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1. INTRODUCTION

An instance I of the stable marriage problem consists of n men, n women, and
each person’s preference list. A preference list is a totally ordered list including all
members of the opposite sex depending on his or her preferences. For a matching M
between men and women, a pair of a man m and a woman w is called a blocking pair
if both prefer each other to their current partners. A matching with no blocking
pair is called stable. Gale and Shapley showed that every instance admits at least
one stable matching, and proposed a linear time algorithm to find one, which is
known as the Gale-Shapley algorithm [Gale and Shapley 1962]. However, in general,
there are many different stable matchings for a single instance, and the Gale-Shapley
algorithm finds only one of them (man-optimal or woman-optimal) with an extreme
property: In the man-optimal stable matching, each man is matched with his best
possible partner, while each woman gets her worst possible partner, among all stable
matchings. Hence, it is natural to try to obtain a matching which is not only stable
but also “good” in some criterion.

There are three major optimization criteria for the quality of stable matchings.
Let pm(w) (pw(m), respectively) denote the position of woman w in man m’s pref-
erence list (the position of man m in woman w’s preference list, respectively). For
a stable matching M , define the regret cost r(M) to be

r(M) = max
(m,w)∈M

max{pm(w), pw(m)}.

Also, define the egalitarian cost c(M) to be

c(M) =
∑

(m,w)∈M

pm(w) +
∑

(m,w)∈M

pw(m),

and the sex-equality cost d(M) to be

d(M) =
∑

(m,w)∈M

pm(w) −
∑

(m,w)∈M

pw(m).

The minimum regret stable marriage problem (the minimum egalitarian stable mar-
riage problem and the sex-equal stable marriage problem, respectively) is to find a
stable matching M with minimum r(M) (c(M) and |d(M)|, respectively) [Gusfield
and Irving 1989]. Note that the number of stable matchings for one instance grows
exponentially in general (see [Irving and Leather 1986], e.g.). Nevertheless, for the
first two problems, Gusfield [Gusfield 1987] and Irving, Leather and Gusfield [Irving
et al. 1987] proposed O(n2) and O(n4) time algorithms, respectively, by exploiting
a lattice structure which is of polynomial size but contains the information for all
of the stable matchings. Later, Feder [Feder 1992; 1994] improved the complexity
of the algorithm for the minimum egalitarian stable marriage problem to O(n3).

In contrast, it is hard to obtain a sex-equal stable matching. The question of
its complexity was posed by Gusfield and Irving [Gusfield and Irving 1989], and
was later proved to be strongly NP-hard by Kato [Kato 1993]. Thus, the next step
should be its approximability for which we have no knowledge so far.

Our Contributions. Algorithm A is said to be a c-approximation algorithm if
A(I)/OPT (I) ≤ c holds for any input I, where A(I) and OPT (I) are the costs
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of A’s solution and an optimal solution, respectively. However, since the optimal
cost of the sex-equal stable marriage problem can be zero, this measure cannot be
used here. Instead, we consider finding near optimal solutions. Let M0 and Mz

be the man-optimal and the woman-optimal stable matchings, respectively. For a
matching M and a person p, denote M(p) the partner of p in M . Note that for
every man m, pm(M(m)) is minimum when M = M0 (under the condition that M
is stable), and is maximum when M = Mz. On the other hand, for every woman
w, pw(M(w)) is maximum when M = M0, and is minimum when M = Mz. Thus
d(M0) ≤ d(M) ≤ d(Mz) for any stable matching M (see Fig. 1). Our goal is to
obtain a stable matching M such that −ǫ∆ ≤ d(M) ≤ ǫ∆ for a given constant ǫ,
where ∆ = min{|d(M0)|, |d(Mz)|}. We define the following problem called Near
SexEqual (NSE). Given a stable marriage instance I and a positive constant ǫ, it
seeks a stable matching M such that |d(M)| ≤ ǫ∆ if such M exists, or answers
“None” otherwise. We give a polynomial time algorithm for NSE, which runs in
time O(n3+ 1

ǫ ).

- d(M)r

d(Mz)

r

ǫ∆

r

0

r

−ǫ∆

r

d(M0)

Fig. 1. The sex-equality costs of stable matchings

NSE seeks an arbitrary stable matching whose sex-equality cost lies within some
range. However, we may want to find a good one if there are several solutions in
the range. In fact, there is an instance I that has two stable matchings M and M ′

such that d(M) = d(M ′) = 0 but c(M) ≪ c(M ′) (see Sec. 4). This motivates us to
consider the following corresponding optimization problem Minimum Egalitarian
Sex-Equal stable marriage problem (MinESE): Given a stable marriage instance I
and a positive constant ǫ, find a stable matching M that minimizes c(M) under the
condition that |d(M)| ≤ ǫ∆, (or the answer “None” if none exists). We show that
MinESE is strongly NP-hard, and give a polynomial time (2 − (ǫ − δ)/(2 + 3ǫ))-
approximation algorithm for an arbitrary δ such that 0 < δ < ǫ, whose running

time is O(n3+2( 1+ǫ
δ

)).
Although the details are omitted, our results in this paper can be easily extended

to the weighted versions of these problems, in which pm(w) (pw(m), respectively)
represents not simply the rank of w in m’s preference list, but an arbitrary score of
m for w (of w for m), where pm(w) > 0 (pw(m) > 0) and pm(w) < pm(w′) if and
only if m prefers w to w′ (pw(m) < pw(m′) if and only if w prefers m to m′) for all
m and w.

Related Results. As mentioned above, the minimum regret stable marriage
problem and the minimum egalitarian stable marriage problem can be solved in
polynomial time [Gusfield 1987; Irving et al. 1987; Gusfield and Irving 1989], but
the sex-equal stable marriage problem is strongly NP-hard [Kato 1993]. Romero-
Medina [Romero-Medina 2001] provides an (exponential-time) algorithm for finding
an optimal solution for the sex-equal stable marriage problem. If we allow ties in
preference lists, all these problems become hard, even to approximate, if we seek an
optimal weakly stable matching: For each problem, there exists a positive constant δ

ACM Transactions on Algorithms, Vol. V, No. N, February 2009.



4 · K. Iwama, S. Miyazaki, and H. Yanagisawa

such that there is no polynomial-time approximation algorithm with approximation
ratio δn unless P=NP [Halldórsson et al. 2003].

2. ROTATION POSET

In this section, we explain a rotation poset (partially-ordered set), originally defined
in [Irving and Leather 1986], which is an underlying structure of stable matchings.
Here, we give only a brief sketch necessary for understanding the algorithms given
later. Readers can refer to [Gusfield and Irving 1989] for further details.

We fix an instance I. Let M be a stable matching for I. For each such M , we
can associate a reduced list, which is obtained from the original preference lists by
removing entries. One property of the reduced list associated with M is that, in
M , each man is matched with the first woman in the reduced list, and each woman
is matched with the last man. A rotation exposed in M is an ordered list of pairs
ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1) such that, for every i (0 ≤ i ≤ r − 1), mi

and wi are matched in M , and wi+1 is at the second position in mi’s reduced list,
where i + 1 is taken modulo r. There exists at least one rotation for any stable
matching except for the woman-optimal stable matching Mz.

For a stable matching M and a rotation ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1)
exposed in M , eliminating ρ from M means to move mi’s partner from wi down to
wi+1 for each i (0 ≤ i ≤ r − 1), (and to update a reduced list accordingly). Note
that by eliminating a rotation, men become worse off while women become better
off. The resulting matching is denoted by M/ρ. It is well known that M/ρ is also
stable for I. If a rotation σ is exposed in M/ρ, then we can similarly obtain another
stable matching by eliminating σ.

Now, let M be the set of all stable matchings for I, and Π be the set of rotations
ρ such that ρ is exposed in some stable matching in M. Then, it is known that
|Π| ≤ n2. The rotation poset (Π,≺), which is uniquely determined for instance I,
is the set Π with a partial order ≺ defined for elements in Π. For two rotations ρ1

and ρ2 in Π, ρ1 ≺ ρ2 intuitively means that ρ1 must be eliminated before ρ2, or ρ2

is never exposed until ρ1 is eliminated. It is known that a compact representation
of the rotation poset can be constructed in O(n2) time.

A closed subset R of the rotation poset (Π,≺) is a subset of Π such that if ρ ∈ R
and ρ′ ≺ ρ then ρ′ ∈ R. There is a one-to-one correspondence between M and the
set of closed subsets of (Π,≺): Let R be a closed subset. Starting from the man-
optimal stable matching M0, if we eliminate all rotations in R successively in any
order following ≺, then we can obtain a stable matching. Conversely, any stable
matching can be obtained by this procedure for some closed subset. We denote
the stable matching corresponding to a closed subset R by MR. For simplicity,
we sometimes write c(R) and d(R) instead of c(MR) and d(MR), respectively. In
particular, the empty subset corresponds to the man-optimal stable matching M0,
and the set Π itself corresponds to the woman-optimal stable matching Mz. From
M0, if we eliminate all rotations according to the order ≺, then we eventually reach
Mz.

For a rotation ρ = (m0, w0), (m1, w1), . . . , (mr−1, wr−1), we define wc(ρ) and
wd(ρ), which represent the cost changes with respect to the egalitarian and sex-
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equality measures, respectively, by eliminating ρ:

wc(ρ) =

r−1
∑

i=0

(pmi
(wi+1) − pmi

(wi)) +

r−1
∑

i=0

(pwi
(mi−1) − pwi

(mi)),

wd(ρ) =

r−1
∑

i=0

(pmi
(wi+1) − pmi

(wi)) −
r−1
∑

i=0

(pwi
(mi−1) − pwi

(mi)).

Here, note that wd(ρ) > 0 for all ρ since by eliminating a rotation, some men
become worse off, some women become better off, and other people remain matched
with the same partners. Now, let ρ be a rotation exposed in a stable matching
M . Then, it is obvious from the definition that c(M/ρ) = c(M) + wc(ρ) and
d(M/ρ) = d(M) + wd(ρ). Also, it is easy to see that for any closed subset R,

c(MR) = c(M0) +
∑

ρ∈R

wc(ρ) and d(MR) = d(M0) +
∑

ρ∈R

wd(ρ).

Hence, the minimum egalitarian stable marriage problem (the sex-equal stable mar-
riage problem, respectively) is equivalent to the problem of finding a closed subset
R such that c(M0)+

∑

ρ∈R wc(ρ) (|d(M0)+
∑

ρ∈R wd(ρ)|, respectively) is minimum.
For example, the algorithm for finding a minimum egalitarian stable matching in
[Irving et al. 1987] efficiently finds such R by exploiting network flow.

3. THE SEX-EQUAL STABLE MARRIAGE PROBLEM

Recall that M0 is the man-optimal stable matching and Mz is the woman-optimal
stable matching. Note that any stable matching M satisfies d(M0) ≤ d(M) ≤
d(Mz). Thus, the sex-equal stable marriage problem is trivial if d(M0) ≥ 0 or
d(Mz) ≤ 0, namely, if d(M0) ≥ 0, M0 is optimal, while if d(Mz) ≤ 0, Mz is
optimal. Therefore, we consider the case where d(M0) < 0 < d(Mz). Recall that
∆ = min{|d(M0)|, |d(Mz)|}. In the following, we assume without loss of generality
that |d(M0)| ≤ |d(Mz)|, since otherwise we can exchange the roles of men and
women. Hence, ∆ = min{|d(M0)|, |d(Mz)|} = |d(M0)|.

We first briefly give the underlying idea of our algorithm presented in this section.
Recall that, for a given instance I and ǫ, we are to find a stable matching M such
that −ǫ∆ ≤ d(M) ≤ ǫ∆ if any. As an easy case, assume that all rotations ρ of I
satisfy wd(ρ) ≤ 2ǫ∆. Now, we construct the rotation poset (Π,≺) of I, and starting
from M0, we eliminate rotations in an order of any linear extension of ≺. Recall
that by eliminating a rotation, the sex-equality cost increases, but by at most 2ǫ∆
by assumption. Note that d(M0) < 0 < d(Mz), and recall that if we eliminate all
rotations from M0, we eventually reach Mz. Then, in this sequence, we certainly
meet a desirable stable matching at some point.

However, this procedure fails if there is a rotation with large sex-equality cost:
If we eliminate such a rotation, then we may “jump” from M to M ′ such that
d(M) < −ǫ∆ and d(M ′) > ǫ∆ even if there is a feasible solution. To resolve this
problem, we will try all combinations of selecting such “large” rotations, and treat
“small” rotations in the above manner. To evaluate the time complexity, we show
that the number of large rotations used in a feasible solution is limited.
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Before giving a description of our algorithm, we define our notation. Let R be
any (not necessarily closed) subset of a poset (Π,≺). Then define Rmin = R ∪
{ρ | there exists a ρ′ ∈ R such that ρ ≺ ρ′} and Rmax = R∪{ρ | there exists a ρ′ ∈
R such that ρ′ ≺ ρ}. See Fig. 2 for examples. Fig. 2 (a) represents a Hasse diagram
of a poset, where the black circles are elements of R. Rmin and Rmax are depicted
in Fig. 2 (b) and Fig. 2 (c), respectively. Intuitively speaking, when constructing
a closed subset A, if we decide to include all elements of R to A, then Rmin is the
set of elements that must be included in A. Similarly, if we decide to include no
elements of R, then Rmax is the set of elements that must not be included in A.

(a) (b) (c)

R min

Rmax

Fig. 2. Examples of Rmin and Rmax.

Algorithm 1
1. Construct the rotation poset (Π,≺).
2. Let RL be the set of rotations ρ such that wd(ρ) > 2ǫ∆, and RS be Π \ RL.

3. For each set R in 2RL

such that |R| ≤ 1+ǫ
2ǫ , do,

(a) If −ǫ∆ ≤ d(Rmin) ≤ ǫ∆, then output MRmin
.

(b) Fix an arbitrary order ρ1, ρ2, · · · , ρk which is consistent with ≺, where
{ρ1, ρ2, · · · , ρk} = RS \ (Rmin ∪ (RL \ R)max).
(Note that RS \ (Rmin ∪ (RL \ R)max) could be empty.)

(c) For i = 1 to k
if −ǫ∆ ≤ d(Rmin∪{ρ1, ρ2, · · · , ρi}) ≤ ǫ∆, then output MRmin∪{ρ1,ρ2,···,ρi}

and halt.
4. Output “None” and halt.

Theorem 3.1. There is an algorithm for NSE whose running time is O(n3+ 1
ǫ ).

Proof. Correctness Proof. Clearly, if there is no stable matching M such
that −ǫ∆ ≤ d(M) ≤ ǫ∆, then the algorithm answers “None.” Otherwise, suppose
that there is a stable matching MX such that −ǫ∆ ≤ d(MX) ≤ ǫ∆, where X is the
set of rotations corresponding to MX . Let XL = X ∩RL and XS = X ∩RS . Then,
d(XL) ≤ d(X) = d(MX) ≤ ǫ∆. Note that d(XL) = d(M0) +

∑

ρ∈XL wd(ρ). Also,

wd(ρ) > 2ǫ∆ for any rotation ρ ∈ XL. It then follows that |XL| < d(XL)−d(M0)
2ǫ∆ ≤
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|d(M0)|+ǫ∆
2ǫ∆ = 1+ǫ

2ǫ . Therefore, Algorithm 1 selects XL at Step 3 as R, and we
consider this particular execution of Step 3.

First, note that d((XL)min) ≤ ǫ∆, since otherwise d(X) ≥ d((XL)min) > ǫ∆, a
contradiction. If −ǫ∆ ≤ d((XL)min) ≤ ǫ∆, then Algorithm 1 outputs M(XL)min

at

Step 3(a). Therefore, suppose that d((XL)min) < −ǫ∆. Note that XL ⊆ (XL)min

by definition, and XS ⊆ (XL)min ∪ {ρ1, ρ2, · · · , ρk}. Since X = XL ∪ XS , X ⊆
(XL)min∪{ρ1, ρ2, · · · , ρk}. Therefore, d((XL)min∪{ρ1, ρ2, · · · , ρk}) ≥ d(X) ≥ −ǫ∆.
Note also that any rotation ρi (1 ≤ i ≤ k) satisfies wd(ρi) ≤ 2ǫ∆. Hence there must
be j (1 ≤ j ≤ k) such that −ǫ∆ ≤ d((XL)min ∪ {ρ1, ρ2, · · · , ρj}) ≤ ǫ∆.

Finally, we show that Rmin ∪ {ρ1, ρ2, · · · , ρi} at Step 3(c) is closed. For this,
it suffices to show that Rmin ∪ {ρ1, ρ2, · · · , ρk} is closed. Suppose that it is not
closed. Then, since Rmin is closed by definition, there are rotations ρ 6∈ Rmin ∪
{ρ1, ρ2, · · · , ρk} and ρj (1 ≤ j ≤ k) such that ρ ≺ ρj . The fact that ρ 6∈ Rmin ∪
{ρ1, ρ2, · · · , ρk} implies that ρ ∈ (RL \ R)max, but then ρj ∈ (RL \ R)max by the
definition of (RL \ R)max. This contradicts the fact that ρj ∈ RS \ (Rmin ∪ (RL \
R)max).

Time Complexity. Steps 1 and 2 can be performed in O(n2). Inside the loop of
Step 3 can be performed in O(n2) since the number of rotations is at most O(n2).
Clearly, Step 4 can be performed in constant time.

We consider the number of repetitions of Step 3, i.e., the number of R satisfying
the condition at Step 3. Let this number be t. Recall that the number of rotations
is at most n2 as mentioned in Sec. 2. Therefore, |RL| ≤ n2. Since |R| ≤ 1+ǫ

2ǫ ,

t =

⌊ 1+ǫ
2ǫ

⌋
∑

k=1

(

n2

k

)

≤

⌊ 1+ǫ
2ǫ

⌋
∑

k=1

(n2)⌊
1+ǫ
2ǫ

⌋

k!
= O(n

1+ǫ
ǫ ).

Hence the time complexity of Algorithm 1 is O(n2) · O(n
1+ǫ

ǫ ) = O(n3+ 1
ǫ ).

Remark 1. The Partially Ordered Knapsack problem (POK) [Johnson and Niemi
1983; Kolliopoulos and Steiner 2007] is the Knapsack problem with the following
additional constraints. There is a precedence relation between items, and items
must be selected according to this relation. Once the rotation poset is constructed,
the sex-equal stable marriage problem is essentially the same as a special case of
POK, denoted UPOK, where every item has the same profit and weight. Very
recently, Bonsma [Bonsma 2007], independently of us, proposed a PTAS for a
special case of UPOK using the same idea as Algorithm 1.

Remark 2. We can improve Algorithm 1 when |d(M0)| and |d(Mz)| are close, more
precisely, when they differ by at most a log n factor. Let ∆′ be 1

log n max{|d(M0)|, |d(Mz)|}.

We can find a stable matching M which satisfies −ǫ∆′ ≤ d(M) ≤ ǫ∆′ or report
that none exists in polynomial time by using a modified version of Algorithm 1 (Al-
gorithm 1′). We modify Algorithm 1 so that it uses ∆′ instead of ∆ and executes

Step 3 for all subsets of 2RL

. Note that, from the discussion in Sec. 2,

d(Mz) = d(M0) +
∑

ρ∈Π

wd(ρ).

Hence |RL| < d(Mz)−d(M0)
2ǫ∆′

≤ 2 max{|d(M0)|,|d(Mz)|}
2ǫ∆′

= log n
ǫ . Therefore the number
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of repetitions of Step 3 is at most 2|R
L| = n1/ǫ and hence the time complexity of

Algorithm 1’ is O(n2+ 1
ǫ ).

Remark 3. There are several goodness measures of an approximation algorithm
A for a minimization problem. The usual measure is the approximation ratio of A,
which is defined as max{A(x)/opt(x)} over all instances x, where opt(x) and A(x)
are the costs of the optimal and the algorithm’s solutions, respectively. However,
this measure cannot be used for the sex-equal stable marriage problem, because
opt(x) can be zero. For such a case, there is another measure: the relative accuracy
[Charikar and Wirth 2004; Nesterov 1998], which is defined as max{(max(x) −
opt(x))/(max(x)−A(x))} over all instances x, where opt(x), max(x), and A(x) are
the costs of the optimal solution, the worst solution, and the algorithm’s solution,
respectively. By using Algorithm 1′ in Remark 2, we can construct an algorithm T
which achieves the relative accuracy 1 + ǫ/ logn for an arbitrary constant ǫ > 0.

To see this, let Mopt be an optimal solution for the sex-equal stable marriage
problem. Recall that we are considering the case where d(M0) < 0 < d(Mz).
If |d(Mopt)| > D/2, where D = max{|d(M0)|, |d(Mz)|}, Mopt can be obtained in
polynomial time in the following way: Let Ma be the stable matching such that no
other stable matching M satisfies d(Ma) < d(M) < −D/2 and let Mb be the stable
matching such that no other stable matching M satisfies D/2 < d(M) < d(Mb).
Then, Mopt is either Ma or Mb. Since d(Mb) − d(Ma) > D, there exists a rotation
ρH such that wd(ρH) > D (otherwise there must be a stable matching Mc such
that d(Ma) < d(Mc) < d(Mb)). Also, this ρH is unique because

∑

ρ∈Π

wd(ρ) = d(Mz) − d(M0) ≤ 2D.

It is easy to see that the maximal closed subset which does not contain ρH corre-
sponds to Ma and that the minimal closed subset which contains ρH corresponds
to Mb. Therefore, Ma and Mb can be obtained in polynomial time. Finally, assume

that |d(Mopt)| ≤ D/2. For each i such that i = 1, 2, . . . ,
⌈

log n
ǫ

⌉

, we can find a stable

matching with sex-equality cost between − ǫ
2 log nDi and ǫ

2 log nDi if any by using

Algorithm 1′ (by adjusting ∆′ appropriately), and output the best one. Then, it
is easy to see that an output matching M satisfies |d(M)| − |d(Mopt)| ≤

ǫ
2 log nD.

Now, the relative accuracy is

max(x) − opt(x)

max(x) − T (x)
= 1 +

T (x) − opt(x)

max(x) − T (x)
≤ 1 +

(ǫ/2 logn)D

D/2
= 1 +

ǫ

log n
.

4. THE MINIMUM EGALITARIAN SEX-EQUAL STABLE MARRIAGE PROBLEM

In NSE, we are asked to find a stable matching whose sex-equality cost is in some
range close to 0. However, if there are several stable matchings satisfying the
condition, there might be good ones and bad ones. In fact, there is an instance I
that has two stable matchings M and M ′ whose sex-equality costs are the same
(0), but whose egalitarian costs are significantly different. Instance I is constructed
with the following steps. First consider the following instance I1 consisting of 2n
men and 2n women:

ACM Transactions on Algorithms, Vol. V, No. N, February 2009.
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m1: w1 wn+1 wn+2 · · · w2n w2 w1: mn m1

m2: w2 wn+1 wn+2 · · · w2n w3 w2: m1 m2

...
...

...
...

mn−1: wn−1 wn+1 wn+2 · · · w2n wn wn−1: mn−2 mn−1

mn: wn wn+1 wn+2 · · · w2n w1 wn: mn−1 mn

mn+1: wn+1 wn+1: mn+1 m1 · · · mn

mn+2: wn+2 wn+2: mn+2 m1 · · · mn

...
...

...
...

m2n−1: w2n−1 w2n−1: m2n−1 m1 · · · mn

m2n: w2n w2n: m2n m1 · · · mn

If a preference list is not complete, then add any missing persons at the tail
of the list in an arbitrary order. Instance I1 has two stable matchings: M1 =
{(m1, w1), (m2, w2), . . . , (mn−1, wn−1), (mn, wn), (mn+1, wn+1), (mn+2, wn+2), . . . ,
(m2n−1, w2n−1), (m2n, w2n)} and M2 = {(m1, w2), (m2, w3), . . . , (mn−1, wn), (mn, w1),
(mn+1, wn+1), (mn+2, wn+2), . . . , (m2n−1, w2n−1), (m2n, w2n)}. Note that c(M1) =
5n, d(M1) = −n, c(M2) = n2 + 5n, and d(M2) = n2 + n. Let I2 be the instance
obtained from I1 by exchanging men and women.

Let I be the instance obtained by putting I1 and I2 together and padding the
missing persons at the tail of the preference lists to make them complete. In more
detail, the set of men of I is the union of the sets of men in I1 and I2, and the set of
women of I is similarly defined. The preference list of a man m in I who came from
I1 is constructed by adding the women in I2 in an arbitrary order to the tail of the
list of m in I1. The preference lists of the other people are constructed similarly.
Then, I has four stable matchings M3, M4, M5, and M6, whose egalitarian costs
and sex-equality costs are given in Table I. We see that d(M3) = d(M6) = 0, while
c(M3) is small but c(M6) is large.

M3 M4 M5 M6

c(M) 10n n2 + 10n n2 + 10n 2n2 + 10n

d(M) 0 −n2 − 2n n2 + 2n 0

Table I. The egalitarian costs and the sex-equality costs

This motivates us to consider the following problem, MinESE (the Minimum
Egalitarian Sex-Equal stable marriage problem): Given an instance I and a constant
ǫ such that 0 < ǫ < 1, find a stable matching M with minimum c(M), under the
condition that |d(M)| ≤ ǫ∆, (or answer “None” if no such solution exists). First,
in Sec. 4.1, we show that MinESE is strongly NP-hard. Then, in Sec. 4.2, we give
an approximation algorithm for MinESE.

4.1 Strongly NP-hardness of MinESE

It turned out that there is a polynomial-time algorithm for obtaining a stable match-
ing M such that (a) −ǫ∆ ≤ d(M) ≤ ǫ∆ or (b) c(M) is minimum. Interestingly, it
is hard to obtain M satisfying (a) and (b).

Theorem 4.1. MinESE is strongly NP-hard.
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Proof. We will prove the theorem by a reduction from the clique problem. First,
we give the definition of the clique problem.

The clique problem
Input: A graph G(V, E) and a positive integer k.
Output: “Yes,” if G(V, E) has a clique of size k.

“No,” otherwise.

This problem is NP-complete even if we restrict the problem so that G is d-regular
with d > 2k2. This can be seen, for example, in the following way: Given G =
(V, E), define d as the smallest even number that satisfies d ≥ max{∆(G), 2k2 +1},
where ∆(G) is the maximum degree of G. Let V = {v1, v2, . . . , vn}, and for each
vi, let d(vi) be its degree in G. For each vi, define d̃(vi) = d − d(vi), and let
d̃(G) =

∑

i d̃(vi) = dn −
∑

i d(vi). Note that d̃(G) is even since both dn and
∑

i d(vi) are even. Let s = ⌈ d̃(G)
2d ⌉, and for 1 ≤ i ≤ s, construct a complete bipartite

graph Gi = (Ai, Bi, Ei) where Ai = {ai
1, a

i
2, . . . , a

i
d} and Bi = {bi

1, b
i
2, . . . , b

i
d} are

vertex sets (|Ai| = |Bi| = d). Note that each Gi is d-regular. Next, for each Gi

(1 ≤ i ≤ s − 1), remove the edges (ai
j , b

i
j) for 1 ≤ j ≤ d, and for Gs, remove the

edges (as
j , b

s
j) for 1 ≤ j ≤ d̃(G)−2d(s−1)

2 . Now there are d̃(G) vertices of degree d− 1

in G1, G2, . . . , Gs. Connect these d̃(G) vertices with vertices in the original graph
G in an arbitrary way so that all of the vertices have degree d. It is easy to see that
this procedure can be done in polynomial time and does not affect the existence of
the k-clique.

In the following, we assume that the given graph has the above property, i.e., d-
regular with d > 2k2. First, we construct a poset from the clique problem. Given a
graph G = (V, E) and an integer k, we construct a poset (Π,≺) in a similar manner
as the construction used in [Johnson and Niemi 1983]. Let Π be V ∪ E ∪ {ρ+},
where ρ+ is an additional element. Define the precedence relation ≺ as follows:
ρ+ ≺ v for all v ∈ V , and v ≺ e if and only if v ∈ V is incident to e ∈ E in G(V, E).
Then, ρ+ has outdegree |V |, each element v ∈ V has outdegree d and indegree 1,
and each element e ∈ E has indegree 2. Note that, to construct a non-empty closed
subset, we need to choose ρ+, and if we select k elements from V , we can take at
most k(k − 1)/2 elements from E.

Next, we construct a MinESE instance I ′ from the poset (Π,≺) obtained by
this construction. We first construct I from (Π,≺) using the same construction as
[Gusfield et al. 1987; Kato 1993]. In the following, we give a brief explanation how
the instance I is constructed:

—Construct a poset (Π′,≺′) from (Π,≺) by adding a new element s that precedes
all elements in Π, and another new element t that succeeds all elements in Π.

—Rename elements of Π′ as ρ1, ρ2, . . . , ρh (h = |Π′|), so that the order ρ1, ρ2, . . . , ρh

is a linear extension of ≺; in other words, for all i and j, if ρi ≺ ρj then i < j.

—Let {e1, e2, . . . , eF } be the set of edges of the Hasse diagram H(Π′) of (Π′,≺′).
Associated with each edge ei, create a man mi and a woman wi. There will be
F men and F women in total.
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—For each i (1 ≤ i ≤ F ), include wi in mi’ s list, and similarly include mi in wi’s
list.

—For i = 1 to h, do the following.
—Let ri be the degree of ρi in (Π′,≺′).
—Let (mi

0, m
i
1, . . . , m

i
ri−1) be an arbitrary ordering of men corresponding to

edges incident to ρi in H(Π′).
—Let (wi

0, w
i
1, . . . , w

i
ri−1) be the ordered set of women such that wi

j is the last

woman on mi
j ’s current preference list.

—For j = 0 to ri − 1, place wi
j+1 at the end of mi

j ’s list, and place mi
j at the

head of wi
j+1’s list, where j + 1 is taken modulo ri.

—Add any missing entries at the end of each person’s list in an arbitrary order (to
make the lists complete).

The obtained stable marriage instance I has the following properties:

(a) The rotation poset of I is exactly (V ∪ E ∪ {ρ+},≺).

(b) The rotation ρ+ involves |V | + 1 men and |V | + 1 women.

(c) Let ρv be a rotation corresponding to v ∈ V . Then, ρv involves d + 1 men and
d + 1 women.

(d) Let ρe be a rotation corresponding to e ∈ E. Then, ρe involves three men and
three women.

(e) For each rotation ρ = {(m0, w0), . . . , (mr−1, wr−1)} of I and for each i, wi+1 is
next to wi in mi’s list and mi is next to mi−1 in wi’s list, where i+ 1 and i− 1
are taken modulo r.

It should be noted that wc(ρ) = 0 for all rotations ρ in I by property (e). Then,
we modify I and construct I ′ so that the following holds in I ′:

(1) wc(ρ+) = 0 and wd(ρ+) = ((1 + ǫ)D − 2B)/(1− ǫ), where B = 2dk + 4k2 − 2k
and D = (2d+2)|V |+8|E|. Here, ǫ is any constant such that 0 < ǫ < 1, which
we can determine as an input of MinESE.

(2) For any rotation ρv corresponding to v ∈ V , wc(ρv) = 0 and wd(ρv) = 2d + 2.

(3) For any rotation ρe corresponding to e ∈ E, wc(ρe) = −2 and wd(ρe) = 8.

(4) The man-optimal stable matching M0 has the sex-equality cost −(D−B)/(1−
ǫ), so, d(M0) = −(D − B)/(1 − ǫ) (note that B and D are defined in (1)).

The condition (2) has already been satisfied. The two conditions (1) and (3) can
be satisfied by padding “dummy” persons in the preference lists as in [Kato 1993]:
For the rotation ρ+ = (m1, w1), . . . , (m|V |+1, w|V |+1), we pad ((1+ǫ)D−2B)/2(1−
ǫ)− (|V |+1) (dummy) women between w1 and w2 in m1’s list in I ′ and ((1+ ǫ)D−
2B)/2(1 − ǫ) − (|V | + 1) (dummy) men between m1 and m2 in w1’s list in I ′. For
each rotation ρe = (m1, w1), (m2, w2), (m3, w3) corresponding to e ∈ E, we pad 2
(dummy) men between m1 and m2 in w1’s list, with the result that wc(ρe) = −2
and wd(ρe) = 8 in I ′. The last condition (4) can be satisfied by padding dummy
men (or women) at the top of the women’s (or men’s) lists. (For example, if we
want to decrease the value of d(M0) without violating the conditions (1)–(3), we pad
(dummy) men to the top of the women’s lists.) The resulting instance of MinESE
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is (I ′, ǫ). Note that these constructions can be done in polynomial time. It is easy
to check that in the instance I ′, d(Mz) = d(M0) + wd(ρ+) + ((2d + 2)|V |+ 8|E|) =
−(D − B)/(1 − ǫ) + ((1 + ǫ)D − 2B)/(1 − ǫ) + D = (D − B)/(1 − ǫ). Hence,
|d(M0)| = |d(Mz)| and

ǫ∆ = ǫ min{|d(M0)|, |d(Mz)|}

= ǫ|d(M0)|

= ǫ(D − B)/(1 − ǫ)

= d(M0) + wd(ρ+) + B. (1)

We will show that G has a k-clique if and only if there is a stable matching M
in I ′ such that −ǫ∆ ≤ d(M) ≤ ǫ∆ and c(M) ≤ c(M0)− k(k− 1). If this is true, we
can show that MinESE is strongly NP-hard as follows: Given an instance G of the
clique problem, we construct a MinESE instance I ′ and ǫ by the above reduction.
Then, we find an optimal solution M and the man-optimal stable matching M0.
Finally, we compare c(M) and c(M0)− k(k − 1): If c(M) ≤ c(M0)− k(k − 1), then
the answer to the clique problem is “Yes,” otherwise, “No.”

We first show the “only if” part. Suppose that G has a k-clique C. In the
rotation poset of I ′, let R be the set of rotations corresponding to k vertices and
k(k − 1)/2 edges of C. Then, R′ = R ∪ {ρ+} is a closed subset. Then, it is
easy to see that the corresponding stable matching MR′ is a required solution:
c(MR′) = c(M0)+0 +0 · (k− 1)− 2k(k− 1)/2 = c(M0)− k(k− 1). Also, d(MR′) =
d(M0) + wd(ρ+) + k(2d + 2) + 8k(k − 1)/2 = d(M0) + wd(ρ+) + B = ǫ∆ (the last
equality is from Equation (1)).

We now show the “if” part. Let M be any stable matching of I ′ such that
−ǫ∆ ≤ d(M) ≤ ǫ∆ and c(M) ≤ c(M0)− k(k − 1), and R be the set of rotations of
I ′ corresponding to M . First, note that R contains ρ+, since otherwise, R = ∅ and
so d(M) = d(M0) = −∆, which contradicts the assumption that d(M) ≥ −ǫ∆. Let
vM and eM be the numbers of the rotations in R which correspond to elements in
V and E, respectively. Then, d(R) = d(M) = d(M0)+wd(ρ+)+ (2d+2)vM +8eM .
If vM ≥ k + 1, d(M) > d(M0) + wd(ρ+) + B since d > 2k2. Hence, d(M) > ǫ∆,
again contradicting the assumption. Therefore, vM must satisfy 0 ≤ vM ≤ k.
Recall that eM ≤ vM (vM − 1)/2. Suppose that 0 ≤ eM < k(k − 1)/2. Then,
c(M) = c(M0)+0·vM−2eM > c(M0)−k(k−1), again contradicting the assumption.
Thus, eM = k(k − 1)/2 and vM = k. Therefore, the vertices and the edges in R
correspond to a k-clique of G.

Remark 4. Note that the reduction in the NP-hardness proof produces an instance
(I, ǫ) of MinESE such that |d(M0)| = |d(Mz)| in I, and ǫ is any constant such
that 0 < ǫ < 1. Observe that if |d(M0)| = |d(Mz)| and ǫ = 1, then MinESE
is equivalent to the minimum egalitarian stable marriage problem, which can be
solved in polynomial time.

4.2 Approximation Algorithms for MinESE

Here, we give a (2−(ǫ−δ)/(2+3ǫ))-approximation algorithm for MinESE for an arbi-
trary δ such that 0 < δ < ǫ. Similarly to Sec. 3, we assume that |d(M0)| ≤ |d(Mz)|.
We begin by stating two simple but important results that link the egalitarian cost
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and the sex-equality cost; their proofs are given later. (i) For any stable matching
M , |d(M)| < c(M) (Lemma 4.4). (ii) For any stable matching M and a rotation
ρ exposed in M , by eliminating ρ from M , the cost change with respect to the
egalitarian measure is less than the cost change with respect to the sex-equality
measure (Lemma 4.5).

To illustrate the basic idea of the algorithm, we first consider a restricted case
and show that our algorithm achieves a 2-approximation. For a fixed δ such that
ǫ > δ > 0, suppose that all of the rotations satisfy wd(ρ) ≤ δ∆. Given I and
ǫ, we first find a minimum egalitarian stable matching Meg, which can be done
in polynomial time. If −ǫ∆ ≤ d(Meg) ≤ ǫ∆, then we are done since Meg is an
optimal solution for MinESE. If d(Meg) < −ǫ∆, then we eliminate rotations one by
one as Algorithm 1 does until the sex-equality cost first becomes −ǫ∆ or larger. If
d(Meg) > ǫ∆, then we “add” rotations one by one until the sex-equality cost first
becomes ǫ∆ or smaller. Here, “adding a rotation” means the reverse operation of
eliminating a rotation. If we do not reach a feasible solution by this procedure,
then we can conclude that there is no feasible solution, by a similar argument as
in Sec. 3. If we find a stable matching M such that −ǫ∆ ≤ d(M) ≤ ǫ∆, then we
can show that this is a 2-approximation, namely, c(M) ≤ 2c(Meg) using (i) and (ii)
above (note that the optimal cost is at least c(Meg)): Suppose, for example, that
d(Meg) < −ǫ∆ (see Fig. 3). Then, by (ii), c(M)−c(Meg) < d(M)−d(Meg), and by
(i), |d(Meg)| < c(Meg). Also, since the costs of rotations are at most δ∆, and since
M is the first feasible solution found by this procedure, d(M) ≤ −(ǫ − δ)∆ < 0.
Putting these together, we have that

c(M) < c(Meg) + d(M) − d(Meg)

< c(Meg) − d(Meg) (since d(M) < 0)

= c(Meg) + |d(Meg)| (since d(Meg) < 0)

< 2c(Meg) (since |d(Meg)| < c(Meg)).

Hence c(M)/c(Meg) < 2.
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Fig. 3. C < B by (i) and A < C by (ii). Hence A + B < C + B < 2B.

However, we may have rotations of large costs. Then we take a similar approach
as in Sec. 3: Let RL be the set of such large rotations. Then, for any partition R1

and R2 of RL (R1 ∪ R2 = RL and R1 ∩ R2 = ∅), we want to obtain a minimum
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egalitarian stable matching whose corresponding closed subset A contains all of the
rotations in R1 but none in R2. For this purpose, we need to solve the following
problem:

Instance. An instance I of the stable marriage problem, and its disjoint subsets
of rotations R1 and R2, both of which are subsets of RL.

Feasible solution. A closed subset A such that A ⊇ R1 and A ∩ R2 = ∅.

Optimization criteria. Minimize the egalitarian cost of the stable matching
MA corresponding to A.

For this problem, we can use the same algorithm for the minimum egalitarian
stable marriage problem in [Gusfield and Irving 1989]. We denote this procedure
by minEgalitarian(R1, R2). First, we review the following proposition:

Proposition 4.2. [Feder 1992; 1994] Given a poset (Π,≺), there is an O(n3)-
time algorithm which finds a minimum-weight closed subset of (Π,≺) with respect
to the egalitarian cost.

Our procedure minEgalitarian(R1, R2) is as follows: Without loss of generality,
assume that there are no elements such that r2 ≺ r1 (r1 ∈ R1 and r2 ∈ R2) since
there exists no solution in such a case. Construct the poset (Π′,≺) by removing all
of the rotations in (R1)min and (R2)max from (Π,≺) (recall the definitions of Rmin

and Rmax given before Algorithm 1), and let R′ be the subset obtained by applying
Proposition 4.2 to (Π′,≺). Then, it is easy to see that (R1)min ∪ R′ is an optimal
solution for minEgalitarian(R1, R2). Now, we are ready to give the algorithm for
MinESE.

Algorithm 2
1. Construct the rotation poset (Π,≺).
2. Let Mbest = NULL.
3. Let RL be the set of rotations ρ such that wd(ρ) > δ∆, and RS be Π \ RL.

4. For each set R in 2RL

such that |R| ≤ 1+ǫ
δ , do,

(a) Let A = minEgalitarian(R, RL \ R).
(b) If d(A) < −ǫ∆, do the following.

Fix an arbitrary order ρ1, ρ2, · · · , ρk which is consistent with ≺, where
{ρ1, ρ2, · · · , ρk} = RS \ (A ∪ (RL \ R)max).
(Note that RS \ (A ∪ (RL \ R)max) could be empty.)

For i = 1 to k, if −ǫ∆ ≤ d(A ∪ {ρ1, ρ2, · · · , ρi}) ≤ ǫ∆, then let
A = A ∪ {ρ1, ρ2, · · · , ρi}.

Else if d(A) > ǫ∆, do the following.
Fix an arbitrary order ρ1, ρ2, · · · , ρk which is consistent with ≺, where
{ρ1, ρ2, · · · , ρk} = (A ∩ RS) \ Rmin.
(Note that (A ∩ RS) \ Rmin could be empty.)

For i = k to 1, if −ǫ∆ ≤ d(A \ {ρi, ρi+1, · · · , ρk}) ≤ ǫ∆, then let
A = A \ {ρi, ρi+1, · · · , ρk}.

(c) If c(A) < c(Mbest), then let Mbest = MA.
5. If Mbest 6= NULL, then output Mbest, otherwise output “None” and halt.
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Theorem 4.3. There is a (2 − (ǫ − δ)/(2 + 3ǫ))-approximation algorithm for

MinESE whose running time is O(n3+2( 1+ǫ
δ

)) for an arbitrary δ such that 0 < δ < ǫ.

Proof. Correctness Proof. Clearly, if there is no stable matching M such
that −ǫ∆ ≤ d(M) ≤ ǫ∆, then the algorithm answers “None.” Otherwise, sup-
pose that there is a feasible solution, and let Mopt be an optimal solution. We
first show that Algorithm 2 finds a feasible solution. Let OPT be the rotation
set corresponding to Mopt, and define OPT L = OPT ∩ RL. Then, d(OPT L) ≤
d(OPT ) = d(Mopt) ≤ ǫ∆. Because wd(ρ) > δ∆ for any rotation ρ ∈ OPT L,

|OPT L| < d(OPT L)−d(M0)
δ∆ ≤ |d(M0)|+ǫ∆

δ∆ = 1+ǫ
δ . This means Algorithm 2 se-

lects OPT L at Step 4 as R, and we consider this particular execution of Step
4. We show that in this execution, Algorithm 2 finds a feasible solution. Let
Aopt = minEgalitarian(OPT L, RL \ OPT L). There are three cases:

(i) −ǫ∆ ≤ d(Aopt) ≤ ǫ∆. MAopt
is clearly a feasible solution.

(ii) d(Aopt) < −ǫ∆. Note that Aopt ∪ {ρ1, ρ2, · · · , ρk} is the maximal closed
subset that contains exactly the same elements from RL as OPT . Hence OPT ⊆
Aopt ∪ {ρ1, ρ2, · · · , ρk}, and so, d(Aopt ∪ {ρ1, ρ2, · · · , ρk}) ≥ d(Mopt) ≥ −ǫ∆. Note
also that any rotation ρi (1 ≤ i ≤ k) satisfies wd(ρi) ≤ δ∆. Hence there must be
j (1 ≤ j ≤ k) such that −ǫ∆ ≤ d(Aopt ∪ {ρ1, ρ2, · · · , ρj}) ≤ −(ǫ − δ)∆. (It can be
easily seen that Aopt ∪ {ρ1, ρ2, · · · , ρj} is closed.)
(iii) d(Aopt) > ǫ∆. Note that Aopt \ {ρ1, ρ2, · · · , ρk} is the minimal closed
subset that contains exactly the same elements from RL as OPT . Hence Aopt \
{ρ1, ρ2, · · · , ρk} ⊆ OPT , and so, d(Aopt \ {ρ1, ρ2, · · · , ρk}) ≤ d(Mopt) ≤ ǫ∆. Note
also that any rotation ρi (1 ≤ i ≤ k) satisfies wd(ρi) ≤ δ∆. Hence there must be
j (1 ≤ j ≤ k) such that (ǫ − δ)∆ ≤ d(Aopt \ {ρj , ρj+1, · · · , ρk}) ≤ ǫ∆. (It can be
easily seen that Aopt \ {ρj, ρj+1, · · · , ρk} is closed.)

Next, we analyze the approximation ratio. Let M∗ be the matching found in this
particular execution of Step 4. We show that c(M∗) ≤ (2−(ǫ−δ)/(2+3ǫ))c(Mopt),
which gives us a proof for the approximation ratio. We first prove the following
two lemmas:

Lemma 4.4. For any stable matching M , |d(M)| < c(M).

Proof. If d(M) ≥ 0, then c(M)− |d(M)| = 2
∑

(m,w)∈M pw(m) > 0. Otherwise,

c(M) − |d(M)| = 2
∑

(m,w)∈M pm(w) > 0.

Lemma 4.5. Let R = {ρ1, . . . , ρr−1} be a set of rotations and let M1, · · · , Mr be
stable matchings such that Mi+1 = Mi/ρi for 1 ≤ i < r. Then, |c(Mr) − c(M1)| <
d(Mr) − d(M1).

Proof. Suppose that for a pair (m, w) ∈ Mi, m and w are included in a rotation
ρi. Let m′ = Mi+1(w) and w′ = Mi+1(m). By the properties of the rotation
[Gusfield and Irving 1989], m prefers w to w′ and w prefers m′ to m. Let d(m) =
pm(w′) − pm(w) and d(w) = pw(m) − pw(m′). Then d(m) > 0 and d(w) > 0, and
it follows that

|c(Mi+1)−c(Mi)| =

∣

∣

∣

∣

∣

∑

m

d(m) −
∑

w

d(w)

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∑

m

d(m) +
∑

w

d(w)

∣

∣

∣

∣

∣

= d(Mi+1)−d(Mi),
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where the summations of m (w) range over the set of men (women) that have
different partners in Mi and Mi+1. By summing up the above inequality for all i,
we have

|c(Mr)−c(M1)| ≤
r−1
∑

i=1

|c(Mi+1)−c(Mi)| <
r−1
∑

i=1

(d(Mi+1)−d(Mi)) = d(Mr)−d(M1).

Note that Aopt = minEgalitarian(OPT L, RL \ OPT L). Therefore, c(Aopt) ≤
c(Mopt) since OPT , the rotation set corresponding to Mopt, is one of the candidates
for Aopt. We will consider the following four cases (note that d(Aopt) ≥ −∆ for any
stable matching M):

Case (i): −ǫ∆ ≤ d(Aopt) ≤ ǫ∆. In this case, M∗ = MAopt
, which is an

optimal solution since c(Aopt) = c(Mopt).
Case (ii): −∆ ≤ d(Aopt) < −ǫ∆. In this case, the “If” part of Step

4(b) of Algorithm 2 is executed. The analysis can be done in a similar way as
we have seen at the beginning of this section (Fig. 3). By Lemma 4.5, |c(M∗) −
c(Aopt)| < d(M∗) − d(Aopt). If c(M∗) − c(Aopt) ≤ 0, then c(M∗) ≤ c(Aopt) ≤
c(Mopt), which implies that M∗ is optimal. Therefore, in the following, we consider
the case c(M∗) − c(Aopt) > 0. By Lemma 4.4, |d(Aopt)| < c(Aopt). Note also
that c(Aopt) ≤ c(Mopt) and d(Aopt) < 0. So, −d(Aopt) < c(Aopt) ≤ c(Mopt).
Furthermore, d(M∗) < −(ǫ − δ)∆ ≤ (ǫ − δ)d(Aopt). Putting these facts together,
we have c(M∗) < (2 − (ǫ − δ))c(Mopt) < (2 − (ǫ − δ)/(2 + 3ǫ))c(Mopt).

Case (iii): ǫ∆ < d(Aopt) ≤ (2 + 3ǫ)∆. In this case, the “Else if” part of
Step 4(b) of Algorithm 2 is executed. We have |c(Aopt)−c(M∗)| < d(Aopt)−d(M∗)
by Lemma 4.5. Since d(M∗) ≥ (ǫ − δ)∆ and (iii) hold, |c(Aopt) − c(M∗)| < (1 −
(ǫ− δ)/(2+3ǫ))d(Aopt). If c(M∗)− c(Aopt) ≤ 0, then M∗ is optimal as discussed in
Case (ii). Therefore, suppose that c(M∗) − c(Aopt) > 0. Since |d(Aopt)| < c(Aopt)
by Lemma 4.4 and c(Aopt) ≤ c(Mopt), c(M∗) < (2 − (ǫ − δ)/(2 + 3ǫ))c(Mopt).

Case (iv): (2+3ǫ)∆ < d(Aopt). Since both Mopt and M∗ can be obtained by
repeatedly eliminating rotations from M0, |c(Mopt)−c(M0)| < d(Mopt)−d(M0) and
|c(M∗)− c(M0)| < d(M∗)− d(M0) by Lemma 4.5 (See Fig. 4). Since both d(Mopt)
and d(M∗) are at most ǫ∆, c(M∗)− c(Mopt) ≤ 2(1+ ǫ)∆ (note that |d(M0)| = ∆).
It follows that c(M∗)−c(Mopt) ≤ 2(1+ǫ)d(Aopt)/(2+3ǫ) = (1−ǫ/(2+3ǫ))d(Aopt).
Since we have |d(Aopt)| < c(Aopt) by Lemma 4.4 and c(Aopt) ≤ c(Mopt), c(M∗) <
(2 − ǫ/(2 + 3ǫ))c(Mopt).

Time Complexity. Steps 1, 2, 3, and 5 can be executed in O(n2) time. Step
4(a) is performed in time O(n3) by Proposition 4.2. We can see that Steps 4(b)
and 4(c) can be performed in time O(n2) by a similar analysis of Algorithm 1. The
number of repetitions of Step 4 can be analyzed in the same way as for the proof

of Theorem 3.1, which is O(n2( 1+ǫ
δ

)). Hence the time complexity of Algorithm 2 is

O(n3+2( 1+ǫ
δ

)).

5. CONCLUDING REMARKS

In this paper, we gave a polynomial time algorithm for finding near optimal sex-
equal stable matching. Furthermore, we proved strongly NP-hardness and devel-
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Fig. 4. Case (iv)

oped a polynomial time approximation algorithm whose approximation ratio is less
than 2 for MinESE. Our future work is to improve the approximation ratio of
MinESE.
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