Improved Approximation Bounds for the Student-Project Allocation Problem with Preferences over Projects

Kazuo Iwama ${ }^{1}$, Shuichi Miyazaki ${ }^{2}$, Hiroki Yanagisawa ${ }^{3}$
${ }^{1}$ Graduate School of Informatics, Kyoto University
iwama@kuis.kyoto-u.ac.jp
${ }^{2}$ Academic Center for Computing and Media Studies, Kyoto University
shuichi@media.kyoto-u.ac.jp
${ }^{3}$ IBM Research - Tokyo
yanagis@jp.ibm.com

Abstract

Manlove and O'Malley [9] proposed the Student-Project Allocation Problem with Preferences over Projects (SPA-P). They proved that the problem of finding a maximum stable matching in SPA-P is APX-hard and gave a polynomial-time 2-approximation algorithm. In this paper, we give an improved upper bound of 1.5 and a lower bound of $21 / 19$ (>1.1052).

1 Introduction

Assignment problems based on the preferences of participants, which originated from the famous Hospitals/Residents problem (HR) [4], are important almost everywhere, such as in education systems where students must be allocated to elementary schools or university students to projects. In the university case, each student may have preferences over certain research projects supervised by professors and usually there is an upper bound on the number of students each project can accept. Our basic goal is to find a "stable" allocation where no students (or projects or professors if they also have preferences over students) can complain of unfairness. This notion of stability was first introduced by Gale and Shapley in the context of the famous Stable Marriage problem in 1962 [3].

The Student-Project Allocation problem (SPA) is a typical formulation of this kind of problem originally described by Abraham, Irving, and Manlove [1]. The participants here are students, projects, and lecturers. Each project is offered by a single lecturer, though one lecturer may offer multiple projects. Each project and each lecturer has a capacity (called a quota in the original HR). Students have preferences over projects, and lecturers have preferences over students. Our goal is to find a stable matching between students and projects satisfying all of the capacity constraints for projects and lecturers. They proved that all stable matchings for a single instance have the same size, and proposed linear-time algorithms to find one [1].

Manlove and O'Malley [9] proposed a variant of SPA, called SPA with Preferences over Projects (SPA-P), where lecturers have preferences over projects they offer rather than preferences over students. In contrast to SPA, they pointed out that the sizes of stable matchings may differ, and proved that the problem of finding a maximum stable matching in SPA-P, denoted MAX-SPA-P, is APX-hard. They also presented a polynomial-time 2-approximation algorithm. Specifically, they provided a polynomial-time algorithm that finds a stable matching, and proved that any two stable matchings differ in size by at most a factor of two.

Our Contributions. In this paper, we improve both the upper and lower bounds on the approximation ratio for MAX-SPA-P. We give an upper bound of 1.5 and a lower bound of $21 / 19(>1.1052)$ (assuming $\mathrm{P} \neq \mathrm{NP})$. For the upper bound, we modify Manlove and O'Malley's algorithm SPA-P-APprox [9] using Király's idea [7] for the approximation algorithm to find a maximum stable matching in a variant of the stable marriage problem (MAX-SMTI). We also show that our analysis is tight. For the lower bound, we give a gap-preserving reduction from the Minimum Vertex Cover problem, which is similar to the one used in [5] to prove the approximation lower bound for MAX-SMTI.

2 Preliminaries

Here we give a formal definition of SPA-P and MAX-SPA-P, derived directly from the literature [9]. An instance I of SPA-P consists of a set S of students, a set P of projects, and a set L of lecturers. Each lecturer $\ell_{k} \in L$ offers a subset P_{k} of projects. Each project is offered by exactly one lecturer, i.e., $P_{k_{1}} \cap P_{k_{2}}=\emptyset$ if $k_{1} \neq k_{2}$. Each student $s_{i} \in S$ has an acceptable set of projects, denoted A_{i}, and has a strict order on A_{i} according to preferences. Each lecturer ℓ_{k} also has a strict order on P_{k} according to preferences. Also, each project p_{j} and each lecturer ℓ_{k} has a positive integer, called a capacity, c_{j} and d_{k}, respectively.

An assignment M is a subset of $S \times P$ where $\left(s_{i}, p_{j}\right) \in M$ implies $p_{j} \in A_{i}$. Let $\left(s_{i}, p_{j}\right) \in M$ and ℓ_{k} be the lecturer who offers p_{j}. Then we say that s_{i} is assigned to p_{j} in M, and p_{j} is assigned s_{i} in M. We also say that s_{i} is assigned to ℓ_{k} in M and ℓ_{k} is assigned s_{i} in M.

For $r \in S \cup P \cup L$, let $M(r)$ be the set of assignees of r in M. If $M\left(s_{i}\right)=\emptyset$, we say that the student s_{i} is unassigned in M, otherwise s_{i} is assigned in M. We say that the project p_{j} is under-subscribed, full, or over-subscribed with respect to M according to whether $\left|M\left(p_{j}\right)\right|<c_{j},\left|M\left(p_{j}\right)\right|=c_{j}$, or $\left|M\left(p_{j}\right)\right|>c_{j}$, respectively, under M. If $\left|M\left(p_{j}\right)\right|>0$, we say that p_{j} is non-empty, otherwise, it is empty. Corresponding definitions apply to each lecturer ℓ.

A matching M is an assignment such that $\left|M\left(s_{i}\right)\right| \leq 1$ for each $s_{i},\left|M\left(p_{j}\right)\right| \leq$ c_{j} for each p_{j}, and $\left|M\left(\ell_{k}\right)\right| \leq d_{k}$ for each ℓ_{k}. For a matching M, if $\left|M\left(s_{i}\right)\right|=1$, we may use $M\left(s_{i}\right)$ to denote the unique project which s_{i} is assigned to. The size of a matching M, denoted $|M|$, is the number of students assigned in M.

Given a matching M, a (student, project) pair $\left(s_{i}, p_{j}\right)$ blocks M, or is a blocking pair for M, if the following three conditions are met:

$$
\text { 1. } p_{j} \in A_{i} \text {. }
$$

2. Either s_{i} is unassigned or s_{i} prefers p_{j} to $M\left(s_{i}\right)$.
3. p_{j} is under-subscribed and either
(a) $s_{i} \in M\left(\ell_{k}\right)$ and ℓ_{k} prefers p_{j} to $M\left(s_{i}\right)$, or
(b) $s_{i} \notin M\left(\ell_{k}\right)$ and ℓ_{k} is under-subscribed, or
(c) $s_{i} \notin M\left(\ell_{k}\right), \ell_{k}$ is full, and ℓ_{k} prefers p_{j} to the worst non-empty project,
where ℓ_{k} is the lecturer who offers p_{j}.
Given a matching M, a coalition is a set of students $\left\{s_{i_{0}}, s_{i_{1}}, \ldots, s_{i_{r-1}}\right\}$ for some $r \geq 2$ such that each $s_{i_{j}}$ is assigned in M and prefers $M\left(s_{i_{j+1}}\right)$ to $M\left(s_{i_{j}}\right)$, where $j+1$ is taken modulo r. A matching that has no blocking pair nor coalition is stable. Refer to [9] for the validity of this definition of stability. SPA-P is the problem of finding a stable matching, and MAX-SPA-P is the problem of finding a maximum stable matching.

We say that A is an r-approximation algorithm if it satisfies $\max \{\operatorname{opt}(x) / A(x)\} \leq r$ over all instances x, where $o p t(x)$ and $A(x)$ are the sizes of the optimal and the algorithm's solutions, respectively.

3 Approximability

3.1 Algorithm SPA-P-APPROX-PROMOTION

Manlove and O'Malley's algorithm SPA-P-APprox [9] proceeds as follows. First, all students are unassigned. Any student (s) who has non-empty preference list applies to the top project (p) on the current list of s. If the lecturer (ℓ) who offers p has no incentive to accept s for p, then s is rejected. When rejected, s deletes p from the list. Otherwise, (s, p) is added to the current matching. If, as a result, ℓ becomes over-subscribed, ℓ rejects a student from ℓ 's worst non-empty project to satisfy the capacity constraint. This continues until there is no unassigned student whose preference list is non-empty. Manlove and O'Malley proved that the obtained matching is stable.

We extend SPA-P-APprox using Király's idea [7]. During the execution of our algorithm SPA-P-APPROX-PROMOTION, each student has one of two states, "unpromoted" or "promoted". At the beginning, all of the students are unpromoted. The application sequence is unchanged. When a student (s) becomes unassigned with her preference list exhausted, s is promoted. When promoted, s returns to her original preference list (i.e., all of the previous deletions are canceled) and starts a second sequence of applications from the top of her list. For the decision rule for acceptance or rejection by the lecturers, they will prefer promoted students to unpromoted students within the same project. The formal description of SPA-P-APPROX-PROMOTION is given as Algorithm 1.

3.2 Correctness

It is straightforward to show that SPA-P-APPROX-PROMOTION outputs a matching in polynomial time. We will now show that the output matching M is stable. We first prove two useful lemmas:

```
Algorithm 1 SPA-P-APPROX-PROMOTION
    \(M:=\emptyset\).
    Let all students be unpromoted.
    while (there exists an unassigned student \(s_{i}\) such that \(s_{i}\) 's list is non-empty or \(s_{i}\)
    is unpromoted) do
        if ( \(s_{i}\) 's list is empty and \(s_{i}\) is unpromoted) then
            Promote \(s_{i}\).
        end if
        \(p_{j}:=\) first project on \(s_{i}\) 's list.
        \(\ell_{k}:=\) lecturer who offers \(p_{j}\).
        /* \(s_{i}\) applies to \(p_{j}{ }^{*} /\)
        if (A. ( \(p_{j}\) is full) or ( \(\ell_{k}\) is full and \(p_{j}\) is \(\ell_{k}\) 's worst non-empty project)) then
            if ( \(\left(s_{i}\right.\) is unpromoted) or (there is no unpromoted student in \(\left.M\left(p_{j}\right)\right)\) ) then
                Reject \(s_{i}\).
            else
                Reject an arbitrary unpromoted student in \(M\left(p_{j}\right)\) and add \(\left(s_{i}, p_{j}\right)\) to \(M\).
            end if
        else if (B. \(\ell_{k}\) is full and prefers \(s_{i}\) 's worst non-empty project to \(p_{j}\) ) then
            Reject \(s_{i}\).
        else if (C. Otherwise) then
            Add \(\left(s_{i}, p_{j}\right)\) to \(M\).
            if ( \(\ell_{k}\) is over-subscribed) then
                \(p_{z}:=\ell_{k}\) 's worst non-empty project. (Note that \(p_{z} \neq p_{j}\).)
                if ( \(M\left(p_{z}\right)\) contains an unpromoted student) then
                    Reject an arbitrary unpromoted student in \(M\left(p_{z}\right)\).
                else
                    Reject an arbitrary student in \(M\left(p_{z}\right)\).
                end if
            end if
        end if
    end while
    Return \(M\).
```

Lemma 1. Suppose that, during the execution of SPA-P-APPROX-PROMOTION, a project p_{a} rejected a promoted student. Then (i) after that point, no new student can be accepted to p_{a}, and (ii) no unpromoted student can be assigned to p_{a} in M.

Proof. Suppose that a promoted student s is rejected by p_{a}. Let ℓ_{k} be the lecturer who offers p_{a}. It is easy to see that just after this rejection, no unpromoted student can be assigned to p_{a}. We show that after that point, if a student s^{\prime} applies to p_{a} when there is no unpromoted student assigned to p_{a}, then s^{\prime} must be rejected. It is easy to see that the lemma follows by using this fact inductively.

Note that just after this rejection, either (1) p_{a} is full or (2) p_{a} is undersubscribed and ℓ_{k} is full. We consider Case (2) first. Since p_{a} is under-subscribed but s was rejected from p_{a}, p_{a} must be ℓ_{k} 's worst non-empty project before the rejection. Then after this rejection, p_{a} is still ℓ_{k} 's worst non-empty project or p_{a}
becomes worse than it was (if s was the only student assigned to p_{a}). Note that now ℓ_{k} remains full until the end of the execution. Then after this point, when any student applies to p_{a}, only Cases A (line 10) or B (line 16) of the algorithm can apply. Since there is no unpromoted student in $M\left(p_{a}\right), s^{\prime}$ must be rejected.

In Case (1), if p_{a} is still full when s^{\prime} applies to p_{a}, Case A of the algorithm applies and hence s^{\prime} must be rejected since $M\left(p_{a}\right)$ contains no unpromoted student. If p_{a} is under-subscribed when s^{\prime} applies to p_{a}, then some student was already rejected from p_{a}. At that time, ℓ_{k} must have been full and p_{a} was ℓ_{k} 's worst non-empty project. Therefore, ℓ_{k} is still full and p_{a} is ℓ_{k} 's worst non-empty project or worse than it was. Then we can apply the same argument as in Case (2).

The proof of the following lemma is basically similar and is omitted.
Lemma 2. Suppose that, during the execution of SPA-P-APPROX-Promotion, a project p_{a} has rejected a student. Then after that point, no new unpromoted student can be accepted for p_{a}.

To prove the stability, we need to prove that there is no coalition or blocking pair.

Lemma 3. The output matching M is coalition-free.
Proof. Suppose that there is a coalition $\left\{s_{i_{0}}, s_{i_{1}}, \ldots, s_{i_{r-1}}\right\}$ for some $r \geq 2$. Let $p_{i_{j}}=M\left(s_{i_{j}}\right)$ for each $j(0 \leq j \leq r-1)$. Thus $s_{i_{j}}$ prefers $p_{i_{j+1}}$ to $p_{i_{j}}$ (where $j+1$ is taken modulo r). Therefore, at some point of the execution, $p_{i_{j+1}}$ was deleted from $s_{i_{j}}$'s list. Note that during the execution of the algorithm, one project may be deleted from a student's list twice (because of a promotion). Hereafter, a "deletion" means the final deletion unless otherwise stated.

Now suppose that among such deletions, the first occurrence was the deletion of $p_{i_{1}}$ from $s_{i_{0}}$'s list. First, suppose that $s_{i_{0}}$ is eventually unpromoted. Note that $s_{i_{1}}$ applied to and was accepted by $p_{i_{1}}$ after $s_{i_{0}}$ was rejected by $p_{i_{1}}$. Therefore $s_{i_{1}}$ is eventually promoted by Lemma 2 . Then $s_{i_{1}}$ was rejected from $p_{i_{2}}$ when $s_{i_{1}}$ was promoted. This means that $s_{i_{2}}$ is eventually promoted by Lemma 1(ii). Repeating this argument, we can conclude that $s_{i_{r-1}}$ is eventually promoted. Then this contradicts Lemma 1(ii) since $p_{i_{0}}$ rejected the promoted student $s_{i_{r-1}}$ but is assigned an unpromoted student $s_{i_{0}}$ in M.

Next suppose that $s_{i_{0}}$ is eventually promoted. Then since $p_{i_{1}}$ rejected a promoted student, $p_{i_{1}}$ accepts no new students by Lemma 1(i). This contradicts the fact that $s_{i_{1}}$ was accepted to $p_{i_{1}}$ later.

Lemma 4. The output matching M has no blocking pair.
Proof. Assume that there exists a blocking pair $\left(s_{r}, p_{t}\right)$ for M. Then it is clear that s_{r} was rejected from p_{t} during the execution (recall that this rejection is the second one if s_{r} was eventually promoted). Let ℓ_{k} be the lecturer who offers p_{t}. Rejections occur at lines $12,14,17,23$, and 25 . If this rejection occurred at line 17,23 , or 25 , then p_{t} was already ℓ_{k} 's worst non-empty project or worse
than that, and this is also the case in M. We know that ℓ_{k} was full at this rejection point, and remains full in M. Therefore, $\left(s_{r}, p_{t}\right)$ cannot block M. If this rejection occurred at line 12 or 14 as a result of ℓ_{k} being full and p_{t} being ℓ_{k} 's worst non-empty project, then the same argument holds. Therefore suppose that this rejection occurred at line 12 or 14 as a result of p_{t} being full. Since $\left(s_{r}, p_{t}\right)$ blocks M, p_{t} is under-subscribed in M. Then p_{t} changed from being full to being under-subscribed at some point. This can happen only when ℓ_{k} is full and p_{t} is ℓ_{k} 's worst non-empty project. Again, we can use the same argument to show that $\left(s_{r}, p_{t}\right)$ cannot block M, a contradiction.

The following lemma follows immediately from Lemmas 3 and 4.
Lemma 5. SPA-P-APPROX-PROMOTION returns a stable matching.

3.3 Analysis of the Approximation Ratio

For a given instance I, let M be a matching output from SPA-P-APPROXpromotion, and let $M_{\text {opt }}$ be a largest stable matching for I.

Lemma 6. $\left|M_{o p t}\right| \leq \frac{3}{2}|M|$.
Proof. Based on M and $M_{o p t}$, we define a bipartite graph $G_{M, M_{o p t}}=(U, V, E)$ as follows: Each vertex in U corresponds to a student in I, and each vertex in V corresponds to a position of a project in I. Precisely speaking, for each project p_{j} whose capacity is c_{j}, we create c_{j} "positions" of p_{j}, each of which can accept at most one student, and each vertex in V corresponds to each such position. We use s_{i} to denote the vertex in U corresponding to a student s_{i} and $p_{j, 1}, p_{j, 2}, \ldots, p_{j, c_{j}}$ to denote the vertices in V corresponding to a project p_{j}.

If a student s_{i} is assigned to a project p_{j} in M ($M_{o p t}$, respectively), we include an edge $\left(s_{i}, p_{j, t}\right)$ for some $t\left(1 \leq t \leq c_{j}\right)$, called an M-edge ($M_{o p t}$-edge, respectively), in E. If s_{i} is assigned to the same project p_{j} both in M and $M_{o p t}$, then M - and $M_{o p t}$-edges corresponding to this assignment include the same position of p_{j}, which means we give parallel edges $\left(s_{i}, p_{j, t}\right)$ for some t. We also ensure that there are no two vertices $p_{j, t_{1}}$ and $p_{j, t_{2}}$ such that $p_{j, t_{1}}$ is matched in M but not in $M_{o p t}$, and $p_{j, t_{2}}$ is matched in $M_{o p t}$ but not in M. In such a case, there will be M-edge $\left(s_{i_{1}}, p_{j, t_{1}}\right)$ and $M_{o p t}$-edge $\left(s_{i_{2}}, p_{j, t_{2}}\right)$. Then we can remove $\left(s_{i_{1}}, p_{j, t_{1}}\right)$ and add ($\left.s_{i_{1}}, p_{j, t_{2}}\right)$ instead.

Note that each vertex of $G_{M, M_{o p t}}$ has degree at most two. Therefore its connected components are alternating paths or alternating cycles. Now we will modify $G_{M, M_{o p t}}$ while retaining this property and keeping the numbers of M-edges and $M_{o p t}$-edges unchanged. Note that the resulting graph may not correspond to a feasible solution for I. We use this modification only for the purpose of comparing the sizes of M and $M_{o p t}$.

A connected component consisting of only one $M_{\text {opt }}$-edge is called a TypeI component. A connected component which is a length-three alternating path consisting of two $M_{\text {opt }}$-edges and one M-edge in the middle is called a Type-II component. We show that there are no Type-I or Type-II components in the
resulting bipartite graph. If this is true, the connected component having the largest ratio of the number of $M_{o p t}$-edges to that of M-edges is a length-five alternating path with three $M_{\text {opt }}$-edges and two M-edges, which has the ratio of 1.5. This proves the lemma.

Consider a Type-I component $\left(s_{i}, p_{j, t}\right)$. Let ℓ_{k} be the lecturer who offers p_{j}. Since $p_{j, t}$ is not matched in M, p_{j} is under-subscribed in M. Then ℓ_{k} must be full in M since otherwise (s_{i}, p_{j}) blocks M. Therefore, we can find a vertex $p_{a, x}$ in V which is matched in M but not in $M_{o p t}$, where p_{a} is offered by ℓ_{k}. We can remove $\left(s_{i}, p_{j, t}\right)$ and add $\left(s_{i}, p_{a, x}\right)$ to remove this Type-I component.

Consider a Type-II component $s_{i}-p_{a, x}-s_{j}-p_{b, y}$. Note that $p_{a} \neq p_{b}$ due to the construction of $G_{M, M_{o p t}}$. Since s_{i} is unassigned in M, s_{i} is promoted. Then s_{i} applied to p_{a} when promoted, but was rejected. Therefore s_{j} must be promoted by Lemma 1(ii). This means that s_{j} applied to p_{b} at least once, but was rejected. Let ℓ_{k} be the lecturer who offers p_{b}. As mentioned several times before, this rejection can happen only when (1) p_{b} is full or (2) ℓ_{k} is full and p_{b} is ℓ_{k} 's worst non-empty project or worse than that, and either (1) or (2) also holds for the output matching M. However $p_{b, y}$ is unassigned in M, so only (2) is possible. Since ℓ_{k} is full in M, there must be a vertex $p_{c, z}$ in V which is matched in M but not in $M_{o p t}$, where p_{c} is offered by ℓ_{k}. We can remove the edge $\left(s_{j}, p_{b, y}\right)$ and add $\left(s_{j}, p_{c, z}\right)$ to remove this Type-II component.

Note that in both of these cases, we used the property that ℓ_{k} is full in M. This implies that for each Type-I or Type-II component, we can find a distinct vertex in V which is matched only in M to perform the above mentioned replacement. We do this replacement for all Type-I and Type-II components in $G_{M, M_{o p t}}$. This operation does not change any M-edges, so the number of students assigned to each lecturer or project in M is unchanged. In particular, a lecturer or a project full in M is still full in the modified graph.

As a result of these operations, we may still have a Type-II component. This can happen only when we removed a Type-I component, such as $\left(s_{i}, p_{j, t}\right)$, using a length-two path, such as $p_{a, x}-s_{r}-p_{b, y}$, where $\left(s_{r}, p_{a, x}\right)$ is an M-edge and $\left(s_{r}, p_{b, y}\right)$ is an $M_{o p t}$-edge. In this example, we removed $\left(s_{i}, p_{j, t}\right)$ and added $\left(s_{i}, p_{a, x}\right)$. Note that p_{a} and p_{j} must be offered by the same lecturer, such as ℓ_{k}, because of the definition of the operation for Type-I components. Also, by the construction of $G_{M, M_{o p t}}, p_{a}$ and p_{j} must be different projects because $p_{j, t}$ is matched only in $M_{o p t}$ and $p_{a, x}$ is matched only in M.

If p_{b} is also offered by ℓ_{k}, then corresponding to the $M_{o p t}$-edge $\left(s_{r}, p_{b, y}\right)$, we can find a vertex $p_{c, z}$ in V which is matched in M but not in $M_{o p t}$, where p_{c} is offered by ℓ_{k}, since ℓ_{k} is full in M. Then we can remove this Type-II component by replacing $\left(s_{r}, p_{b, y}\right)$ with $\left(s_{r}, p_{c, z}\right)$. Otherwise, let $\ell_{k^{\prime}}\left(\neq \ell_{k}\right)$ be the lecturer who offers p_{b}. Suppose that s_{r} prefers p_{b} to p_{a}. Since p_{b} is under-subscribed in $M, \ell_{k^{\prime}}$ must be full in M, since otherwise $\left(s_{r}, p_{b}\right)$ blocks M. Then we can use the same argument as before to show the existence of a vertex $p_{c, z}$ which is matched in M but not in $M_{o p t}$, where p_{c} is offered by $\ell_{k^{\prime}}$. Suppose that s_{r} prefers p_{a} to p_{b}. If ℓ_{k} prefers p_{a} to p_{j}, then $\left(s_{r}, p_{a}\right)$ blocks $M_{o p t}$, a contradiction (note that $p_{a, x}$ is not matched and hence p_{a} is under-subscribed in $M_{o p t}$). If ℓ_{k} prefers p_{j} to
p_{a}, then $\left(s_{i}, p_{j}\right)$ blocks M, a contradiction. We have exhausted all of the cases, and have shown that all Type-I and Type-II components can be removed. This completes the proof.

The following theorem follows immediately from Lemmas 5 and 6 .
Theorem 1. SPA-P-APPROX-PROMOTION is a 1.5-approximation algorithm for MAX-SPA-P.

3.4 Tightness of the Analysis

We give an instance to show that our analysis of the approximation ratio is tight. There are three students s_{1}, s_{2}, and s_{3} and one lecturer ℓ_{1} with $d_{1}=3$ who offers three projects p_{1}, p_{2}, and p_{3} with $c_{1}=c_{2}=c_{3}=1$. The preferences of the students and the lecturer are as follows:

$s_{1}: p_{1}$	$\ell_{1}: p_{3}$	p_{2}	p_{1}	
$s_{2}: p_{1}$	p_{2}			
$s_{3}: p_{2}$	p_{3}			

Note that the matching $\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{2}\right),\left(s_{3}, p_{3}\right)\right\}$ of size three is stable, but the following execution of SPA-P-APPROX-PROMOTION yields a stable matching of size two $\left\{\left(s_{2}, p_{1}\right),\left(s_{3}, p_{2}\right)\right\}:(1) s_{1}$ applies to p_{1} and is accepted. (2) s_{3} applies to p_{2} and is accepted. (3) s_{2} applies to p_{1} and is rejected. (4) s_{2} applies to p_{2} and is rejected. (5) s_{2} is promoted. (6) s_{2} applies to p_{1} and is accepted; s_{1} is rejected. (7) s_{1} is promoted. (8) s_{1} applies to p_{1} and is rejected.

4 Inapproximability

The stable marriage problem (SM) [3, 4] is the problem of finding a stable matching, given sets of men and women and each person's preference list over the members of the opposite gender. If ties are allowed in the preference lists and if the preference lists may be incomplete (i.e., unacceptable persons may be dropped from the lists), then the problem of finding a maximum stable matching (MAXSMTI) is NP-hard even if ties appear on only one side (e.g., the men's lists must be totally ordered) [8]. We call this restricted problem MAX-SMTI-1T.

There is a similarity between MAX-SMTI-1T and MAX-SPA-P, so we can define the following natural reduction from MAX-SMTI-1T to MAX-SPA-P: Suppose that in the MAX-SMTI-1T instance I, the men's lists are strict and the women's lists may contain ties. Then in the MAX-SPA-P instance I^{\prime}, the students and lecturers correspond to men and women in I, respectively. For each woman w 's list, we create a project for each tie in the list, where a man not in a tie is considered as a tie of size one. These projects are offered by the lecturer ℓ_{w} corresponding to the woman w, and the order of projects in ℓ_{w} 's list is consistent with w 's list in I. Each project p is acceptable to the students corresponding to the men in the tie associated with this project p. The order of projects in
the preference list of a student is naturally generated from corresponding man's (strictly ordered) list in I. The capacity of each lecturer and each project is one.

Using the above reduction, we can prove that the sizes of a maximum stable matching of I and a maximum blocking-pair-free matching of I^{\prime} coincide. The only problem is that there is a coalition-freeness condition in the stability definition of SPA-P. Therefore a reduction from the general instances of MAX-SMTI-1T to MAX-SPA-P cannot be applied. However, it turns out that if we use only the instances generated by the reduction in [5], then this problem can be resolved and the sizes of the optimal solutions for MAX-SMTI-1T and MAX-SPA-P coincide, so that the approximation lower bound of $21 / 19$ for MAX-SMTI-1T proved in [5] applies to MAX-SPA-P. For the completeness of this article, however, we give a direct reduction from the Minimum Vertex Cover problem (MVC) to MAX-SPA-P.

For a graph $G=(V, E)$, a subset $C \subseteq V$ of vertices is called a vertex cover for G if for any edge, at least one of its endpoints is in C. MVC is the problem of finding a vertex cover of minimum size for a given graph. Let $O P T(G)$ be the size of a minimum vertex cover for G. We can now use the well-known Proposition 1.

Proposition 1. [2] For any $\epsilon>0$ and $p<\frac{3-\sqrt{5}}{2}$, if there is a polynomial-time algorithm that, given a graph $G=(V, E)$, distinguishes between these two cases, then $P=N P$.
(1) $\operatorname{OPT}(G) \leq(1-p+\epsilon)|V|$.
(2) $\operatorname{OPT} T(G)>\left(1-\max \left\{p^{2}, 4 p^{3}-3 p^{4}\right\}-\epsilon\right)|V|$.

For an instance I of MAX-SPA-P, let $O P T(I)$ be the size of a maximum stable matching for I. Then we can prove Theorem 2.

Theorem 2. For any $\epsilon>0$ and $p<\frac{3-\sqrt{5}}{2}$, if there is a polynomial-time algorithm that, given a MAX-SPA-P instance I of N students, distinguishes between these two cases, then $P=N P$.
(1) $\operatorname{OPT}(I) \geq \frac{2+p-\epsilon}{3} N$.
(2) $\operatorname{OPT}(I)<\frac{2+\max \left\{p^{2}, 4 p^{3}-3 p^{4}\right\}+\epsilon}{3} N$.

Proof. Given a graph $G=(V, E)$, we will construct, in polynomial time, an instance I_{G} of MAX-SPA-P with N students. Our reduction satisfies conditions (i) $N=3|V|$ and (ii) $O P T\left(I_{G}\right)=3|V|-O P T(G)$. Then it is not hard to see that Proposition 1 implies Theorem 2.

Now we show the reduction. For each vertex v_{i} of G, we construct three students a_{i}, b_{i}, and c_{i} and three lecturers x_{i}, y_{i}, and z_{i}. Suppose that v_{i} is adjacent to k vertices $v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{k}}\left(i_{1}<i_{2}<\cdots<i_{k}\right)$. Then we construct $k+4$ projects $X_{i}, Y_{i}, Z_{i,-}, Z_{i, i_{1}}, \cdots, Z_{i, i_{k}}$ and $Z_{i,+}$, where X_{i} is offered by x_{i}, Y_{i} by y_{i}, and $Z_{i,-}, Z_{i, i_{1}}, \cdots, Z_{i, i_{k}}, Z_{i,+}$ by z_{i}. The capacity of each project and each lecturer is one.

Next, we define the acceptability of projects to students. The project X_{i} is acceptable to only one student a_{i}. The project Y_{i} is acceptable to two students
a_{i} and $b_{i} . Z_{i,-}$ is acceptable to only b_{i}, and $Z_{i,+}$ is acceptable to only c_{i}. For each $j=1,2, \ldots, k$, the project $Z_{i, i_{j}}$ is acceptable to only one student $a_{i_{j}}$ (corresponding to the adjacent vertex $v_{i_{j}}$). Finally, we define preference lists of the students and lecturers corresponding to v_{i} as:

$$
\begin{array}{ll}
a_{i}: Y_{i} Z_{i_{1}, i} Z_{i_{2}, i} \cdots Z_{i_{k}, i} X_{i} & x_{i}: X_{i} \\
b_{i}: Y_{i} Z_{i,-} & y_{i}: Y_{i} \\
c_{i}: Z_{i,+} & z_{i}: Z_{i,-} Z_{i, i_{1}} \cdots Z_{i, i_{k}} Z_{i,+}
\end{array}
$$

Obviously, this reduction can be performed in polynomial time. Since the capacities of all of the projects and lecturers are one, for a project or a lecturer r assigned in M, we may use $M(r)$ to denote the unique student assigned to r. Clearly condition (i) holds. In the rest of the proof, we show that condition (ii) holds. To see this, we show that (A) if there is a vertex cover C of G, then there is a stable matching M of I_{G} such that $|M|=3|V|-|C|$, and (B) if there is a stable matching M of I_{G}, then there is a vertex cover C of G such that $|C|=3|V|-|M|$. The statement (A) implies $O P T\left(I_{G}\right) \geq 3|V|-O P T(G)$ and (B) implies $\operatorname{OPT}(G) \leq 3|V|-O P T\left(I_{G}\right)$, which together implies condition (ii).

We show (A) first. Given a vertex cover C for G, we construct a stable matching M for I_{G} as follows: For each vertex v_{i}, if $v_{i} \in C$, let $M\left(a_{i}\right)=Y_{i}$, $M\left(b_{i}\right)=Z_{i,-}$, and leave c_{i} unassigned. If $v_{i} \notin C$, let $M\left(a_{i}\right)=X_{i}, M\left(b_{i}\right)=Y_{i}$, and $M\left(c_{i}\right)=Z_{i,+}$. Since the capacity of each lecturer is one, we can regard M as a matching between students and lecturers. Fig. 1 shows a part of M corresponding to v_{i}. By an easy calculation, we can see that $|M|=2|C|+$ $3(|V|-|C|)=3|V|-|C|$ as required.

Fig. 1. A part of matching M

We will show that M is stable. We first show that there is no blocking pair. For $v_{i} \in C, a_{i}$ is assigned to the top project, so that a_{i} cannot be part of a blocking pair. The student b_{i} is assigned to the second project, but the first project Y_{i} and the lecturer y_{i} who offers Y_{i} are both full and hence b_{i} cannot form a blocking pair. Student c_{i} is unassigned but the lecturer z_{i}, who offers c_{i} 's only acceptable project $Z_{i,+}$, is full and prefers c_{i} 's assigned project $Z_{i,-}$ to $Z_{i,+}$, so that c_{i} cannot be part of a blocking pair. For $v_{i} \notin C, b_{i}$ and c_{i} are assigned to the top projects respectively. The only possibility is that a_{i} forms a
blocking pair with some project among $Y_{i}, Z_{i_{1}, i}, Z_{i_{2}, i}, \cdots, Z_{i_{k}, i}$, but it is easy to see that Y_{i} is excluded. Therefore, suppose that a_{i} forms a blocking pair with $Z_{i_{j}, i}$ for some j. Then by construction there is an edge between v_{i} and $v_{i_{j}}$, and the lecturer $z_{i_{j}}$ is assigned the student $c_{i_{j}}$ for the project $Z_{i_{j},+}$ (since in the other case, $z_{i_{j}}$ receives a student for the most preferred project and hence ($a_{i}, Z_{i_{j}, i}$) cannot be a blocking pair). This means that $v_{i_{j}} \notin C$ by the construction of M. Then this contradicts the assumption that C is a vertex cover for G. We then show that M admits no coalition. Note that in M, each student corresponding to the vertex v_{i} of G is assigned to a project corresponding to v_{i}. This implies that any coalition must consist of students and projects corresponding to the same vertex. However we can easily verify that there is no coalition in either the case of $v_{i} \in C$ or $v_{i} \notin C$, which completes the stability proof.

Next we show (B). Let M be a stable matching for I_{G}. First, if the project Y_{i} is unassigned, then both $\left(a_{i}, Y_{i}\right)$ and $\left(b_{i}, Y_{i}\right)$ block M, which is a contradiction. Therefore either $M\left(Y_{i}\right)=a_{i}$ or $M\left(Y_{i}\right)=b_{i}$.

First, suppose that $M\left(Y_{i}\right)=a_{i}$. Then $M\left(b_{i}\right)=Z_{i,-}$ since otherwise, $\left(b_{i}, Z_{i,-}\right)$ blocks M. Then c_{i} is unassigned and x_{i} and X_{i} are empty in M. In this case, we say that v_{i} causes Pattern 1. A diagrammatic representation of Pattern 1 is given in Fig. 2.

Fig. 2. Five patterns caused by v_{i}

Next, suppose that $M\left(Y_{i}\right)=b_{i}$. Then a_{i} is assigned in M, since otherwise (a_{i}, X_{i}) blocks M. Since Y_{i} is already taken by b_{i}, there remain two cases: (a) $M\left(a_{i}\right)=X_{i}$ and (b) $M\left(a_{i}\right)=Z_{i_{j}, i}$ for some j. Similarly, if z_{i} is empty in M, then $\left(c_{i}, Z_{i,+}\right)$ blocks M. This means either (c) $M\left(z_{i}\right)=c_{i}$ or (d) $M\left(z_{i}\right)=a_{i_{j}}$ for some j. Hence, we have a total of four cases. These cases are referred to as Patterns 2 through 5 (see Fig. 2). For example, a combination of cases (b) and (c) corresponds to Pattern 4. Lemma 7, whose proof is omitted by the space restriction, excludes the possibility of Patterns 3 or 4.

Lemma 7. Each vertex causes Pattern 1, 2 or 5.
By Lemma 7, each vertex v_{i} will lead to Pattern 1,2 , or 5 . We construct the subset C of vertices in this way: If v_{i} causes Pattern 1 or 5 , then let $v_{i} \in C$, otherwise, let $v_{i} \notin C$.

We show that C is a vertex cover for G. Assume that C is not a vertex cover for G. Then there are two vertices v_{i} and v_{j} in $V \backslash C$ such that $\left(v_{i}, v_{j}\right) \in E$
and both of them cause Pattern 2. Then both $\left(a_{i}, Z_{j, i}\right)$ and $\left(a_{j}, Z_{i, j}\right)$ block M, contradicting the stability of M. Hence, C is a vertex cover for G. It is obvious that $|M|=2|C|+3(|V|-|C|)=3|V|-|C|$. Hence, statement (B) holds. This completes the proof of Theorem 2.

By letting $p=\frac{1}{3}$ in Theorem 2, we have Corollary 1.
Corollary 1. Assume that $P \neq N P$. Then for any constant $\delta>0$, there is no polynomial-time (21/19- δ)-approximation algorithm for MAX-SPA-P.
Remark. Using the same argument as Remark 3.6 of [5], we can claim that MAX-SPA-P is hard to approximate within $1.25-\delta$ if MVC is hard to approximate within $2-\epsilon$ (where δ and ϵ are arbitrary positive constants).

5 Conclusions

In this paper, we improved the upper and lower bounds on the approximation ratio for MAX-SPA-P. One research direction is to further improve the upper bound. For example, a recent approximation algorithm for MAX-SMTI-1T [6] generalizes Király's idea [7] using Linear Programming approach. Its approximation ratio of $25 / 17(\simeq 1.4706)$ is slightly better than 1.5 . One possible next step is to verify whether this idea can be applied to SPA-P-APPROX-PROMOTION.

Acknowledgments. The authors would like to thank anonymous reviewers for their valuable comments. This work was supported by KAKENHI 22240001 and 20700009.

References

1. D. J. Abraham, R. W. Irving and D. F. Manlove, "Two algorithms for the StudentProject Allocation problem," J. Discrete Algorithms, Vol. 5, No. 1, pp. 73-90, 2007.
2. I. Dinur and S. Safra, "On the hardness of approximating minimum vertex-cover," Annals of Mathematics, Vol. 162(1), pp. 439-485, 2005.
3. D. Gale and L. S. Shapley, "College admissions and the stability of marriage," Amer. Math. Monthly, Vol. 69, pp. 9-15, 1962.
4. D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, Boston, MA, 1989.
5. M. M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa, "Improved approximation results for the stable marriage problem," ACM Transactions on Algorithms, Vol. 3(3), Article No. 30, 2007.
6. K. Iwama, S. Miyazaki, and H. Yanagisawa, "A 25/17-approximation algorithm for the stable marriage problem with one-sided ties," Proc. ESA 2010, LNCS 6347, pp. 135-146, 2010.
7. Z. Király, "Better and simpler approximation algorithms for the stable marriage problem," Algorithmica, DOI 10.1007/s00453-009-9371-7, 2009.
8. D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. "Hard variants of stable marriage," Theoretical Computer Science, Vol. 276(1-2), pp. 261-279, 2002.
9. D. F. Manlove, and G. O'Malley, "Student-project allocation with preferences over projects," Journal of Discrete Algorithms, Vol. 6, pp. 553-560, 2008.
