRLQ.

Proof We give a polynomial-time approximation preserving reduction from
Min-BR HRLQ to 0-1 Min-BR HRLQ. Let I be an instance of Min-BR HRLQ.
We construct an instance I ′ of 0-1 Min-BR HRLQ in polynomial time: The
set of residents of I ′ is the same as that of I. Corresponding to each hospital
hi[pi, qi] of I, I ′ contains pi hospitals hi,1, · · · , hi,pi

with quota [1, 1], and qi−pi

hospitals hi,pi+1, · · · , hi,qi
with quota [0, 1]. For any j, the preference list of a

hospital hi,j of I ′ is the same as that of a hospital hi of I. The preference list
of a resident r of I ′ is constructed from the preference list of the corresponding
resident in I by replacing hi by hi,1 · · · hi,qi

for each hospital hi of I. Without
loss of generality, we can assume that qi ≤ |R| for each i. Hence I ′ can be
constructed in polynomial time.

From a feasible matching M ′ for I ′, it is easy to construct a feasible match-
ing M for I; just adding (r, hi) to M for each (r, hi,j) ∈ M ′. Let cost, cost′,
opt and opt′ be the costs of M , M ′, the optimal costs of I and I ′, respectively.
In order to complete the proof, we must show that cost

opt ≤ cost′

opt′ . To this end,

it is enough to show (i) cost ≤ cost′, and (ii) opt′ ≤ opt. For (i), it is easy to
verify that if r is a blocking resident for M , then so is r for M ′ too. For (ii), we
show that from (any) matching X for I, we can construct a matching X ′ for I ′

without increasing the cost. Consider a hospital hj. Let rj,1, rj,2, · · · , rj,|X(hj)|

be the residents in X(hj) and suppose that hj prefers these residents in this
order. We construct a matching X ′ by adding (rj,k, hj,k) to X ′ for all k and j.
Again, it is easy to see that X ′ is feasible for I ′ and if r is a blocking resident
for X ′, then r is also a blocking resident for X . ⊓⊔

Corollary 1 0-1 Min-BR 1ML-HRLQ is NP-hard even if all the preference
lists are complete.

Proof Note that the reduction in the proof of Lemma 8 preserves the “1ML”
property and the completeness of the preference lists. Then the corollary is
immediate from Theorem 4 and Lemma 8. ⊓⊔

4.2 Approximability

For the approximability, we note that Algorithm I in the proof of Theorem 2
does not work. For example, consider the instance introduced in Sec. 2. If we
apply the Gale-Shapley algorithm, resident ri is assigned to hi for each i, and
we need to move r1 to hn+1. However since h1 becomes empty, all the residents
become blocking residents. On the other hand, the optimal cost is 2 as we have
seen there. Thus the approximation ratio becomes as bad as Ω(|R|).
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Theorem 5 There is a polynomial-time
√

|R|–approximation algorithm for
Min-BR HRLQ.

We know by Lemma 8 that it is enough to attack 0-1 Min-BR HRLQ. Hence
we give a

√

|R|–approximation algorithm for 0-1 Min-BR HRLQ (Lemma 10)
to prove Theorem 5. In 0-1 Min-BR HRLQ, the number of residents assigned
to each hospital is at most one. Hence, for a matching M , we sometimes abuse
the notation M(h) to denote the resident assigned to h (if any) although it
was originally defined as the set of residents assigned to h.

4.2.1 Algorithm

To describe the idea behind our algorithm, recall again Algorithm I presented
in the proof of Theorem 2: First, apply the Gale-Shapley algorithm to a given
instance I and obtain a matching M . Next, move residents arbitrarily from
assigned [0, 1]-hospitals to empty [1, 1]-hospitals. Suppose that in the course
of the execution of Algorithm I, we move a resident r from a [0, 1]-hospital
h to an empty [1, 1]-hospital. Then, of course r creates a blocking pair with
h, but some other residents may also create blocking pairs with h because
h becomes empty. Hence, consider the following modification. First, set the
upper quota of a [0, 1]-hospital h to ∞ and apply the Gale-Shapley algorithm.
Then, all residents who “wish” to go to h actually go there. Hence, even if
we move all such residents to other hospitals, only the moved residents can
become blocking residents. By doing this, we can bound the number of blocking
residents by the number (given by the function g introduced below) of those
moving residents. In the above example, we extended the upper quota of only
one hospital, but in fact, we may need to select two or more hospitals to select
sufficiently many residents to be sent to other hospitals so as to make the
matching feasible. However, at the same time, this number should be kept
minimum to guarantee the quality of the solution.

As mentioned above, we define g(h, h): For an instance I of HR, suppose
that we extend the upper quota of hospital h to ∞ and find a stable matching
of this new instance. Define g(h, h) as the number of residents who are assigned
to h in this stable matching. Recall that this quantity does not depend on the
choice of the stable matching by the Rural Hospitals Theorem [14]. Extend
g(h, h) to g(A, B) for A, B ⊆ H such that g(A, B) denotes the number of
residents assigned to hospitals in A when we change upper quotas of all the
hospitals in B to ∞.

We now propose Algorithm III for 0-1 Min-BR HRLQ. The idea is to find
a small number of residents (victims) to be moved, and construct a feasible
matching M∗ in which only the victims are blocking. First we apply the Gale-
Shapley algorithm to a given instance I while ignoring the lower quotas of
I and obtain a matching Ms. The matching Ms is used to find non-empty
[0, 1]-hospitals (denoted H ′

0,1 in the description of Algorithm III) from which
the victims will be selected. Next, we estimate the popularity of the hospital
h in H ′

0,1 using g(h, h) defined above, and select a certain number of least



The Hospitals/Residents Problem with Lower Quotas 17

popular hospitals S from H ′
0,1 (we will later show that H ′

0,1 is large enough to
select S). We then apply the Gale-Shapley algorithm again while setting the
upper quotas of hospitals in S to ∞ and obtain a matching M∞. The residents
who came to hospitals in S are victims and we move these residents to the
empty [1, 1]-hospitals to obtain the final solution M∗ (we will later show that
there are enough number of victims to fill the empty [1, 1]-hospitals). We can
show that the number of victims is small enough because we have selected less
popular hospitals to S.

We will introduce notations used to describe Algorithm III formally. Let
I be a given instance. Define Hp,q to be the set of [p, q]-hospitals of I. Recall
from Sec. 3 that the deficiency of a hospital is the shortage of the assigned
residents from its lower quota (with respect to the matching obtained by the
Gale-Shapley algorithm). Now define the deficiency of the instance I as the
sum of the deficiencies of all the hospitals of I, and denote it D(I). Since
we are considering 0-1 Min-BR HRLQ, D(I) is exactly the number of empty
[1, 1]-hospitals.

Algorithm III

1: Apply the Gale-Shapley algorithm to I by ignoring the lower quotas. Let Ms be the
obtained matching. Compute the deficiency D(I).

2: H′

0,1 := {h | Ms(h) 6= ∅, h ∈ H0,1}. (If Ms(h) = ∅, then residents never come to h in the

following Steps 3 and 4.)
3: Compute g(h, h) for each h ∈ H′

0,1 by using the Gale-Shapley algorithm.

4: From H′

0,1, select D(I) hospitals with smallest g(h, h) values (ties are broken arbitrarily).
Let S be the set of these hospitals. Extend the upper quotas of all hospitals in S to ∞,
and run the Gale-Shapley algorithm. Let M∞ be the obtained matching.

5: In M∞, move residents who are assigned to hospitals in S arbitrarily to empty hospitals
to make the matching feasible. (We first make [1, 1]-hospitals full. This is possible because
of the NR-assumption and the CL-restriction. If there is a hospital in S still having two
or more residents, then send surplus residents arbitrarily to empty [0, 1]-hospitals, or
simply make them unassigned if there is no [0, 1]-hospital to send them to.) Output the
resulting matching M∗.

We first prove the following property of the original HR problem.

Lemma 9 Let I0 be an instance of HR, and h be any hospital. Let I1 be a
modification of I0 so that only the upper quota of h is increased by 1. Let Mi

be a stable matching of Ii for each i ∈ {0, 1}. Then, (i) |M0(h)| ≤ |M1(h)|,
and (ii) ∀h′ ∈ H \ {h}, |M0(h

′)| ≥ |M1(h
′)|.

Proof If M0 is stable for I1, then we are done, so suppose not. We will construct
a stable matching for I1 by successive modifications starting from M0. Because
M0 is stable for I0, if M0 has blocking pairs for I1, then all of them involve
h. Let r be the resident such that (r, h) is a blocking pair and there is no
blocking pair (r′, h) such that h prefers r′ to r. If we assign r to h (possibly
by canceling the previous assignment of r if r was assigned in M0), all the
blocking pairs including h are removed. If no new blocking pairs arise, again
we are done. Otherwise, r must be previously assigned to some hospital, say
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h′, and all the new blocking pairs involve h′. We then choose the resident
r′, most preferred by h′ among all the blocking residents, and assign r′ to
h′. We continue this operation until there arise no new blocking pairs. This
procedure eventually terminates because each iteration improves exactly one
resident. By the termination condition, the resulting matching is stable for
I1. Note that by this procedure, only h can gain one more resident, and at
most one hospital may lose one resident. By the Rural Hospitals Theorem,
the number of residents assigned to each hospital is the same in M1 and the
current matching. This completes the proof. ⊓⊔

Obviously, Algorithm III runs in polynomial time. We show that Algo-
rithm III runs correctly, namely that the output matching M∗ satisfies the
quotas. To do so, it suffices to show the following conditions

|H ′
0,1| ≥ D(I) (1)

and
|{r | M∞(r) ∈ S}| ≥ |{h | h ∈ H1,1, M∞(h) = ∅}| (2)

so that Step 4 and Step 5 are executable, respectively.
For (1), let N1 be the number of residents assigned to hospitals in H1,1

in Ms. Then |Ms| = |H ′
0,1| + N1 and D(I) = |H1,1| − N1. We can assume

that all the residents are assigned in Ms since otherwise, we already have a
feasible stable matching (as explained in the proof of Theorem 2) and therefore
|Ms| = |R|. From these equations, we have |H ′

0,1| = D(I)+ |R|−|H1,1|. By the
NR-assumption, it follows that |R| ≥ |H1,1|, from which we have |H ′

0,1| ≥ D(I)
as required. For (2), it suffices to show that the number N2 of residents assigned
to S ∪H1,1 in M∞ is at least the number of hospitals in H1,1, i.e., |H1,1|. Note
that empty hospitals in Ms are also empty in M∞ by Lemma 9. Therefore,
the number N2 of residents assigned to hospitals in H \ (S ∪ H1,1) in M∞

is at most the number of hospitals in H ′
0,1 \ S. Thus N2 ≤ |H ′

0,1| − |S| and

N2 = |R| − N2 ≥ |R| − (|H ′
0,1| − |S|). By the definition of D(I), we have that

|H ′
0,1|+|H1,1| = |R|+D(I). Thus, N2 ≥ |R|−(|R|+D(I)−|H1,1|−|S|) = |H1,1|

(recall that |S| = D(I)).

4.2.2 Analysis of the Approximation Ratio

Lemma 10 The approximation ratio of Algorithm III is at most
√

|R|.

Proof Let I be a given instance of 0-1 Min-BR HRLQ and let fopt and falg be
the costs of an optimal solution and the solution obtained by Algorithm III,
respectively. First, note that any resident r who is assigned to a hospital h ∈
H \ S in M∞ prefers no hospital in S to h, since otherwise, r and such a
hospital (in S) form a blocking pair for M∞, a contradiction (recall that the
upper quota of any hospital in S is ∞). Therefore, even if we move residents
from hospitals in S at Step 5, no unmoved resident becomes a blocking resident.
Thus only moved residents can be blocking residents and

falg ≤ g(S, S). (3)
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We then give a lower bound on the optimal cost. To do so, recall the proof
of Theorem 2, where it is shown that any optimal solution for instance I of
Min-BP HRLQ has at least D(I) blocking pairs. It should be noted that those
D(I) blocking pairs do not have any common resident. Thus we have

fopt ≥ D(I). (4)

Now here is our key lemma to evaluate the approximation ratio.

Lemma 11 In Step 3 of Algorithm III, there are at least D(I) different hos-
pitals h ∈ H ′

0,1 such that g(h, h) ≤ fopt.

The proof will be given in a moment. By this lemma, we have g(h, h) ≤ fopt

for any h ∈ S, since at Step 4 of Algorithm III, we select D(I) hospitals with
the smallest g(h, h) values. This implies that

∑

h∈S

g(h, h) ≤ D(I)fopt. (5)

Also, by Lemma 9, we have

g(h, S) ≤ g(h, h) (6)

for any h ∈ S. Hence, by (3), (6), (5) and (4), we have

falg ≤ g(S, S) =
∑

h∈S

g(h, S) ≤
∑

h∈S

g(h, h) ≤ D(I)fopt ≤ (fopt)
2.

Therefore, we have that
√

falg ≤ fopt, and hence
falg

fopt
≤

√

falg ≤
√

|R|,

completing the proof of Lemma 10. ⊓⊔

Proof of Lemma 11. Let h be a hospital satisfying the condition of the lemma.
In order to calculate g(h, h) in Step 3, we construct a stable matching, say
Mh for the instance I∞(h) in which the upper quota of h is changed to ∞.
We do not know what kind of matching Mh is, but in the following, we show
that there is a stable matching, say M2, for I∞(h) such that |M2(h)| ≤ fopt.
Matchings Mh and M2 may be different matchings, but we can guarantee that
|Mh(h)| = |M2(h)| ≤ fopt by the Rural Hospitals Theorem. A bit trickily, we
construct M2 from an optimal matching.

Let Mopt be an optimal solution of I (which of course we do not know).
Let Rb and Rn be the sets of blocking residents and non-blocking residents for
Mopt, respectively. Then |Rb| = fopt by definition. We modify Mopt as follows:
Take any resident r ∈ Rb. If r is unassigned, we do nothing. Otherwise, force r
to be unassigned. Then there may arise new blocking pairs involving residents
in Rn. Let BP1 be the set of such new blocking pairs. Note that all of the
blocking pairs in BP1 include the hospital h′ to which r was assigned. Among
the residents involved in BP1, we select the resident r′ who is most preferred by
h′ and assign r′ to h′. Then, all the blocking pairs in BP1 disappear. However,
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there may arise new blocking pairs (BP2) involving residents in Rn, and all
the blocking pairs in BP2 include the hospital h′′ to which r′ was assigned. In
a similar way as the proof of Lemma 9, we continue to move residents until no
new blocking resident arises from Rn (but this time, we move only residents
in Rn as explained above). We do this for all the residents in Rb, and let M1

be the resulting matching.
The following (7) and (8) are immediate:

There are at least fopt unassigned residents in M1, (7)

since residents in Rb are unassigned in M1.

Residents in Rn are non-blocking for M1. (8)

We prove the following properties:

There are at most fopt empty [1, 1]-hospitals in M1. (9)

Define H ′ = {h | h ∈ H ′
0,1 and h is empty in M1}. Then

|H ′| ≥ D(I). (10)

For (9), note that all the [1, 1]-hospitals are full in Mopt. It is easy to see
that, in the above procedure for each r ∈ Rb, at most one assigned hospital is
made empty. Since |Rb| = |fopt|, the number of such hospitals is at most |fopt|
and hence the claim holds.

For (10), let H1 be the set of hospitals assigned in M1. We have that

H ′ = H ′
0,1 \ (H1 ∩ H0,1) (11)

by the definition of H ′, and that

|H ′
0,1| = |R| + D(I) − |H1,1| (12)

by the definition of D(I). Also, the above property (7) implies that |R|−|H1| ≥
fopt and (9) implies that |H1,1| − |H1 ∩H1,1| ≤ fopt, from which we have that

|H1 ∩ H0,1| = |H1| − |H1 ∩ H1,1|

≤ (|R| − fopt) + (fopt − |H1,1|)

= |R| − |H1,1|. (13)

From (11), (12), and (13), we have |H ′| ≥ |H ′
0,1|− |H1 ∩H0,1| ≥ (|R|+D(I)−

|H1,1|) − (|R| − |H1,1|) = D(I), as required.
Let h be an arbitrary hospital in H ′. We show that g(h, h) ≤ fopt. Then,

this completes the proof of Lemma 11 because H ′ ⊆ H ′
0,1 and |H ′| ≥ D(I)

(10). Since h is empty in M1, residents in Rn are still non-blocking for M1 in
I∞(h) (whose definition is in the beginning of this proof) by the property (8).
Now, choose any resident r from Rb, and apply the Gale-Shapley algorithm to
I∞(h) starting from M1. This execution starts from the proposal by r, and at
the end, nobody in Rn ∪ {r} is a blocking resident for I∞(h). Since hospitals
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assigned in M1 never become empty, and since unassigned residents in Rn

never become assigned, h receives at most one resident. If we do this for all
the residents in Rb, the resulting matching M2 is stable for I∞(h), and h is
assigned at most |Rb| = fopt residents. As mentioned previously, this implies
g(h, h) ≤ fopt. ⊓⊔

4.2.3 Tightness of the Analysis

We give an instance of 0-1 Min-BR HRLQ for which Algorithm III produces
a solution of cost |R| −

√

|R| but the optimal cost is at most 2
√

|R|. Namely,
the analysis of Lemma 10 is tight up to a constant factor.

Let R = C ∪D ∪E and H = A∪B ∪X , where C = {ci | 1 ≤ i ≤ n}, D =
{di,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 2}, E = {ei | 1 ≤ i ≤ n}, A = {ai | 1 ≤ i ≤ n},
B = {bi | 1 ≤ i ≤ n}, and X = {xi | 1 ≤ i ≤ n2 − n}. The preference lists of
residents are

ci : ai bi [[X ]] · · · (1 ≤ i ≤ n)
di,j : bi [[X ]] · · · (1 ≤ i ≤ n, 1 ≤ j ≤ n − 2)
ei : bi [[A]] [[X ]] · · · (1 ≤ i ≤ n)

and the preference lists and quotas of hospitals are

ai[0, 1] : ci · · · (1 ≤ i ≤ n)
bi[0, 1] : di,1 · · · (1 ≤ i ≤ n)
xi[1, 1] : · · · (1 ≤ k ≤ n2 − n)

where [[X ]] denotes x1 · · · xn2−n and [[A]] denotes a1 · · · an. “· · · ” denotes
an arbitrarily ordered list of the members that do not appear explicitly. Note
that all the preference lists are complete. The deficiency of this instance is n.
If we set the upper quota of ai to ∞, then n + 1 residents ci, e1, e2, . . . , en

are assigned to ai, so g(ai, ai) = n + 1 for all 1 ≤ i ≤ n. If we set the upper
quota of bi to ∞, then n − 1 residents ei, di,1, di,2, . . . , di,n−2 are assigned to
bi, so g(bi, bi) = n − 1. Thus, Algorithm III constructs S = {b1, · · · , bn} at
Step 4 and the solution has n2 −n = |R| −

√

|R| blocking residents. However,
consider the following matching: First, apply the Gale-Shapley algorithm for
D and B ∪ X . Then, assign the residents in C ∪ E to the empty hospitals
in X arbitrarily. Then, nobody in D can be a blocking resident. Hence the
cost is at most 2n = 2

√

|R|. Therefore, the approximation ratio is at least

(|R| −
√

|R|)/(2
√

|R|) = Ω(
√

|R|).

4.3 Inapproximability

For the hardness of Min-BR HRLQ, we have only NP-hardness, but we can
give a strong evidence for its inapproximability. The Densest k-Subgraph Prob-
lem (DkS) is the problem of finding, given a graph G and a positive integer
k, an induced subgraph of G with k vertices that contains as many edges
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as possible. This problem is NP-hard because it is a generalization of Max
CLIQUE. Its approximability has been studied intensively but there still re-
mains a large gap between approximability and inapproximability: The best
known approximation ratio is |V |1/4+ǫ [5], while there is no PTAS under rea-
sonable assumptions [9,24]. The following Theorem 6 shows that approximat-
ing Min-BR HRLQ within a constant ratio implies the same for DkS.

Theorem 6 If Min-BR 1ML-HRLQ has a polynomial-time c-approximation
algorithm, then DkS has a polynomial-time (1 + ǫ)c4-approximation algorithm
for any positive constant ǫ.

Proof The proof uses another problem called Minimum Coverage Problem
(MinC) [30]. In MinC, we are given a family P of subsets of a base set U
and a positive integer t, and asked to select t sets from P so that their union
is minimized. Theorem 6 can be easily proved by combining the following two
lemmas, whose proofs will be given shortly:

Lemma 12 If MinC admits a polynomial-time c-approximation algorithm,
then DkS admits a polynomial-time (1+ ǫ)c4-approximation algorithm for any
positive constant ǫ.

Lemma 13 If Min-BR 1ML-HRLQ admits a polynomial-time d-
approximation algorithm, then MinC admits a polynomial-time (1 + ǫ)d-
approximation algorithm for any positive constant ǫ.

Suppose that Min-BR 1ML-HRLQ admits a polynomial-time c-
approximation algorithm. Given an arbitrary positive constant ǫ, we choose ǫ′

such that ǫ′ ≤ (1+ ǫ)
1

5 −1 in Lemmas 12 and 13. By Lemma 13, MinC admits
a polynomial-time (1 + ǫ′)c-approximation algorithm and then by Lemma 12,
DkS admits a polynomial-time (1 + ǫ′)5c4-approximation algorithm. By the
choice of ǫ′, we have (1 + ǫ′)5c4 ≤ (1 + ǫ)c4, and hence the proof of Theorem 6
is completed. ⊓⊔

Proof of Lemma 12. We will construct a polynomial-time (1 + ǫ)c4-
approximation algorithm for DkS using a c-approximation algorithm A for
MinC. Suppose that we are given a graph G = (V, E) and an integer k as an
instance I of DkS. We regard each vertex in V as an element and each edge
in E as a set of size two containing its two endpoints, and consider it as an
instance of MinC. Recall that in MinC, we are given a positive integer t which
specifies the number of sets we must select. We repeatedly apply algorithm A
to this instance by increasing the target value of t one by one from one, until
A outputs a solution of cost c(k + 1) or more for the first time. Let t̃ be the
value of t at this point and s̃ be the value output by A. (If A never outputs
such a solution even when t = |E|, it means that |V | < c(k + 1) in the given
graph. This is more desirable case for us, as shown below.) Then, s̃ ≥ c(k +1)
by the above condition, and the optimal value of MinC when the target value
is t̃ is at least k + 1 since A is a c-approximation algorithm. This means that
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there is no subset of k vertices in G containing t̃ edges; in other words, the
optimal value of the DkS instance I is less than t̃.

Note that when the target values in MinC differ by one, the two correspond-
ing optimal values differ by at most two because adding one edge increases the
number of vertices by at most two. Therefore, s̃ ≤ c2(k + 1) + c since other-
wise, s̃ > c2(k + 1) + c and the optimal value of MinC when the target value
is t̃ is more than c(k + 1) + 1, namely at least c(k + 1) + 2, because A is a
c-approximation algorithm. Then, when the target value is t̃ − 1, the optimal
value of MinC is at least c(k +1) by the above observation, and hence A must
have already output a solution of value at least c(k + 1), a contradiction.

We now have a subgraph G′ of G with s̃ vertices and at least t̃ edges.
We then solve DkS approximately for G′ (with the same k) using the greedy
algorithm given in [4]. We can find a subgraph of G′ with k vertices and at least
k(k−1)
s̃(s̃−1) t̃ edges, which is a s̃(s̃−1)

k(k−1) -approximate solution of the original problem

I (recall that the optimal value of I is less than t̃). Since s̃ ≤ c2(k + 1) + c as
proved above,

s̃(s̃ − 1)

k(k − 1)
≤ c4 +

(3k + 1)c4 + 2(k + 1)c3 − kc2 − c

k(k − 1)
.

Note that for any fixed constants c and ǫ, we can find a constant k0 such that
(3k+1)c4+2(k+1)c3−kc2−c

k(k−1) ≤ ǫc4 for all k ≥ k0. Also, note that DkS when k is a

constant is solvable in polynomial time. Thus, given a DkS instance, solving
optimally when k < k0, and using the above reduction otherwise, is a desirable
(1 + ǫ)c4-approximation algorithm.

If A does not output a solution when determining s̃, we know that |V | <
c(k+1) as discussed previously. In this case we simply apply the above greedy
algorithm to G itself instead of G′. The optimal cost is at most |E| and the

algorithm’s cost is at least k(k−1)
|V |(|V |−1) |E|, so the approximation ratio is at most

|V |(|V |−1)
k(k−1) . By a similar argument as above, we can show that this is bounded

by (1+ǫ)c2 for any positive ǫ for large enough k. This completes the proof. ⊓⊔

Proof of Lemma 13. We give a polynomial-time reduction from MinC to
Min-BR 1ML-HRLQ. Suppose that a given instance I0 of MinC consists of the
base set U= {u1, u2, . . . , un}, a collection P= {P1, P2, . . . , Pm} of subsets of U ,
and a positive integer t (the number of subsets to be selected). We construct
an instance I of Min-BR 1ML-HRLQ.

Let R = C ∪ U be the set of residents and H = P ∪ {x} be the set of
hospitals, where each set is defined as follows: C = {ci | 1 ≤ i ≤ m − t},
U = {uj

i | 1 ≤ i ≤ n, 1 ≤ j ≤ B}, and P = {pi | 1 ≤ i ≤ m}. Note that
|R| = nB + m − t. Here, B is a positive integer determined later. Preference
lists and quotas are defined in Fig. 4. For each i (1 ≤ i ≤ n), residents uj

i

(1 ≤ j ≤ B) correspond to the element ui of the base set U of MinC. Each
[0, 1]-hospital pi corresponds to the subset Pi of MinC instance I0. For each
resident uj

i , the set P (i) contains the hospital pk if and only if the element ui is
contained in the set Pk in I0. For a set S, “[S]” denotes an arbitrarily ordered
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list of the members in S. Note that all the preference lists of hospitals are
identical. It is easy to see that the reduction can be performed in polynomial
time.

ci : [P ] x (1 ≤ i ≤ m − t)

u
j
i : [P (i)] x [P \ P (i)] (1 ≤ i ≤ n, 1 ≤ j ≤ B)

pi[0, 1] : [C] [U ] (1 ≤ i ≤ m)
x[nB, nB] : [C] [U ]

Fig. 4 Preference lists of residents and hospitals

Let opt(I0) and opt(I) be the optimal costs of I0 and I, respectively. In
the following, we show that (i) opt(I) ≤ B · opt(I0) + (m − t), and (ii) from
a solution of I of cost a, we can construct a solution of I0 of cost at most
(a + m − t)/B in polynomial time.

Hence, if there is a polynomial-time d-approximation algorithm for Min-BR
1ML-HRLQ, namely, if a

opt(I) ≤ d, then we can obtain

(a + m − t)/B

opt(I0)
≤ d +

(d + 1)(m − t)

B · opt(I0)

≤ d +
2md

B · opt(I0)

≤ (1 +
2m

B
)d.

Now, if we take B ≥ 2
ǫ m, then (1 + 2m

B )d ≤ (1 + ǫ)d, as desired.

We first prove (i). Let P∗ be an optimal solution (a subset of size t) for
I0. We will construct a solution M of I as follows: Let M(uj

i ) = x for all i
and j. Assign residents in C to hospitals corresponding to subsets in P \P∗ in
an arbitrary way. For each Pj ∈ P∗, let the hospital pj be empty. Consider a

resident uj
i and consider a subset Pk of I0 that contains the element ui. Note

that uj
i prefers the hospital pk to x. If Pk 6∈ P∗, then pk receives a resident

better than uj
i in M and hence (uj

i , pk) is not a blocking pair. If Pk ∈ P∗,

then pk is empty in M and hence (uj
i , pk) is a blocking pair. Hence, P∗ does

not include any Pk that contains ui (in other words, the element ui does not
contribute to the cost of P∗) if and only if uj

i is not a blocking resident.
There are (m − t) + nB residents and among them B(n − opt(I0)) are non-
blocking as observed. Thus the number of blocking residents for M is at most
(m − t) + nB − B(n − opt(I0)) = B · opt(I0) + (m − t), which completes the
proof of (i).

We then prove (ii). Consider a feasible matching M of cost a. We may as-
sume without loss of generality that all the residents are assigned in M because
if not, we can assign unassigned residents to under-subscribed hospitals arbi-
trarily without increasing the cost. Let Cx = {c | c ∈ C, M(c) = x} and Up =
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{u | u ∈ U, M(u) ∈ P}. Then, |Cx| = |Up| since |M(x)| = |Cx| + (|U | − |Up|)
and |M(x)| = nB = |U | by the lower quota of x.

Let M ′ be a matching obtained by M by exchanging assigned hospitals
between Cx and Up arbitrarily. The following (1)–(3) are easy to verify: (1)
Any resident in C\Cx does not change its assigned hospital, and no hospital in
P becomes worse off. Therefore, no new blocking resident arises from C \ Cx.
(2) Any resident r in Cx is a blocking resident in M because r is assigned to
x and there is a hospital in P that receives a resident from Up. Therefore, no
new blocking resident arises from Cx. (3) For the same reason as (1), no new
blocking resident arises from U \ Up. Hence, only residents in Up can newly
become blocking residents. Since |Up| = |Cx| ≤ |C| = m − t, the number of
blocking residents for M ′ is at most a + (m − t).

Construct a solution P ′ of I0 from M ′ such that P ′ = {Pi | hospital pi

is empty in M ′}. Clearly, |P ′|= t. We show that the cost of P ′ is at most
(a + m− t)/B. Partition U into B subsets Uj = {uj

i | 1 ≤ i ≤ n} (1 ≤ j ≤ B).
Then there is an integer j such that Uj contains at most (a + m − t)/B

blocking residents. If uj
i is non-blocking, all the hospitals superior to x for uj

i

are assigned in M ′, and hence by the construction of P ′, no subset containing
ui is selected in P ′, i.e., the element ui does not contribute to the cost of P ′.
Hence, only elements ui whose corresponding residents uj

i are blocking can
contribute to the cost of P ′. Therefore, the cost of P ′ is at most (a+m− t)/B.

⊓⊔

5 Concluding Remarks

An obvious future research is to obtain lower bounds on the approximation
factor for Min-BR HRLQ (we even do not know its APX-hardness at this
moment). Since the problem is harder than DkS, it should be a reasonable
challenge.

As for Min-BP HRLQ, it is interesting to consider a decision variant,
namely, the problem of asking whether an optimal solution contains at most
k blocking pairs for a given integer k. In Theorem 1, we have shown that the
problem of determining whether the optimal cost is at most nδ or at least n1−δ

is NP-hard for any constant δ(> 0), where n = |H | + |R|. This implies that
the decision problem is NP-hard if k = O(nδ) for any δ. On the other hand,
Theorem 3 implies that the problem is solvable in polynomial time when k is
a constant. It is interesting to consider the complexity of the problem when k
is between them, e.g., k =polylog(n). Another direction is to develop an FPT
algorithm (parameterized by the optimal cost t) for Min-BP HRLQ, improving
Theorem 3.

Finally, we remark on the possibility of generalization of instances: In this
paper, we guarantee existence of feasible matchings by the CL-restriction
(Sec. 2). However, even if we allow arbitrarily incomplete lists (and even
ties), it is decidable in polynomial time if the given instance admits a feasible
matching [12]. Thus, it might be interesting to seek approximate solutions for
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instances without the CL-restriction. Unfortunately, however, we can easily
imply its |R|1−ǫ-approximation hardness in the following way.

Consider the problem of finding a maximum cardinality matching with
the fewest blocking pairs, given a stable marriage instance with incomplete
preference lists (call it Min-BP SMI for short). Its approximation hardness of
n1−ǫ for any positive constant ǫ is already known [7,19], where n is the number
of men in an input. The reduction given in [19], whose idea was taken from [7],
constructs an instance of Min-BP SMI having a perfect matching and creates
a large gap on the number of blocking pairs between “yes” instances and
“no” instances. We can verify that this gap holds also for the number of men
involved in blocking pairs. If we regard instances produced by this reduction
as ones of Min-BR HRLQ, by considering men and women as residents and
hospitals, respectively, and setting the quotas to [1, 1] for all the hospitals,
then we can show |R|1−ǫ-approximation hardness of 0-1 Min-BR HRLQ.
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