
Improved Approximation Bounds for the

Student-Project Allocation Problem with

Preferences over Projects

Kazuo Iwama1, Shuichi Miyazaki2, Hiroki Yanagisawa3

1 Graduate School of Informatics, Kyoto University
iwama@kuis.kyoto-u.ac.jp

2 Academic Center for Computing and Media Studies, Kyoto University
shuichi@media.kyoto-u.ac.jp

3 IBM Research - Tokyo
yanagis@jp.ibm.com

Abstract. Manlove and O’Malley [9] proposed the Student-Project Al-
location Problem with Preferences over Projects (SPA-P). They proved
that the problem of finding a maximum stable matching in SPA-P is
APX-hard and gave a polynomial-time 2-approximation algorithm. In
this paper, we give an improved upper bound of 1.5 and a lower bound
of 21/19 (> 1.1052).

1 Introduction

Assignment problems based on the preferences of participants, which originated
from the famous Hospitals/Residents problem (HR) [4], are important almost
everywhere, such as in education systems where students must be allocated to
elementary schools or university students to projects. In the university case,
each student may have preferences over certain research projects supervised by
professors and usually there is an upper bound on the number of students each
project can accept. Our basic goal is to find a “stable” allocation where no
students (or projects or professors if they also have preferences over students)
can complain of unfairness. This notion of stability was first introduced by Gale
and Shapley in the context of the famous Stable Marriage problem in 1962 [3].

The Student-Project Allocation problem (SPA) is a typical formulation of this
kind of problem originally described by Abraham, Irving, and Manlove [1]. The
participants here are students, projects, and lecturers. Each project is offered by
a single lecturer, though one lecturer may offer multiple projects. Each project
and each lecturer has a capacity (called a quota in the original HR). Students
have preferences over projects, and lecturers have preferences over students. Our
goal is to find a stable matching between students and projects satisfying all of
the capacity constraints for projects and lecturers. They proved that all stable
matchings for a single instance have the same size, and proposed linear-time
algorithms to find one [1].

Manlove and O’Malley [9] proposed a variant of SPA, called SPA with Prefer-
ences over Projects (SPA-P), where lecturers have preferences over projects they
offer rather than preferences over students. In contrast to SPA, they pointed out
that the sizes of stable matchings may differ, and proved that the problem of find-
ing a maximum stable matching in SPA-P, denoted MAX-SPA-P, is APX-hard.
They also presented a polynomial-time 2-approximation algorithm. Specifically,
they provided a polynomial-time algorithm that finds a stable matching, and
proved that any two stable matchings differ in size by at most a factor of two.

Our Contributions. In this paper, we improve both the upper and lower
bounds on the approximation ratio for MAX-SPA-P. We give an upper bound of
1.5 and a lower bound of 21/19 (> 1.1052) (assuming P 6= NP). For the upper
bound, we modify Manlove and O’Malley’s algorithm spa-p-approx [9] using
Király’s idea [7] for the approximation algorithm to find a maximum stable
matching in a variant of the stable marriage problem (MAX-SMTI). We also
show that our analysis is tight. For the lower bound, we give a gap-preserving
reduction from the Minimum Vertex Cover problem, which is similar to the one
used in [5] to prove the approximation lower bound for MAX-SMTI.

2 Preliminaries

Here we give a formal definition of SPA-P and MAX-SPA-P, derived directly
from the literature [9]. An instance I of SPA-P consists of a set S of students, a
set P of projects, and a set L of lecturers. Each lecturer ℓk ∈ L offers a subset
Pk of projects. Each project is offered by exactly one lecturer, i.e., Pk1

∩Pk2
= ∅

if k1 6= k2. Each student si ∈ S has an acceptable set of projects, denoted Ai,
and has a strict order on Ai according to preferences. Each lecturer ℓk also has
a strict order on Pk according to preferences. Also, each project pj and each
lecturer ℓk has a positive integer, called a capacity, cj and dk, respectively.

An assignment M is a subset of S × P where (si, pj) ∈ M implies pj ∈ Ai.
Let (si, pj) ∈ M and ℓk be the lecturer who offers pj . Then we say that si is
assigned to pj in M , and pj is assigned si in M . We also say that si is assigned
to ℓk in M and ℓk is assigned si in M .

For r ∈ S∪P ∪L, let M(r) be the set of assignees of r in M . If M(si) = ∅, we
say that the student si is unassigned in M , otherwise si is assigned in M . We say
that the project pj is under-subscribed, full, or over-subscribed with respect to M
according to whether |M(pj)| < cj , |M(pj)| = cj , or |M(pj)| > cj , respectively,
under M . If |M(pj)| > 0, we say that pj is non-empty, otherwise, it is empty.
Corresponding definitions apply to each lecturer ℓ.

A matching M is an assignment such that |M(si)| ≤ 1 for each si, |M(pj)| ≤
cj for each pj , and |M(ℓk)| ≤ dk for each ℓk. For a matching M , if |M(si)| = 1,
we may use M(si) to denote the unique project which si is assigned to. The size
of a matching M , denoted |M |, is the number of students assigned in M .

Given a matching M , a (student, project) pair (si, pj) blocks M , or is a
blocking pair for M , if the following three conditions are met:

1. pj ∈ Ai.

2. Either si is unassigned or si prefers pj to M(si).
3. pj is under-subscribed and either

(a) si ∈ M(ℓk) and ℓk prefers pj to M(si), or
(b) si 6∈ M(ℓk) and ℓk is under-subscribed, or
(c) si 6∈ M(ℓk), ℓk is full, and ℓk prefers pj to the worst non-empty

project,
where ℓk is the lecturer who offers pj .

Given a matching M , a coalition is a set of students {si0 , si1 , . . . , sir−1
} for

some r ≥ 2 such that each sij
is assigned in M and prefers M(sij+1

) to M(sij
),

where j+1 is taken modulo r. A matching that has no blocking pair nor coalition
is stable. Refer to [9] for the validity of this definition of stability. SPA-P is the
problem of finding a stable matching, and MAX-SPA-P is the problem of finding
a maximum stable matching.

We say that A is an r-approximation algorithm if it satisfies
max{opt(x)/A(x)} ≤ r over all instances x, where opt(x) and A(x) are the
sizes of the optimal and the algorithm’s solutions, respectively.

3 Approximability

3.1 Algorithm SPA-P-APPROX-PROMOTION

Manlove and O’Malley’s algorithm spa-p-approx [9] proceeds as follows. First,
all students are unassigned. Any student (s) who has non-empty preference list
applies to the top project (p) on the current list of s. If the lecturer (ℓ) who offers
p has no incentive to accept s for p, then s is rejected. When rejected, s deletes
p from the list. Otherwise, (s, p) is added to the current matching. If, as a result,
ℓ becomes over-subscribed, ℓ rejects a student from ℓ’s worst non-empty project
to satisfy the capacity constraint. This continues until there is no unassigned
student whose preference list is non-empty. Manlove and O’Malley proved that
the obtained matching is stable.

We extend spa-p-approx using Király’s idea [7]. During the execution of
our algorithm spa-p-approx-promotion, each student has one of two states,
“unpromoted” or “promoted”. At the beginning, all of the students are unpro-
moted. The application sequence is unchanged. When a student (s) becomes
unassigned with her preference list exhausted, s is promoted. When promoted,
s returns to her original preference list (i.e., all of the previous deletions are
canceled) and starts a second sequence of applications from the top of her list.
For the decision rule for acceptance or rejection by the lecturers, they will prefer
promoted students to unpromoted students within the same project. The formal
description of spa-p-approx-promotion is given as Algorithm 1.

3.2 Correctness

It is straightforward to show that spa-p-approx-promotion outputs a match-
ing in polynomial time. We will now show that the output matching M is stable.
We first prove two useful lemmas:

Algorithm 1 spa-p-approx-promotion

1: M := ∅.
2: Let all students be unpromoted.
3: while (there exists an unassigned student si such that si’s list is non-empty or si

is unpromoted) do

4: if (si’s list is empty and si is unpromoted) then

5: Promote si.
6: end if

7: pj := first project on si’s list.
8: ℓk := lecturer who offers pj .
9: /* si applies to pj */

10: if (A. (pj is full) or (ℓk is full and pj is ℓk’s worst non-empty project)) then

11: if ((si is unpromoted) or (there is no unpromoted student in M(pj))) then

12: Reject si.
13: else

14: Reject an arbitrary unpromoted student in M(pj) and add (si, pj) to M .
15: end if

16: else if (B. ℓk is full and prefers si’s worst non-empty project to pj) then

17: Reject si.
18: else if (C. Otherwise) then

19: Add (si, pj) to M .
20: if (ℓk is over-subscribed) then

21: pz := ℓk’s worst non-empty project. (Note that pz 6= pj .)
22: if (M(pz) contains an unpromoted student) then

23: Reject an arbitrary unpromoted student in M(pz).
24: else

25: Reject an arbitrary student in M(pz).
26: end if

27: end if

28: end if

29: end while

30: Return M .

Lemma 1. Suppose that, during the execution of spa-p-approx-promotion, a
project pa rejected a promoted student. Then (i) after that point, no new student
can be accepted to pa, and (ii) no unpromoted student can be assigned to pa in
M .

Proof. Suppose that a promoted student s is rejected by pa. Let ℓk be the lecturer
who offers pa. It is easy to see that just after this rejection, no unpromoted
student can be assigned to pa. We show that after that point, if a student s′

applies to pa when there is no unpromoted student assigned to pa, then s′ must
be rejected. It is easy to see that the lemma follows by using this fact inductively.

Note that just after this rejection, either (1) pa is full or (2) pa is under-
subscribed and ℓk is full. We consider Case (2) first. Since pa is under-subscribed
but s was rejected from pa, pa must be ℓk’s worst non-empty project before the
rejection. Then after this rejection, pa is still ℓk’s worst non-empty project or pa

becomes worse than it was (if s was the only student assigned to pa). Note that
now ℓk remains full until the end of the execution. Then after this point, when
any student applies to pa, only Cases A (line 10) or B (line 16) of the algorithm
can apply. Since there is no unpromoted student in M(pa), s′ must be rejected.

In Case (1), if pa is still full when s′ applies to pa, Case A of the algorithm
applies and hence s′ must be rejected since M(pa) contains no unpromoted
student. If pa is under-subscribed when s′ applies to pa, then some student was
already rejected from pa. At that time, ℓk must have been full and pa was ℓk’s
worst non-empty project. Therefore, ℓk is still full and pa is ℓk’s worst non-empty
project or worse than it was. Then we can apply the same argument as in Case
(2). ⊓⊔

The proof of the following lemma is basically similar and is omitted.

Lemma 2. Suppose that, during the execution of spa-p-approx-promotion,
a project pa has rejected a student. Then after that point, no new unpromoted
student can be accepted for pa.

To prove the stability, we need to prove that there is no coalition or blocking
pair.

Lemma 3. The output matching M is coalition-free.

Proof. Suppose that there is a coalition {si0 , si1 , . . . , sir−1
} for some r ≥ 2. Let

pij
= M(sij

) for each j (0 ≤ j ≤ r−1). Thus sij
prefers pij+1

to pij
(where j +1

is taken modulo r). Therefore, at some point of the execution, pij+1
was deleted

from sij
’s list. Note that during the execution of the algorithm, one project may

be deleted from a student’s list twice (because of a promotion). Hereafter, a
“deletion” means the final deletion unless otherwise stated.

Now suppose that among such deletions, the first occurrence was the deletion
of pi1 from si0 ’s list. First, suppose that si0 is eventually unpromoted. Note that
si1 applied to and was accepted by pi1 after si0 was rejected by pi1 . Therefore
si1 is eventually promoted by Lemma 2. Then si1 was rejected from pi2 when
si1 was promoted. This means that si2 is eventually promoted by Lemma 1(ii).
Repeating this argument, we can conclude that sir−1

is eventually promoted.
Then this contradicts Lemma 1(ii) since pi0 rejected the promoted student sir−1

but is assigned an unpromoted student si0 in M .
Next suppose that si0 is eventually promoted. Then since pi1 rejected a pro-

moted student, pi1 accepts no new students by Lemma 1(i). This contradicts the
fact that si1 was accepted to pi1 later. ⊓⊔

Lemma 4. The output matching M has no blocking pair.

Proof. Assume that there exists a blocking pair (sr, pt) for M . Then it is clear
that sr was rejected from pt during the execution (recall that this rejection is
the second one if sr was eventually promoted). Let ℓk be the lecturer who offers
pt. Rejections occur at lines 12, 14, 17, 23, and 25. If this rejection occurred at
line 17, 23, or 25, then pt was already ℓk’s worst non-empty project or worse

than that, and this is also the case in M . We know that ℓk was full at this
rejection point, and remains full in M . Therefore, (sr, pt) cannot block M . If
this rejection occurred at line 12 or 14 as a result of ℓk being full and pt being
ℓk’s worst non-empty project, then the same argument holds. Therefore suppose
that this rejection occurred at line 12 or 14 as a result of pt being full. Since
(sr, pt) blocks M , pt is under-subscribed in M . Then pt changed from being full
to being under-subscribed at some point. This can happen only when ℓk is full
and pt is ℓk’s worst non-empty project. Again, we can use the same argument
to show that (sr, pt) cannot block M , a contradiction. ⊓⊔

The following lemma follows immediately from Lemmas 3 and 4.

Lemma 5. spa-p-approx-promotion returns a stable matching.

3.3 Analysis of the Approximation Ratio

For a given instance I, let M be a matching output from spa-p-approx-

promotion, and let Mopt be a largest stable matching for I.

Lemma 6. |Mopt| ≤
3

2
|M |.

Proof. Based on M and Mopt, we define a bipartite graph GM,Mopt
= (U, V, E)

as follows: Each vertex in U corresponds to a student in I, and each vertex
in V corresponds to a position of a project in I. Precisely speaking, for each
project pj whose capacity is cj , we create cj “positions” of pj, each of which
can accept at most one student, and each vertex in V corresponds to each such
position. We use si to denote the vertex in U corresponding to a student si and
pj,1, pj,2, . . . , pj,cj

to denote the vertices in V corresponding to a project pj.
If a student si is assigned to a project pj in M (Mopt, respectively), we

include an edge (si, pj,t) for some t (1 ≤ t ≤ cj), called an M -edge (Mopt-edge,
respectively), in E. If si is assigned to the same project pj both in M and Mopt,
then M - and Mopt-edges corresponding to this assignment include the same
position of pj , which means we give parallel edges (si, pj,t) for some t. We also
ensure that there are no two vertices pj,t1 and pj,t2 such that pj,t1 is matched in
M but not in Mopt, and pj,t2 is matched in Mopt but not in M . In such a case,
there will be M -edge (si1 , pj,t1) and Mopt-edge (si2 , pj,t2). Then we can remove
(si1 , pj,t1) and add (si1 , pj,t2) instead.

Note that each vertex of GM,Mopt
has degree at most two. Therefore its con-

nected components are alternating paths or alternating cycles. Now we will mod-
ify GM,Mopt

while retaining this property and keeping the numbers of M -edges
and Mopt-edges unchanged. Note that the resulting graph may not correspond
to a feasible solution for I. We use this modification only for the purpose of
comparing the sizes of M and Mopt.

A connected component consisting of only one Mopt-edge is called a Type-
I component. A connected component which is a length-three alternating path
consisting of two Mopt-edges and one M -edge in the middle is called a Type-II
component. We show that there are no Type-I or Type-II components in the

resulting bipartite graph. If this is true, the connected component having the
largest ratio of the number of Mopt-edges to that of M -edges is a length-five
alternating path with three Mopt-edges and two M -edges, which has the ratio of
1.5. This proves the lemma.

Consider a Type-I component (si, pj,t). Let ℓk be the lecturer who offers pj .
Since pj,t is not matched in M , pj is under-subscribed in M . Then ℓk must be
full in M since otherwise (si, pj) blocks M . Therefore, we can find a vertex pa,x

in V which is matched in M but not in Mopt, where pa is offered by ℓk. We can
remove (si, pj,t) and add (si, pa,x) to remove this Type-I component.

Consider a Type-II component si − pa,x − sj − pb,y. Note that pa 6= pb due
to the construction of GM,Mopt

. Since si is unassigned in M , si is promoted.
Then si applied to pa when promoted, but was rejected. Therefore sj must be
promoted by Lemma 1(ii). This means that sj applied to pb at least once, but
was rejected. Let ℓk be the lecturer who offers pb. As mentioned several times
before, this rejection can happen only when (1) pb is full or (2) ℓk is full and pb

is ℓk’s worst non-empty project or worse than that, and either (1) or (2) also
holds for the output matching M . However pb,y is unassigned in M , so only
(2) is possible. Since ℓk is full in M , there must be a vertex pc,z in V which is
matched in M but not in Mopt, where pc is offered by ℓk. We can remove the
edge (sj , pb,y) and add (sj , pc,z) to remove this Type-II component.

Note that in both of these cases, we used the property that ℓk is full in
M . This implies that for each Type-I or Type-II component, we can find a
distinct vertex in V which is matched only in M to perform the above mentioned
replacement. We do this replacement for all Type-I and Type-II components in
GM,Mopt

. This operation does not change any M -edges, so the number of students
assigned to each lecturer or project in M is unchanged. In particular, a lecturer
or a project full in M is still full in the modified graph.

As a result of these operations, we may still have a Type-II component.
This can happen only when we removed a Type-I component, such as (si, pj,t),
using a length-two path, such as pa,x − sr − pb,y, where (sr, pa,x) is an M -edge
and (sr, pb,y) is an Mopt-edge. In this example, we removed (si, pj,t) and added
(si, pa,x). Note that pa and pj must be offered by the same lecturer, such as ℓk,
because of the definition of the operation for Type-I components. Also, by the
construction of GM,Mopt

, pa and pj must be different projects because pj,t is
matched only in Mopt and pa,x is matched only in M .

If pb is also offered by ℓk, then corresponding to the Mopt-edge (sr, pb,y), we
can find a vertex pc,z in V which is matched in M but not in Mopt, where pc is
offered by ℓk, since ℓk is full in M . Then we can remove this Type-II component
by replacing (sr, pb,y) with (sr, pc,z). Otherwise, let ℓk′(6= ℓk) be the lecturer who
offers pb. Suppose that sr prefers pb to pa. Since pb is under-subscribed in M , ℓk′

must be full in M , since otherwise (sr, pb) blocks M . Then we can use the same
argument as before to show the existence of a vertex pc,z which is matched in
M but not in Mopt, where pc is offered by ℓk′ . Suppose that sr prefers pa to pb.
If ℓk prefers pa to pj , then (sr, pa) blocks Mopt, a contradiction (note that pa,x

is not matched and hence pa is under-subscribed in Mopt). If ℓk prefers pj to

pa, then (si, pj) blocks M , a contradiction. We have exhausted all of the cases,
and have shown that all Type-I and Type-II components can be removed. This
completes the proof. ⊓⊔

The following theorem follows immediately from Lemmas 5 and 6.

Theorem 1. spa-p-approx-promotion is a 1.5-approximation algorithm for
MAX-SPA-P.

3.4 Tightness of the Analysis

We give an instance to show that our analysis of the approximation ratio is
tight. There are three students s1, s2, and s3 and one lecturer ℓ1 with d1 = 3
who offers three projects p1, p2, and p3 with c1 = c2 = c3 = 1. The preferences
of the students and the lecturer are as follows:

s1: p1 ℓ1: p3 p2 p1

s2: p1 p2

s3: p2 p3

Note that the matching {(s1, p1), (s2, p2), (s3, p3)} of size three is stable, but
the following execution of spa-p-approx-promotion yields a stable matching
of size two {(s2, p1), (s3, p2)}: (1) s1 applies to p1 and is accepted. (2) s3 applies
to p2 and is accepted. (3) s2 applies to p1 and is rejected. (4) s2 applies to p2

and is rejected. (5) s2 is promoted. (6) s2 applies to p1 and is accepted; s1 is
rejected. (7) s1 is promoted. (8) s1 applies to p1 and is rejected.

4 Inapproximability

The stable marriage problem (SM) [3, 4] is the problem of finding a stable match-
ing, given sets of men and women and each person’s preference list over the mem-
bers of the opposite gender. If ties are allowed in the preference lists and if the
preference lists may be incomplete (i.e., unacceptable persons may be dropped
from the lists), then the problem of finding a maximum stable matching (MAX-
SMTI) is NP-hard even if ties appear on only one side (e.g., the men’s lists must
be totally ordered) [8]. We call this restricted problem MAX-SMTI-1T.

There is a similarity between MAX-SMTI-1T and MAX-SPA-P, so we can
define the following natural reduction from MAX-SMTI-1T to MAX-SPA-P:
Suppose that in the MAX-SMTI-1T instance I, the men’s lists are strict and
the women’s lists may contain ties. Then in the MAX-SPA-P instance I ′, the
students and lecturers correspond to men and women in I, respectively. For each
woman w’s list, we create a project for each tie in the list, where a man not in a
tie is considered as a tie of size one. These projects are offered by the lecturer ℓw

corresponding to the woman w, and the order of projects in ℓw’s list is consistent
with w’s list in I. Each project p is acceptable to the students corresponding
to the men in the tie associated with this project p. The order of projects in

the preference list of a student is naturally generated from corresponding man’s
(strictly ordered) list in I. The capacity of each lecturer and each project is one.

Using the above reduction, we can prove that the sizes of a maximum sta-
ble matching of I and a maximum blocking-pair-free matching of I ′ coincide.
The only problem is that there is a coalition-freeness condition in the stabil-
ity definition of SPA-P. Therefore a reduction from the general instances of
MAX-SMTI-1T to MAX-SPA-P cannot be applied. However, it turns out that
if we use only the instances generated by the reduction in [5], then this prob-
lem can be resolved and the sizes of the optimal solutions for MAX-SMTI-1T
and MAX-SPA-P coincide, so that the approximation lower bound of 21/19 for
MAX-SMTI-1T proved in [5] applies to MAX-SPA-P. For the completeness of
this article, however, we give a direct reduction from the Minimum Vertex Cover
problem (MVC) to MAX-SPA-P.

For a graph G = (V, E), a subset C ⊆ V of vertices is called a vertex cover
for G if for any edge, at least one of its endpoints is in C. MVC is the problem of
finding a vertex cover of minimum size for a given graph. Let OPT (G) be the size
of a minimum vertex cover for G. We can now use the well-known Proposition 1.

Proposition 1. [2] For any ǫ > 0 and p < 3−
√

5

2
, if there is a polynomial-time

algorithm that, given a graph G = (V, E), distinguishes between these two cases,
then P=NP.

(1) OPT (G) ≤ (1 − p + ǫ)|V |.
(2) OPT (G) > (1 − max{p2, 4p3 − 3p4} − ǫ)|V |.

For an instance I of MAX-SPA-P, let OPT (I) be the size of a maximum
stable matching for I. Then we can prove Theorem 2.

Theorem 2. For any ǫ > 0 and p < 3−
√

5

2
, if there is a polynomial-time algo-

rithm that, given a MAX-SPA-P instance I of N students, distinguishes between
these two cases, then P=NP.

(1) OPT (I) ≥ 2+p−ǫ

3
N .

(2) OPT (I) < 2+max{p2,4p3−3p4}+ǫ

3
N .

Proof. Given a graph G = (V, E), we will construct, in polynomial time, an
instance IG of MAX-SPA-P with N students. Our reduction satisfies conditions
(i) N = 3|V | and (ii) OPT (IG) = 3|V | − OPT (G). Then it is not hard to see
that Proposition 1 implies Theorem 2.

Now we show the reduction. For each vertex vi of G, we construct three
students ai, bi, and ci and three lecturers xi, yi, and zi. Suppose that vi is
adjacent to k vertices vi1 , vi2 , · · · , vik

(i1 < i2 < · · · < ik). Then we construct
k + 4 projects Xi, Yi, Zi,−, Zi,i1 , · · ·, Zi,ik

and Zi,+, where Xi is offered by xi,
Yi by yi, and Zi,−, Zi,i1 , · · ·, Zi,ik

, Zi,+ by zi. The capacity of each project and
each lecturer is one.

Next, we define the acceptability of projects to students. The project Xi is
acceptable to only one student ai. The project Yi is acceptable to two students

ai and bi. Zi,− is acceptable to only bi, and Zi,+ is acceptable to only ci. For
each j = 1, 2, . . . , k, the project Zi,ij

is acceptable to only one student aij
(cor-

responding to the adjacent vertex vij
). Finally, we define preference lists of the

students and lecturers corresponding to vi as:

ai: Yi Zi1,i Zi2,i · · · Zik,i Xi xi: Xi

bi: Yi Zi,− yi: Yi

ci: Zi,+ zi: Zi,− Zi,i1 · · · Zi,ik Zi,+

Obviously, this reduction can be performed in polynomial time. Since the
capacities of all of the projects and lecturers are one, for a project or a lecturer
r assigned in M , we may use M(r) to denote the unique student assigned to
r. Clearly condition (i) holds. In the rest of the proof, we show that condition
(ii) holds. To see this, we show that (A) if there is a vertex cover C of G, then
there is a stable matching M of IG such that |M | = 3|V | − |C|, and (B) if there
is a stable matching M of IG, then there is a vertex cover C of G such that
|C| = 3|V | − |M |. The statement (A) implies OPT (IG) ≥ 3|V | − OPT (G) and
(B) implies OPT (G) ≤ 3|V | − OPT (IG), which together implies condition (ii).

We show (A) first. Given a vertex cover C for G, we construct a stable
matching M for IG as follows: For each vertex vi, if vi ∈ C, let M(ai) = Yi,
M(bi) = Zi,−, and leave ci unassigned. If vi 6∈ C, let M(ai) = Xi, M(bi) = Yi,
and M(ci) = Zi,+. Since the capacity of each lecturer is one, we can regard
M as a matching between students and lecturers. Fig. 1 shows a part of M
corresponding to vi. By an easy calculation, we can see that |M | = 2|C| +
3(|V | − |C|) = 3|V | − |C| as required.

s

s

s

s

s

s

Q
Q
Q

Q
Q
Q

ai

bi

ci

xi

yi

zi

vi ∈ C

s

s

s

s

s

s

ai

bi

ci

xi

yi

zi

vi 6∈ C

Fig. 1. A part of matching M

We will show that M is stable. We first show that there is no blocking pair.
For vi ∈ C, ai is assigned to the top project, so that ai cannot be part of a
blocking pair. The student bi is assigned to the second project, but the first
project Yi and the lecturer yi who offers Yi are both full and hence bi cannot
form a blocking pair. Student ci is unassigned but the lecturer zi, who offers
ci’s only acceptable project Zi,+, is full and prefers ci’s assigned project Zi,−
to Zi,+, so that ci cannot be part of a blocking pair. For vi 6∈ C, bi and ci are
assigned to the top projects respectively. The only possibility is that ai forms a

blocking pair with some project among Yi, Zi1,i, Zi2,i, · · ·, Zik,i, but it is easy
to see that Yi is excluded. Therefore, suppose that ai forms a blocking pair with
Zij ,i for some j. Then by construction there is an edge between vi and vij

, and
the lecturer zij

is assigned the student cij
for the project Zij ,+ (since in the other

case, zij
receives a student for the most preferred project and hence (ai, Zij ,i)

cannot be a blocking pair). This means that vij
6∈ C by the construction of M .

Then this contradicts the assumption that C is a vertex cover for G. We then
show that M admits no coalition. Note that in M , each student corresponding
to the vertex vi of G is assigned to a project corresponding to vi. This implies
that any coalition must consist of students and projects corresponding to the
same vertex. However we can easily verify that there is no coalition in either the
case of vi ∈ C or vi 6∈ C, which completes the stability proof.

Next we show (B). Let M be a stable matching for IG. First, if the project Yi

is unassigned, then both (ai, Yi) and (bi, Yi) block M , which is a contradiction.
Therefore either M(Yi) = ai or M(Yi) = bi.

First, suppose that M(Yi) = ai. Then M(bi) = Zi,− since otherwise, (bi, Zi,−)
blocks M . Then ci is unassigned and xi and Xi are empty in M . In this case,
we say that vi causes Pattern 1. A diagrammatic representation of Pattern 1 is
given in Fig. 2.

s

s

s

s

s

s

Q
Q
Q

Q
Q
Q

ai

bi

ci

xi

yi

zi

Pattern 1

s

s

s

s

s

s

ai

bi

ci

xi

yi

zi

Pattern 2

s

s

s

s

s

s

�
�
�

ai

bi

ci

xi

yi

zi

Pattern 3

s

s

s

s

s

s

�
�
�

ai

bi

ci

xi

yi

zi

Pattern 4

s

s

s

s

s

s

�
�
�

�
�
�

ai

bi

ci

xi

yi

zi

Pattern 5

Fig. 2. Five patterns caused by vi

Next, suppose that M(Yi) = bi. Then ai is assigned in M , since other-
wise (ai, Xi) blocks M . Since Yi is already taken by bi, there remain two cases:
(a) M(ai) = Xi and (b) M(ai) = Zij ,i for some j. Similarly, if zi is empty in M ,
then (ci, Zi,+) blocks M . This means either (c) M(zi) = ci or (d) M(zi) = aij

for some j. Hence, we have a total of four cases. These cases are referred to as
Patterns 2 through 5 (see Fig. 2). For example, a combination of cases (b) and
(c) corresponds to Pattern 4. Lemma 7, whose proof is omitted by the space
restriction, excludes the possibility of Patterns 3 or 4.

Lemma 7. Each vertex causes Pattern 1, 2 or 5.

By Lemma 7, each vertex vi will lead to Pattern 1, 2, or 5. We construct the
subset C of vertices in this way: If vi causes Pattern 1 or 5, then let vi ∈ C,
otherwise, let vi 6∈ C.

We show that C is a vertex cover for G. Assume that C is not a vertex cover
for G. Then there are two vertices vi and vj in V \ C such that (vi, vj) ∈ E

and both of them cause Pattern 2. Then both (ai, Zj,i) and (aj , Zi,j) block M ,
contradicting the stability of M . Hence, C is a vertex cover for G. It is obvious
that |M | = 2|C| + 3(|V | − |C|) = 3|V | − |C|. Hence, statement (B) holds. This
completes the proof of Theorem 2. ⊓⊔

By letting p = 1

3
in Theorem 2, we have Corollary 1.

Corollary 1. Assume that P6=NP. Then for any constant δ > 0, there is no
polynomial-time (21/19− δ)-approximation algorithm for MAX-SPA-P.

Remark. Using the same argument as Remark 3.6 of [5], we can claim that
MAX-SPA-P is hard to approximate within 1.25− δ if MVC is hard to approx-
imate within 2 − ǫ (where δ and ǫ are arbitrary positive constants).

5 Conclusions

In this paper, we improved the upper and lower bounds on the approximation
ratio for MAX-SPA-P. One research direction is to further improve the upper
bound. For example, a recent approximation algorithm for MAX-SMTI-1T [6]
generalizes Király’s idea [7] using Linear Programming approach. Its approxi-
mation ratio of 25/17(≃ 1.4706) is slightly better than 1.5. One possible next
step is to verify whether this idea can be applied to spa-p-approx-promotion.

Acknowledgments. The authors would like to thank anonymous reviewers for
their valuable comments. This work was supported by KAKENHI 22240001 and
20700009.

References

1. D. J. Abraham, R. W. Irving and D. F. Manlove, “Two algorithms for the Student-
Project Allocation problem,” J. Discrete Algorithms, Vol. 5, No. 1, pp. 73–90, 2007.

2. I. Dinur and S. Safra, “On the hardness of approximating minimum vertex-cover,”
Annals of Mathematics, Vol. 162(1), pp. 439–485, 2005.

3. D. Gale and L. S. Shapley, “College admissions and the stability of marriage,”
Amer. Math. Monthly, Vol. 69, pp. 9–15, 1962.

4. D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algo-

rithms, MIT Press, Boston, MA, 1989.
5. M. M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa, “Improved approxi-

mation results for the stable marriage problem,” ACM Transactions on Algorithms,
Vol. 3(3), Article No. 30, 2007.

6. K. Iwama, S. Miyazaki, and H. Yanagisawa, “A 25/17-approximation algorithm for
the stable marriage problem with one-sided ties,” Proc. ESA 2010, LNCS 6347,
pp. 135–146, 2010.

7. Z. Király, “Better and simpler approximation algorithms for the stable marriage
problem,” Algorithmica, DOI 10.1007/s00453-009-9371-7, 2009.

8. D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. “Hard variants
of stable marriage,” Theoretical Computer Science, Vol. 276(1–2), pp. 261–279,
2002.

9. D. F. Manlove, and G. O’Malley, “Student-project allocation with preferences over
projects,” Journal of Discrete Algorithms, Vol. 6, pp. 553–560, 2008.

