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Abstract. This paper considers two variants of Multiple Knapsack Prob-
lems. The first one is the Multiple Knapsack Problem with Assignment
Restrictions and Capacity Constraints (MK-AR-CC). In the MK-AR-
CC(k) (where k is a positive integer), a subset of knapsacks is associated
with each item and the item can be packed into only those knapsacks
(Assignment Restrictions). Furthermore, the size of each knapsack is at
least k times the largest item assignable to the knapsack (Capacity Con-
straints). The MK-AR-CC(k) is NP-hard for any constant k. In this pa-

per, we give a polynomial-time
“

1 + 2
k+1

+ ε
”

-approximation algorithm

for the MK-AR-CC(k), and give a lower bound on the approximation
ratio of our algorithm by showing an integrality gap of

`

1 + 1
k
− ε

´

for
the IP formulation we use in our algorithm, where ε is an arbitrary small
positive constant. The second problem is the Splittable Multiple Knap-
sack Problem with Assignment Restrictions (S-MK-AR), in which the
size of items may exceed the capacity of knapsacks and items can be
split and packed into multiple knapsacks. We show that approximating
the S-MK-AR with the ratio of n1−ε is NP-hard even when all the items
have the same profit, where n is the number of items and ε is an arbitrary
positive constant.

Keywords: Multiple Knapsack Problem, Assignment Restrictions, Ap-
proximation Algorithms

1 Introduction

This paper considers two variants of Multiple Knapsack Problems, motivated by
efficient power allocation in recent and future power networks. Efficient usage
of natural power sources, e.g. solar power or wind power, has been studied ac-
tively with the spread of in-home power generations such as solar panels. These
kinds of relatively small sources are generally called distributed power sources.
Future power networks are supposed to include various distributed generations
in addition to conventional commercial power sources, e.g. fossil fuel plants or
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nuclear power plants, and it is strongly desired these power sources are utilized
effectively. Power sources have various characteristics such as cost, stability, and
CO2 emission. For example, power from fossil fuel plants is stable but relatively
costly, while power from in-home solar panels is low-cost but unstable because
it depends on weather conditions. Power consuming devices also have character-
istics on quality of power that they require. For example, a desktop PC needs
stable power, therefore it should be supplied from commercial sources, whereas
a laptop with a battery accepts power from solar panels, because it can work
with the battery even when the solar panels fails to generate stable power due to
weather conditions. Therefore, it is desired to match power sources and power
consuming devices in an appropriate manner [13, 15].

Power allocation can be naturally formalized as a combinatorial optimization
problem as follows: There are power devices and power sources. Each power de-
vice d has two values, the profit p(d) and the power consumption c(d), meaning
that using the device d requires the power of c(d), and if d can be used we gain
the profit of p(d). Each power source s has a capacity, that is a maximum power
s can supply. Our goal is to allocate devices to sources so as to maximize the
sum of the profits of allocated devices, while keeping the capacity constraint
of each source. This problem can be viewed as the Multiple Knapsack Problem
(MK) by regarding power sources as knapsacks and power consuming devices as
items. Note that in the above mentioned characteristics-based power allocation,
a device can be allocated to only a power source whose power quality matches
the requirement of the device. One of the suitable extensions of the MK in this
scenario is the Multiple Knapsack Problem with Assignment Restriction (MK-
AR), where a subset of knapsacks is associated with each item and the item can
be packed into only those knapsacks. The MK-AR is NP-hard since it is a gener-
alization of the classical Knapsack Problem. As for the approximability, Nutov
et al. [12] showed a simple 2-approximation algorithm for the MK-AR. They
also proposed an e

e−1 -approximation algorithm for the fixed-profit Generalized
Assignment Problem (GAP), which includes the MK-AR as a special case.

Our Results. In this paper, we consider two extensions of the MK-AR based
on the observations on real power networks.

First, the capacity of power sources, such as a commercial power source,
is usually much larger than the power consumption of devices. Therefore, it is
reasonable to consider instances in which item sizes are small and capacities
of knapsacks are large. The problem we propose in this context is the Multiple
Knapsack Problem with Assignment Restrictions and Capacity Constraints (MK-
AR-CC). In the MK-AR-CC(k) (where k is a positive integer), the size of each
knapsack is at least k times the largest item assignable to the knapsack. It
is easy to see that the MK-AR-CC(k) is NP-hard for any constant k (by a
straightforward reduction from the classical Knapsack Problem). In this paper
we extend Nutov et al.’s 2-approximation algorithm [12] and give a polynomial-
time

(
1 + 2

k+1 + ε
)
-approximation algorithm for the MK-AR-CC(k). (In the

case of k = 1, our algorithm is equivalent to Nutov et al.’s algorithm and hence
the approximation ratio is 2 rather than 2+ε.) We also give a lower bound on the
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approximation ratio of our algorithm by showing an integrality gap of
(
1 + 1

k − ε
)

for the IP formulation we use in our algorithm, where ε is an arbitrary positive
constant.

The second scenario is that the capacity of distributed power sources is rela-
tively small and one device may need to be allocated to two or more sources. We
therefore consider the Splittable Multiple Knapsack Problem with Assignment
Restrictions (S-MK-AR), in which the size of items may exceed the capacity of
knapsacks and one item can be split and packed into multiple knapsacks. We
show that approximating the S-MK-AR with the ratio of n1−ε is NP-hard even
when all the items have the same profit, where n is the number of items and ε
is an arbitrary positive constant.

Related Work. The MK-AR is a special case of the Generalized Assignment
Problems (GAP). Approximation algorithms for the GAP and their variants have
been studied actively. Shmoys and Tardos [14] presented a 2-approximation al-
gorithm for the GAP. Later, Fleischer et al. [6] derived an e

e−1 -approximation
algorithm for restricted instances of Separable Assignment Problems that in-
cludes the GAP as a special case. Feige and Vondrak [5] have broken this barrier
using randomization; they presented a randomized

(
e

e−1 − ε
)
-approximation al-

gorithm for the GAP for some absolute constant ε > 0. Cohen et al. [3] showed a
combinatorial translation of any algorithm for the single knapsack problem into
an approximation algorithm for the GAP, and showed a (1 + α)-approximation
algorithm for the GAP, where α is an approximation ratio for the single knapsack
problem.

Dawande et al. [4] showed a combinatorial 2-approximation algorithm for the
restricted case of the MK-AR where the size of an item is equal to its profit.
Approximation algorithms for other restricted instances of the MK-AR have
been studied as well [1, 2].

2 The Multiple Knapsack Problem with Assignment
Restrictions and Capacity Constraints

2.1 Problem Formulation

We define the Multiple Knapsack Problem with Assignment Restrictions (MK-
AR) as follows. Its input is a bipartite graph G = (I, J, E) with a set of edges
E between I and J . Vertices of I = {a1, a2, . . . , an} correspond to items, and
vertices of J = {b1, b2, . . . , bm} correspond to knapsacks. Item a ∈ I is assignable
to knapsack b ∈ J only if (a, b) ∈ E. For each item a ∈ I, the profit and the size of
a, denoted by p(a) and `(a) respectively, are associated. For each knapsack b ∈ J ,
its capacity c(b) is associated. A feasible solution of MK-AR is an assignment
of items to knapsacks such that, for each b, the total size of assigned items to
knapsack b is at most c(b). The goal of the MK-AR is to maximize the total
profit of assigned items. The MK-AR-CC(k) is a restriction of the MK-AR in
which any instance satisfies the capacity constraints, namely, c(b) ≥ k`(a) for
any a and b such that (a, b) ∈ E.
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For convenience, we define the profit and the size of an edge e as the profit
and the size, respectively, of the item incident to e. Formally, the edge e = (a, b)
has the profit p(e) = p(a) and the size `(e) = `(a). For a vertex v of G, δ(v)
denotes the set of edges that are incident to vertex v. Then the MK-AR can be
formulated as an integer program (IP) as follows, where xe is a decision variable;

max
∑
e∈E

p(e)
`(e)

xe

s.t.
∑

e∈δ(b)

xe ≤ c(b), ∀b ∈ J

∑
e∈δ(a)

xe ≤ `(a), ∀a ∈ I

xe ∈ {0, `(e)}, ∀e ∈ E

The LP-relaxation of the MK-AR is defined by replacing the last constraint
of IP formulation by “xe ≤ `(e), ∀e ∈ E”.

2.2 Algorithm Match-and-FPTAS

The following corollary by Nutov et al. [12] is crucial for constructing and ana-
lyzing our algorithm. For a feasible solution x of the relaxation problem of the
MK-AR, let F (x) be the graph that consists of the set of fractional edges in x,
namely, the set of edges e such that 0 < xe < `(e), and their endpoint vertices.

Corollary 1. (Nutov et al. [12]) Given a feasible solution x to the LP relaxation
of the MK-AR, we can find in O(|E(G)|2) time a feasible solution z such that
(i)

∑
e∈E

p(e)
`(e) ze ≥

∑
e∈E

p(e)
`(e) xe, (ii) F (z) is a forest, and (iii) in any connected

component of F (z), at most one leaf belongs to I.

A formal description of our approximation algorithm Match-and-FPTAS, which
is based on Nutov et al.’s algorithm for the MK-AR [12], is given in Algorithm 1.
It first obtains an optimal solution x∗ of an LP relaxation of the MK-AR-CC(k),
using a polynomial time algorithm for linear programming [11, 7]. It then con-
structs a solution z from x∗ using Corollary 1. In Step 3, for each knapsack
bj , we construct a single knapsack problem Ij consisting of knapsack bj , full
items, and at most one matched item. Full items are those assigned to bj in x∗

by an integral edge (i.e., an edge e such that xe = `(e)). A matched item is
defined as follows. We construct a maximum cardinality matching M in F (z)
(the graph that consists of the set of fractional edges in the solution z and their
endpoint vertices) using the Hungarian method [9]. Then the matched item is
the one matched with bj in M if any. In Step 4, Match-and-FPTAS obtains a
near-optimal solution for each single knapsack problem Ij , using an FPTAS [10,
8], and finally in Step 5, it outputs the union of selected items for each solution
of Ij .
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Algorithm 1 Algorithm Match-and-FPTAS for the MK-AR-CC(k)
Step 1. Obtain an optimal solution x∗ of a relaxed instance of the MK-AR-CC(k),
using a polynomial time algorithm for linear programming.
Step 2. Construct a solution z from x∗ as shown in Corollary 1.
Step 3. Construct instances of the single knapsack problem by matching fractional
items in F (z) to knapsacks.
Step 4. Using an FPTAS, obtain near-optimal solution for each instance of the single
knapsack problem derived in Step 3.
Step 5. Output the union of the solutions obtained in Step 4 as a solution for the
original MK-AR-CC(k) instance.

2.3 Analysis of the Approximation Ratio of Match-and-FPTAS

In our analysis, we focus on an instance Ij of the single knapsack problem derived
in Step 3, and analyze its optimal solution.

For a set S of items, let `(S) and p(S) denote the total size and profit,
respectively, of items in S. Let Aj denote the set of items in Ij , and let mj

denote, if any, the matched item of Ij derived in Step 3. Note that, if there does
exist the matched item, then `(Aj) < c(bj) + `maxj holds where `maxj is the
maximum size of the items assignable to knapsack bj , since the total size of the
full items is less than c(bj) and `(mj) ≤ `maxj by definition. Let OPTj be an
optimal solution of Ij , and Xj be the set of items packed in the knapsack bj in
OPTj . Define Yj = Aj \ Xj as the set of items not packed in OPTj .

First, we show some properties of an optimal solution OPTj .

Lemma 1. For any S ⊆ Xj such that `(S) ≥ `maxj , p(S) ≥ p(Yj).

Proof. If we remove S from OPTj , the vacancy of the knapsack is `(S)+(c(bj)−
`(Xj)) ≥ `maxj + (c(bj) − `(Xj)). On the other hand, `(Yj) = `(Aj) − `(Xj) =
(`(Aj) − c(bj)) + (c(bj) − `(Xj)) < `maxj + (c(bj) − `(Xj)). Therefore, we can
replace the item set S by Yj in OPTj to obtain another feasible solution. If p(S) <
p(Yj), the profit of the new solution is larger than that of OPTj , contradicting
the optimality of OPTj . ut

Lemma 2. For any S ⊆ Xj and a positive integer k′ such that `(S) ≥ k′`maxj ,

p(S) ≥
⌈

k′

2

⌉
p(Yj).

Proof. Since the size of any item is at most `maxj , we can partition S into at

least
⌈

k′`maxj

2`maxj

⌉
=

⌈
k′

2

⌉
subsets S1, S2, . . . , Sz (z ≥

⌈
k′

2

⌉
), such that `maxj ≤

`(Si) < 2`maxj for all i. Since each Si satisfies the condition of Lemma 1, we

have that p(Si) ≥ p(Yj). Hence, p(S) =
∑z

i=1 p(Si) ≥
⌈

k′

2

⌉
p(Yj). ut

Lemma 3. Suppose |Yj | = 1. Then, for any S ⊆ Xj such that `(S) + (c(bj) −
`(Xj)) ≥ `maxj , p(S) ≥ p(Yj).
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Proof. The proof goes like that of Lemma 1. If we remove S from OPTj , the
vacancy of the knapsack is `(S) + (c(bj) − `(Xj)) ≥ `maxj . Since |Yj | = 1 and
hence `(Yj) ≤ `maxj

, we can replace S by Yj to obtain a feasible solution. If
p(S) < p(Yj), the new solution is better than OPTj , a contradiction. ut

Lemma 4. Suppose |Yj | ≥ 2. Then, for any S ⊆ Xj such that `(S) + (c(bj) −
`(Xj)) ≥ `maxj , p(S) ≥ 1

2p(Yj).

Proof. As before, if we remove all the items in S from OPTj , we have the
vacancy of `(S) + (c(bj)− `(Xj)) ≥ `maxj . Let d denote an item with the lowest
profit in Yj . Then p(d) ≤ p(Yj)

|Yj | ≤ 1
2p(Yj) holds. Since Xj does not contain d,

`(Xj)+ `(d) > c(bj) (otherwise, we can add d to OPTj to get a better solution).
Since `(Yj \ {d}) = `(Aj)− (`(Xj) + `(d)) < `(Aj)− c(bj) < `maxj , we can pack
all the items in Yj \ {d} if we remove S from OPTj . Hence, by the optimality of
OPTj , p(S) ≥ p(Yj) − p(d) ≥ p(Yj) − 1

2p(Yj) = 1
2p(Yj). ut

The following lemma is crucial to the analysis.

Lemma 5. p(Aj)
p(Xj)

≤ 1 + 2
k+1 .

Proof. Since p(Aj)
p(Xj)

= 1 + p(Yj)
p(Xj)

, it suffices to show that p(Xj) ≥ k+1
2 p(Yj). If

|Yj | = 0, then p(Yj) = 0 and the above inequality is satisfied trivially. Hence,
from now on, we assume that |Yj | ≥ 1. Note that `(Xj) > c(bj)−`maxj , since oth-
erwise, at least one item in Yj could be packed in the knapsack bj , contradicting
the optimality of OPTj .

We will do a case analysis depending on whether mj ∈ Xj or not. Let k1

denote the positive integer such that k1 ≤ c(bj)
`maxj

< k1 + 1 , i.e. the integer part

of the ratio of c(bj) to `maxj . Note that k ≤ k1 holds by the capacity constraint.
Case 1. mj ∈ Xj. In this case, all the items in Yj are full items. Note that

all the full items in Ij can be packed in the knapsack bj . Hence, if we remove
mj from OPTj and add all the items in Yj , the result is a feasible solution.
Therefore, by the optimality of OPTj , p(mj) ≥ p(Yj) holds. Hereafter, we will
do a case analysis depending on k1.

Case 1-(i). k1 = 1. By the optimality of OPTj , p(Xj) ≥ p(mj) ≥ p(Yj) =
k1+1

2 p(Yj) ≥ k+1
2 p(Yj).

Case 1-(ii). k1 = 2. Let L = Xj \ {mj}. Since |Yj | ≥ 1 and `(L)+ (c(bj)−
`(Xj)) = c(bj) − `(mj) ≥ k1`maxj − `maxj = `maxj , p(L) ≥ 1

2p(Yj) holds by
Lemmas 3 and 4. Hence, p(Xj) = p(mj) + p(L) ≥ p(Yj) + 1

2p(Yj) = 3
2p(Yj) =

k1+1
2 p(Yj) ≥ k+1

2 p(Yj).
Case 1-(iii). k1 is odd and k1 ≥ 3. Let L = Xj \ {mj} as shown

in Fig. 1. Since `(mj) ≤ `maxj and `(mj) + `(L) = `(Xj) > c(bj) − `maxj ,
`(L) > c(bj) − `maxj − `(mj) ≥ (k1 − 2)`maxj . Therefore, we obtain p(L) ≥⌈

k1−2
2

⌉
p(Yj) = k1−1

2 p(Yj) by Lemma 2. Hence, p(Xj) = p(mj)+ p(L) ≥ p(Yj)+
k1−1

2 p(Yj) ≥ k1+1
2 p(Yj) ≥ k+1

2 p(Yj).
Case 1-(iv). k1 is even and k1 ≥ 4. We partition Xj into three subsets

{mj}, L, and R as follows: L is a subset of Xj\{mj} that satisfies (k1−2)`maxj ≤
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L

Fig. 1. Case 1-(iii): mj ∈ Xj and k1(≥ 3) is odd.

`(mj) + `(L) < (k1 − 1)`maxj and R = Xj \ (L ∪ {mj}) (see Fig. 2). Since
`(mj) ≤ `maxj , we have `(L) ≥ (k1 − 3)`maxj . Therefore, p(L) ≥

⌈
k1−3

2

⌉
p(Yj) =(

k1
2 − 1

)
p(Yj) by Lemma 2. Also, since |Yj | ≥ 1 and `(R) + (c(bj) − `(Xj)) ≥

`maxj , p(R) ≥ 1
2p(Yj) holds by Lemmas 3 and 4. Hence, p(Xj) = p(mj)+p(L)+

p(R) ≥ p(Yj) + (k1
2 − 1)p(Yj) + 1

2p(Yj) = k1+1
2 p(Yj) ≥ k+1

2 p(Yj).

L

Fig. 2. Case 1-(iv): mj ∈ Xj and k1(≥ 4) is even.

Case 2. mj 6∈ Xj. In this case, Yj = {mj} because all the full items can
be packed in the knapsack. Again, we will do a case analysis depending on k1.

Case 2-(i). k1 = 1. By the optimality of OPTj , p(Xj) ≥ p(mj) = p(Yj) =
k1+1

2 p(Yj) ≥ k+1
2 p(Yj).

Case 2-(ii). k1 = 2. We partition Xj into three subsets R1, R2, and R3

as follows (see Fig. 3): First we sort all the items in Xj as {a1, a2, . . . , a|Xj |} in
descending order of sizes. Then we define R1 = {a1, a2, . . . , aq−1}, R2 = {aq},
and R3 = {aq+1, aq+2, . . . , i|OPT′

j |}, where q is the positive integer that satisfies
`(R1) ≤ `maxj < `(R1) + `(R2). Note that `(R1) ≥ `(R2) holds.

Since `(R1) + `(R2) > `maxj , we obtain p(R1) + p(R2) ≥ p(Yj) by Lemma 1.
Since |Yj | = 1 and `(R2) + `(R3) + (c(bj) − `(Xj)) ≥ c(bj) − `(R1) ≥ k1`maxj −
`maxj = `maxj , we obtain p(R2)+p(R3) ≥ p(Yj) by Lemma 3. Also, since |Yj | = 1
and `(R3)+`(R1)+(c(bj)−`(Xj)) ≥ `(R3)+`(R2)+(c(bj)−`(Xj)) ≥ `maxj , we
obtain p(R3) + p(R1) ≥ p(Yj) by Lemma 3. Hence, (p(R1) + p(R2)) + (p(R2) +
p(R3)) + (p(R3) + p(R1)) ≥ 3p(Yj), resulting that p(Xj) = p(R1) + p(R2) +
p(R3) ≥ 3

2p(Yj) = k1+1
2 p(Yj) ≥ k+1

2 p(Yj).
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R1 R2 R3

Fig. 3. Case 2-(ii): mj 6∈ Xj and k1 = 2.

Case 2-(iii). k1 is odd and k1 ≥ 3. We partition Xj into two sub-
sets L and R as follows: L is a subset of Xj that satisfies (k1 − 2)`maxj ≤
`(L) < (k1 − 1)`maxj , and R = Xj \ L (see Fig. 4). Since `(L) ≥ (k1 − 2)`maxj ,
p(L) ≥ dk1−2

2 ep(Yj) = k1−1
2 p(Yj) holds by Lemma 2. Since |Yj | = 1 and

`(R) + (c(bj) − `(Xj)) = c(bj) − `(L) > k1`maxj − (k1 − 1)`maxj = `maxj ,
we have that p(R) ≥ p(Yj) by Lemma 3. Hence, p(Xj) = p(L) + p(R) ≥
k1−1

2 p(Yj) + p(Yj) = k1+1
2 p(Yj) ≥ k+1

2 p(Yj).

L

Fig. 4. Case 2-(iii): mj 6∈ Xj and k1(≥ 3) is odd.

Case 2-(iv). k1 is even and k1 ≥ 4. We partition Xj into four subsets
L, R1, R2, and R3 as follows (see also Fig. 5): First we sort all the items in
Xj as {a1, a2, . . . , a|Xj |} in descending order of sizes. Then we partition them
as L = {a1, a2, . . . , aq−1}, R1 = {aq, aq+1, ..., ar−1}, R2 = {ar}, and R3 =
{ar+1, ar+2, . . . , a|Xj |}, where q and r are positive integers that satisfy (k1 −
3)`maxj ≤ `(L) < (k1 − 2)`maxj , (k1 − 2)`maxj ≤ `(L) + `(R1) < (k1 − 1)`maxj ,
and (k1 − 1)`maxj ≤ `(L) + `(R1) + `(R2). Note that `(R1) ≥ `(R2) holds.

Since `(L) ≥ (k1−3)`maxj , we obtain p(L) ≥ dk1−3
2 ep(Yj) = (k1

2 −1)p(Yj) by
Lemma 2. Since `(R1)+ `(R2) = (`(L)+ `(R1)+ `(R2))− `(L) > (k1−1)`maxj −
(k1 − 2)`maxj = `maxj , we obtain p(R1) + p(R2) ≥ p(Yj) by Lemma 1. Since
|Yj | = 1 and `(R2)+`(R3)+(c(bj)−`(Xj)) ≥ c(bj)−(`(L)+`(R1)) > k1`maxj −
(k1 − 1)`maxj = `maxj , we have p(R2) + p(R3) ≥ p(Yj) by Lemma 3. Also, since
|Yj | = 1 and `(R3)+ `(R1)+ (c(bj)− `(Xj)) ≥ `(R3)+ `(R2)+ (c(bj)− `(Xj)) >
`maxj , we have that p(R3) + p(R1) ≥ p(Yj) by Lemma 3. Therefore, it follows
that (p(R1)+p(R2))+(p(R2)+p(R3))+(p(R3)+p(R1)) ≥ 3p(Yj), resulting that
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R1 R2 R3L

Fig. 5. Case 2-(iv): mj 6∈ Xj and k1(≥ 4) is even.

p(R1)+p(R2)+p(R3) ≥ 3
2p(Yj). Hence, p(Xj) = p(L)+p(R1)+p(R2)+p(R3) ≥

(k1
2 − 1)p(Yj) + 3

2p(Yj) = k1+1
2 p(Yj) ≥ k+1

2 p(Yj). ut

Theorem 1. Match-and-FPTAS is a
(
1 + 2

k+1 + ε
)
-approximation algorithm for

the MK-AR-CC(k), where ε is an arbitrary positive constant.

Proof. Let p(OPT ) and p(LPOPT ) denote the profits of optimal solutions for
the MK-AR-CC(k) and its LP-relaxation, respectively. Note that p(LPOPT ) ≤∑

j p(Aj). Also, let p(MF ) denote the profit of the solution obtained by Match-
and-FPTAS, and p(MFj) denote the profit of the solution for Ij obtained in
Step 4 of Match-and-FPTAS. Let ε′ be a positive constant that satisfies ε′ ≤

ε(k+1)
k+3+ε(k+1) . Since we use an FPTAS for the knapsack problem in Step 4, we can
have p(MFj) ≥ (1 − ε′)p(Xj). By Lemma 5, we obtain

p(OPT )
p(MF )

≤ p(LPOPT )
p(MF )

≤
∑

j p(Aj)∑
j p(MFj)

≤ max
j

{
p(Aj)

p(MFj)

}
≤ max

j

{
p(Aj)

(1 − ε′) p(Xj)

}
≤ 1

1 − ε′

(
1 +

2
k + 1

)
≤ 1 +

2
k + 1

+ ε.

ut

2.4 Integrality Gap of the IP Formulation Used in Match-and-FPTAS

Theorem 2. The integrality gap of the IP formulation of the MK-AR-CC(k)
used in Match-and-FPTAS is at least 1 + 1

k − ε for any positive constant ε.

Proof. We consider an instance of the MK-AR-CC(k) including k+1 items with
profit 1 and size 1, and one knapsack with capacity k + 1 − ε. The profit of
an optimal solution for LP-relaxation is k + 1 − ε, while that for the original
MK-AR-CC(k) is k. Hence, the integrality gap is 1 + 1

k − ε
k ≥ 1 + 1

k − ε. ut
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3 Splittable Multiple Knapsack Problem with
Assignment Restrictions

3.1 Problem Definition

We define the Splittable Multiple Knapsack Problem with Assignment Restric-
tions (S-MK-AR) as follows. We are given a bipartite graph G = (I, J, E), where
I and J correspond to items and knapsacks, respectively. A vertex (item) a ∈ I
has the size `(a) and the profit p(a). A vertex (knapsack) b ∈ J has the capacity
c(b). A feasible solution of S-MK-AR is a non-negative weight on each e ∈ E
such that the total weight of edges incident to a vertex b ∈ J is at most c(b) and
the total weight of edges incident to a vertex a ∈ I is at most `(a). If the total
weight of incident edges of a equals `(a), we say that the item a is satisfied. The
profit of a feasible solution is the sum of the profits of the satisfied items, and
the goal of the S-MK-AR is to maximize it.

3.2 Approximation Hardness of the S-MK-AR

Theorem 3. For any positive constant ε, there is no polynomial-time n1−ε-
approximating algorithm for the S-MK-AR unless P=NP, even if all the items
have the same profit, where n is the number of items in an input.

Proof. The proof is done by a reduction from the Maximum Independent Set
Problem (MIS). For a graph G = (V,E), a subset S ⊆ V is called an independent
set if there is no edge between any pair of vertices in S. MIS is the problem of,
given a graph G, finding an independent set of G with the maximum cardinality.

Given an instance G1 = (V,E) of MIS, we construct an instance L2 of the
S-MK-AR (whose underlying graph is G2 = (I, J,E′)) as follows (an example of
the reduction is illustrated in Fig. 6).

Without loss of generality, we can assume that G1 has no isolated vertex.
Suppose that G1 has n vertices v1, . . . , vn, and m edges e1, . . . , em. Then, I has
n vertices a1, . . . , an, where ai corresponds to the vertex vi of G1. Similarly, J
has m vertices b1, . . . , bm, where bj corresponds to the edge ej of G1. Finally, we
define E′ as (ai, bj) ∈ E′ if and only if the vertex vi is incident to the edge ej in
G1. The capacity of the knapsack bj is c(bj) = 1 for every j. The profit and the
size of an item ai is p(ai) = 1 and `(ai) = deg(vi), respectively, where deg(vi)
denotes the degree of vi. Clearly this reduction can be done in polynomial time.

Suppose that S is an independent set of G1. We will construct a solution T
of L2 in such a way that if vi ∈ S then all the edges in δ(ai) have weight 1,
and if vi 6∈ S then all the edges in δ(ai) have weight 0 (recall that δ(ai) is the
set of edges incident to ai). Note that this is a feasible solution because, for any
bj ∈ J , at most one edge in δ(bj) has weight 1 (and other edge(s) have weight
0), since S is an independent set. Also, it is not hard to see that for any i such
that vi ∈ S, the item ai is satisfied since all of its incident edges have weight 1.
Therefore, the profit of T is |S|. This implies that OPT (L2) ≥ OPT (G1), where
OPT (G1) denotes the size of a maximum independent set of G1 and OPT (L2)
denotes the profit of an optimal solution of L2.
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Fig. 6. An example of the reduction from the Maximum Independent Set Problem to
the S-MK-AR.

Next, consider a feasible solution T of L2, and denote its profit p(T ). It is
not hard to see from the above argument that if we choose a vertex vi for every
i such that ai is satisfied by T , we have an independent set of G1 whose size is
the same as p(T ). Therefore, from a feasible solution T of L2, we can construct
in polynomial time an independent set S such that |S| = p(T ).

Now, suppose that there is a polynomial time n1−ε-approximation algorithm
ALG1 for the S-MK-AR. Consider the following approximation algorithm ALG2

for MIS: Given an instance G1 of MIS, ALG2 first transforms it to L2 using
the above reduction. It then solves L2 using ALG1 and obtains a solution T .
Finally, ALG2 transforms T into an independent set S of G1. By the above
arguments, we have that OPT (G1)

|S| = OPT (L2)
p(T ) ≤ n1−ε, that is, ALG2 is an

n1−ε-approximation algorithm for MIS. It is known that existence of an n1−ε-
approximation algorithm for MIS implies P=NP [16]. This completes the proof.

ut

4 Conclusion

In this paper, we have considered two variants of the Multiple Knapsack Prob-
lems, motivated by efficient power allocation in power networks. As future work,
it would be challenging to fill the gap between upper and lower bounds on ap-
proximation ratios. It would also be interesting to formulate the problem in
an online manner, considering the scenario where power consuming devices and
power sources appear and disappear dynamically.
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