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Abstract. The Hospitals/Residents problem is a many-to-one extension
of the stable marriage problem. In its instance, each hospital specifies a
quota, i.e., an upper bound on the number of positions it provides. It is
well-known that in any instance, there exists at least one stable match-
ing, and finding one can be done in polynomial time. In this paper, we
consider an extension in which each hospital specifies not only an up-
per bound but also a lower bound on its number of positions. In this
setting, there can be instances that admit no stable matching, but the
problem of asking if there is a stable matching is solvable in polynomial
time. In case there is no stable matching, we consider the problem of
finding a matching that is “as stable as possible”, namely, a matching
with a minimum number of blocking pairs. We show that this problem
is hard to approximate within the ratio of (|H |+ |R|)1−ǫ for any positive
constant ǫ where H and R are the sets of hospitals and residents, respec-
tively. We tackle this hardness from two different angles. First, we give an
exponential-time exact algorithm for a special case where all the upper
bound quotas are one. This algorithm runs in time O(t2(|H |(|R|+t))t+1)
for instances whose optimal cost is t. Second, we consider another mea-
sure for optimization criteria, i.e., the number of residents who are in-
volved in blocking pairs. We show that this problem is still NP-hard but
has a polynomial-time

√

|R|-approximation algorithm.

1 Introduction

In the stable marriage problem [10], we are given sets of men and women, and
each person’s preference list that orders the members of the other sex accord-
ing to his/her preference. The question is to find a stable matching, that is, a
matching containing no pair of man and woman who prefer each other to their
partners. Such a pair is called a blocking pair. Gale and Shapley proved that any
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instance admits at least one stable matching, and gave an algorithm to find one,
known as the Gale-Shapley algorithm.

They also proposed a many-to-one extension of the stable marriage problem,
which is currently known as the Hospitals/Residents problem (HR for short) [10].
In HR, the two sets corresponding to men and women are residents and hospitals.
Each hospital specifies its quota, which means that it can accept at most this
number of residents. Hence in a feasible matching, the number of residents as-
signed to each hospital is up to its quota. Most properties of the stable marriage
problem carry over to HR, e.g., any instance admits a stable matching, and we
can find one by the appropriately modified Gale-Shapley algorithm. As the name
of HR suggests, it has real-world applications in assigning residents to hospitals
in many countries, known as NRMP in the U.S. [12], CaRMS in Canada [7], and
SFAS in Scotland [17]. Along with these applications and due to special require-
ments in reality, several useful extensions have been proposed, such as HR with
couples [24, 23, 3, 22], and the Student-Project Allocation problem [2].

In this paper, we study another extension of HR where each hospital declares
not only an upper bound but also a lower bound on the number of residents it
accepts. Consequently, a feasible matching must satisfy the condition that the
number of residents assigned to each hospital is between its upper and lower
bound quotas. This restriction seems quite relevant in several situations. For
example, shortage of doctors in hospitals in rural area is a critical issue; it is
sometimes natural to guarantee some number of residents for such hospitals in
the residents-hospitals matching. Also, when determining supervisors of students
in universities, it is quite common to consider that the number of students as-
signed to each professor should be somehow balanced, which can be achieved
again by specifying both upper and lower bounds on the number of students ac-
cepted by each professor. We call this problem HR with Minimum Quota (HRMQ
for short).

The notion of minimum quota was first raised in [13] and followed by [5, 16]
(see “Related Work” below). In this paper, we are interested in a most natural
question, i.e., how to obtain “good” matchings in this new setting. In HRMQ,
stable matchings do not always exist. However, it is easy to decide whether or
not there is a stable matching for a given instance, since in HR the number of
students a specific hospital h receives is identical for any stable matching (this is
a part of the well-known Rural Hospitals Theorem [11]). Namely, if this number
satisfies the upper and lower bound conditions of all the hospitals, it is a feasible
(and stable) matching, and otherwise, no stable matching exists. In case there is
no stable matching, it is natural to seek for a matching “as stable as possible”.

Our Contributions. We first consider the problem of minimizing the number
of blocking pairs, which is quite popular in the literature (e.g., [20, 1, 6, 15]).
As shown in Sec. 2, it seems that the introduction of the quota lower bound
intrinsically increases the difficulty of the problem. Actually, we show that this
problem is NP-hard and cannot be approximated within a factor of (|H |+|R|)1−ε

for any positive constant ε unless P=NP, where H and R denote the sets of
hospitals and residents, respectively. This inapproximability result holds even if



all the preference lists are complete, all the hospitals have the same preference
list, (e.g., determined by scores of exams and known as the master list [18]), and
all the hospitals have upper bound quota of one. On the positive side, we give
a polynomial-time (|H | + |R|)–approximation algorithm, which shows that the
above inapproximability result is almost tight.

We then tackle this hardness from two different angles. First, we restrict
ourselves to instances where upper bound quotas of all the hospitals are one,
which correspond to the marriage case and are still hard to approximate as
shown above. We give an exponential-time exact algorithm which runs in time
O(t2(|H |(|R| + t))t+1) for instances whose optimal cost is t. Note that this is a
polynomial-time algorithm when the optimal cost is constant. Second, we go back
to the original many-to-one case, and consider another measure for optimization
criteria, i.e., the number of residents who are involved in blocking pairs. We show
that this problem is still NP-hard, but give a quadratic improvement, i.e., we
give a polynomial-time

√

|R|-approximation algorithm. We also give an instance
showing that our analysis is tight up to a constant factor. Furthermore, we show
that if our problem has a constant approximation factor, then the Dense k-
Subgraph Problem (DkS) has a constant approximation factor also. Note that
the best known approximation factor of DkS has long been |V |1/3 [21] in spite of
extensive studies, and was recently improved to |V |1/4+ǫ for an arbitrary positive
constant ǫ [4]. The reduction is somewhat tricky, which is done through the third
problem, called the Minimum Coverage Problem (MinC), and exploits the best
approximation algorithm for DkS. MinC is relatively less studied and only the
NP-hardness is known for its complexity [25]. As a byproduct, our proof gives a
similar hardness for MinC, which is of independent interest.

Because of the space restriction, most of the proofs are omitted. They are
included in the full version [14].

Related Work. Biró, et al. [5] also considers HR with quota lower bounds.
In contrast to our model, which requires to satisfy the lower bound quota of
all the hospitals, their model allows some hospitals to be closed, i.e., to receive
no residents. Huang [16] considers classified stable matchings, in which not only
individual hospitals but also selected sets of hospitals declare quota upper and
lower bounds. He proved a dichotomy theorem for the problem of deciding the
existence of a stable matching, in terms of the structural property of the family
of the sets of hospitals that declare quota bounds.

2 Preliminaries

An instance of the Hospitals/Residents Problem with Minimum Quota (HRMQ
for short) consists of the set R of residents and the set H of hospitals. Each
hospital h has lower and upper bounds of quota, p and q (p ≤ q), respectively.
We sometimes say that the quota of h is [p, q], or h is a [p, q]-hospital. For
simplicity, we also write the name of a hospital with its quota bounds, such as
h[p, q]. Each member (resident or hospital) has a preference list that orders a
subset of the members of the other party.



A matching is an assignment of residents to hospitals (possibly, leaving some
residents unassigned), where matched residents and hospitals are in the prefer-
ence list of each other. Let M(r) be the hospital to which resident r is assigned
under a matching M (if it exists), and M(h) be the set of residents assigned to
hospital h. A feasible matching is a matching such that p ≤ |M(h)| ≤ q for each
hospital h[p, q]. We may sometimes call a feasible matching simply a matching
when there is no fear of confusion. For a matching M and a hospital h[p, q], we
say that h is full if |M(h)| = q and that h is under-subscribed if |M(h)| < q.

For a matching M , we say that a pair comprising a resident r and a hospital
h who include each other in the list forms a blocking pair for M if the following
two conditions are met: (i) r is either unassigned or prefers h to M(r), and (ii) h
is under-subscribed or prefers r to one of the residents in M(h). We say that r
is a blocking resident for M if r is involved in a blocking pair for M .

Minimum-Blocking-Pair HRMQ (Min-BP HRMQ for short) is the problem
of finding a feasible matching with the minimum number of blocking pairs. Min-
BP 1ML-HRMQ (“1ML” standing for “1 Master List”) is the restriction of Min-
BP HRMQ so that preference lists of all the hospitals are identical. 0-1 Min-
BP HRMQ is the restriction of Min-BP HRMQ where a quota bound of each
hospital is either [0, 1] or [1, 1]. 0-1 Min-BP 1ML-HRMQ is Min-BP HRMQ
with both “1ML” and “0-1” restrictions. Minimum-Blocking-Resident HRMQ
(Min-BR HRMQ for short) is the problem of finding a feasible matching with
the minimum number of blocking residents. Min-BR 1ML-HRMQ, 0-1 Min-BR
HRMQ, and 0-1 Min-BR 1ML-HRMQ are defined similarly.

We assume without loss of generality that the number of residents is at least
the sum of the lower bound quotas of all the hospitals. Also, in this paper we
impose the following restriction Z to guarantee existence of a feasible solution:
every resident’s list includes all hospitals with positive quota lower bounds, and
such hospitals’ lists include all the residents. (We remark in Sec. 5 that allowing
arbitrarily incomplete preference lists makes the problem extremely hard.)

We say that an algorithm A is an r(n)-approximation algorithm if it satisfies
A(x)/opt(x) ≤ r(n) for any instance x of size n, where opt(x) and A(x) are the
costs (i.e., the number of blocking pairs in the case of Min-BP HRMQ) of the
optimal and the algorithm’s solutions, respectively.

As a starting example, consider n residents and n+1 hospitals, whose prefer-
ence lists and quota bounds are as follows. Here, “· · ·” in the residents’ preference
lists denotes an arbitrary order of the remaining hospitals.

r1 : h1 hn+1 · · ·
r2 : h1 h2 hn · · ·
r3 : h2 h1 h3 · · ·
r4 : h3 h1 h4 · · ·
...

ri : hi−1 h1 hi · · ·
...

rn : hn−1 h1 hn · · ·

h1[0, 1] : r1 r2 · · · rn

h2[1, 1] : r1 r2 · · · rn

...
hn[1, 1] : r1 r2 · · · rn

hn+1[1, 1] : r1 r2 · · · rn



Note that we have n [1, 1]-hospitals all of which have to be filled by the n
residents. Therefore, let us modify the instance by removing the [0, 1]-hospital
h1 and apply the Gale-Shapley algorithm (see e.g., [12] for the Gale-Shapley
algorithm; in this paper it is always the residents-oriented version, namely,
residents make and hospitals receive proposals). Then the resulting match-
ing is M1 = {(r1, hn+1), (r2, h2), (r3, h3), · · · , (rn, hn)}, which contains at least
n blocking pairs (between h1 and every resident). However, the matching
M2 = {(r1, hn+1), (r2, hn), (r3, h2), (r4, h3), . . . , (rn, hn−1)} contains only three
blocking pairs (r1, h1), (r2, h1), and (r2, h2).

3 Minimum-Blocking-Pair HRMQ
In this section, we give both approximability and inapproximability results. For
the latter, we prove a strong inapproximability result for the restricted subclass,
as mentioned in Sec. 1. On the other hand, we can show that this inapprox-
imability result is almost tight by providing an approximation algorithm for the
general class.

Theorem 1. For any positive constant ε, there is no polynomial-time (|H | +
|R|)1−ε-approximation algorithm for 0-1 Min-BP 1ML-HRMQ unless P=NP,
even if all the preference lists are complete. (Proof is omitted. See [14].)

Theorem 2. There is a polynomial-time (|H | + |R|)–approximation algorithm
for Min-BP HRMQ.

Proof. Here we give only a sketch. See [14] for the complete proof. The following
simple algorithm (Algorithm I) achieves an approximation ratio of |H | + |R|:
Given an instance I of Min-BP HRMQ, consider it as an instance of HR by
ignoring quota lower bounds. Then, apply the Gale-Shapley algorithm to I and
obtain a matching M . In M , define a deficiency of a hospital hi[pi, qi] to be
max{pi − xi, 0} where xi is the number of residents assigned to hi by M . We
then move residents arbitrarily from hospitals with surplus to the hospitals with
positive deficiencies (but so as not to create new positive deficiency) to fill all
the deficiencies. This is possible because of the restriction Z.

Let k be the sum of the deficiencies over all the hospitals. Then, k residents
are moved by the above procedure. We can show that at most |H | + |R| new
blocking pairs can arise per resident movement and hence at most k(|H | + |R|)
in total. On the other hand, we can prove that if there are k deficiencies in M ,
an optimal solution contains at least k blocking pairs. ⊓⊔

3.1 Exponential-Time Exact Algorithm

In this section we consider only the cases where quota bounds are [0,1] or [1,1],
as in the example given in the previous section. Recall that the problem is still
hard to approximate, and our goal here is to design nontrivial exponential-time
algorithms by using the parameter t denoting the cost of an optimal solution.
Probably, a natural idea is to change some subset H0 of [0,1]-hospitals into
[1,1]-hospitals so that in the optimal solution residents are assigned to hospitals



in H0 plus original [1,1]-hospitals exactly. However, there is no obvious way of
selecting H0 rather than exhaustive search, which will result in blow-ups of the
computation time even if t is small. Furthermore, even if we would be able to find
a correct H0, we are still not sure how to assign the residents to these (expanded)
[1,1]-hospitals optimally.

Theorem 3. There is an O(t2(|H |(|R| + t))t+1)-time exact algorithm for 0-1
Min-BP HRMQ, where t is the cost of an optimal solution of a given instance.

Proof. For a given integer k > 0, our algorithm A(k) finds a solution (i.e.,
a matching between residents and hospitals) whose cost is at most k if any.
Starting from k = 1, we run A(k) until we find a solution, by increasing the
value of k. A(k) is quite simple, for which the following informal discussion
might be enough.

Classify the blocking pairs as follows: A blocking pair (r, h) such that hospital
h is empty is a Type-I blocking pair, and one such that h is non-empty is a Type-
II blocking pair. First, guess the numbers k1 of Type-I blocking pairs and k2 of
Type-II blocking pairs such that k1 + k2 = k, thus k + 1 possibilities.

We next guess, for each resident ri, the number bi(≥ 0) of Type-I blocking
pairs ri is involved in, such that b1 + b2 + · · · + b|R| = k1. Note that there are

O((|R| + k1)
k1) possibilities. Then, for each ri such that bi > 0, we again guess

the set Si of bi hospitals that form Type-I blocking pairs with ri. Note that
there are at most O(|H |k1 ) different possibilities for selecting such k1 blocking
pairs. Let S be the union of Si over all ri. Note that all the hospitals in S are
[0, 1]-hospitals since they are supposed to be empty. Now remove these hospitals
from the instance. For a resident ri and hospital h ∈ S, suppose that h 6∈ Si

in the current guess. Then, we remove all the hospitals lower ranked than h in
ri’s list, since if ri is assigned to one of such hospitals, then ri forms a Type-I
blocking pair with h, contradicting our guess.

Next, we guess k2 Type-II blocking pairs similarly. Let T be the set of those
pairs. Since there are at most |H ||R| pairs, there are O((|H ||R|)k2 ) choices of T .
For each pair (r, h) ∈ T , we remove h from r’s list. Finally, we apply the Gale-
Shapley algorithm to the modified instance. If all the [1,1]-hospitals are full, then
it is a desired solution, otherwise, we fail and proceed to the next guess.

We show that the algorithm runs correctly. Consider any optimal solution
Mopt and consider the execution for k = t for which we assume to have made
a correct guess of the t blocking pairs of Mopt. Then, it is not hard to see that
Mopt is stable in the above modified instance and makes all the [1,1]-hospitals
full. Then by the Rural Hospitals Theorem, any stable matching for this new
instance makes all the [1,1]-hospitals full. Hence if we apply the Gale-Shapley
algorithm to this instance, we find a matching M in which all the [1,1]-hospitals
are full. Note that M has no blocking pair in the modified instance. Then, observe
that M has at most k1 Type-I blocking pairs in the original instance because,
when hospitals in S are returned back to the instance, each resident ri can form
Type-I blocking pairs with only the hospitals in Si. Also, only the pairs in T
can be Type-II blocking pairs of M in the original instance. Therefore, M has
at most t blocking pairs in the original instance.



Finally, we bound the time-complexity. For each k, we apply the Gale-
Shapley algorithm to at most O(k) ·O((|R|+ k1)

k1) ·O(|H |k1 ) ·O((|H ||R|)k2 ) =
O(k(|H |(|R| + k))k) instances. Therefore, the time-complexity is O(k(|H |(|R|+
k))k+1) for each k. Since we find a solution when k is at most t, the whole time-
complexity is at most Σt

k=1O(k(|H |(|R| + k))k+1) = O(t2(|H |(|R| + t))t+1). ⊓⊔

4 Minimum-Blocking-Resident HRMQ

In this section, we consider the problem of minimizing the number of blocking
residents. We first show a negative result.

Theorem 4. 0-1 Min-BR 1ML-HRMQ is NP-hard. (Proof is omitted. See [14].)

For the approximability, we note that Algorithm I in the proof of Theorem 2
does not work. For example, consider the instance introduced in Sec. 2. If we
apply the Gale-Shapley algorithm, resident ri is assigned to hi for each i, and we
need to move r1 to hn+1. However since h1 becomes unassigned, all the residents
become blocking residents. On the other hand, the optimal cost is 2 as we have
seen there. Thus the approximation ratio becomes as bad as Ω(|R|).

Theorem 5. There is a polynomial-time
√

|R|–approximation algorithm for
Min-BR HRMQ.

We prove Theorem 5 by giving a
√

|R|–approximation algorithm for 0-1 Min-
BR HRMQ (Lemmas 1 and 3). In 0-1 Min-BR HRMQ, the number of residents
assigned to each hospital is at most one. Hence, for a matching M , we sometimes
abuse the notation M(h) to denote the resident assigned to h (if any) although
it is originally defined as the set of residents assigned to h.

Lemma 1. If there is a polynomial-time α–approximation algorithm for 0-1
Min-BR HRMQ, then there is a polynomial-time α–approximation algorithm
for Min-BR HRMQ. (Proof is omitted. See [14].)

4.1 Our Algorithm

To describe the idea behind our algorithm, recall Algorithm I presented in the
proof of Theorem 2: First, apply the Gale-Shapley algorithm to a given instance
I and obtain a matching M . Next, move residents arbitrarily from assigned
[0, 1]-hospitals to unassigned [1, 1]-hospitals. Suppose that in the course of the
execution of Algorithm I, we move a resident r from a [0, 1]-hospital h to an
unassigned [1, 1]-hospital. Then, of course r creates a blocking pair with h, but
some other residents may also create blocking pairs with h because h becomes
unassigned. Then, consider the following modification. First, set the upper bound
quota of a [0, 1]-hospital h to ∞ and apply the Gale-Shapley algorithm. Then,
all residents who “wish” to go to h actually go there. Hence, even if we move all
such residents to other hospitals, only the moved residents can become blocking
residents. By doing this, we can bound the number of blocking residents by the



number (given by the function g introduced below) of those moving residents.
In the above example, we extended the upper bound quota of only one hospital,
but in fact, we may need to select two or more hospitals to select sufficiently
many residents to be sent to other hospitals so as to make the matching feasible.
However, at the same time, this number should be kept minimum to guarantee
the quality of the solution.

We define g(h, h): For an instance I of HR, suppose that we extend the upper
bound quota of hospital h to ∞ and find a stable matching of this new instance.
Define g(h, h) be the number of residents assigned to h in this stable matching.
Recall that this quantity does not depend on the choice of the stable matching
by the Rural Hospitals Theorem [11]. Extend g(h, h) to g(A, B) for A, B ⊆ H
such that g(A, B) denotes the number of residents assigned to hospitals in A
when we change upper bound quotas of all the hospitals in B to ∞.

We now propose Algorithm II for 0-1 Min-BR HRMQ. Let I be a given
instance. Define Hp,q to be the set of [p, q]-hospitals of I. Recall from Sec. 3
that the deficiency of a hospital is the shortage of the assigned residents from its
lower bound quota. Now define the deficiency of the instance I as the sum of the
deficiencies of all the hospitals of I, and denote it D(I). Since we are considering
0-1 Min-BR HRMQ, D(I) is exactly the number of empty [1, 1]-hospitals.

Algorithm II

1: Apply the Gale-Shapley algorithm to I by ignoring the lower bound quotas. Let
Ms be the obtained matching. Compute the deficiency D(I).

2: H ′

0,1 := {h | Ms(h) 6= ∅, h ∈ H0,1}. (If Ms(h) = ∅, then residents never come to h

in this algorithm.)
3: Compute g(h, h) for each h ∈ H ′

0,1 by using the Gale-Shapley algorithm.
4: From H ′

0,1, select D(I) hospitals with smallest g(h, h) values (ties are broken arbi-
trarily). Let S be the set of these hospitals. Extend the quota upper bounds of all
hospitals in S to ∞, and run the Gale-Shapley algorithm. Let M∞ be the obtained
matching.

5: In M∞, move residents who are assigned to hospitals in S arbitrarily to empty
hospitals to make the matching feasible. (We first make [1, 1]-hospitals full. This is
possible because of the restriction Z. If there is a hospital in S still having two or
more residents, then send remaining residents arbitrarily to empty [0, 1]-hospitals,
or simply make them unassigned if there is no [0, 1]-hospital to send them.) Output
the resulting matching M∗.

We first prove the following property of the original HR problem.

Lemma 2. Let I0 be an instance of HR, and h be any hospital. Let I1 be a
modification of I0 so that only the upper bound quota of h is increased by 1. Let
Mi be a stable matching of Ii for each i ∈ {0, 1}. Then, (i) |M0(h)| ≤ |M1(h)|,
and (ii) ∀h′ ∈ H \ {h}, |M0(h

′)| ≥ |M1(h
′)|.

Proof. If M0 is stable for I1, then we are done, so suppose not. Because M0 is
stable for I0, if M0 has blocking pairs for I1, then all of them involve h. Let r
be the resident such that (r, h) is a blocking pair and there is no blocking pair
(r′, h) such that h prefers r′ to r. If we assign r to h, all blocking pairs including



h are removed. If no new blocking pairs arise, again, we are done. Otherwise, r
must be previously assigned to some hospital, say h′, and all the new blocking
pairs involve h′. We then choose the resident r′, most preferred by h′ among
all the blocking residents, and assign r′ to h′. We continue this operation until
there arise no new blocking pairs. This procedure eventually terminates because
each iteration improves exactly one resident. By the termination condition, the
resulting matching is stable for I1. Note that by this procedure, only h can
gain one more resident, and at most one hospital may lose one resident. This
completes the proof. ⊓⊔

Obviously, Algorithm II runs in polynomial time. We show that Algorithm II
runs correctly, namely that the output matching M∗ satisfies the quota bounds.
To do so, it suffices to show the following: (1) |H ′

0,1| ≥ D(I) so that we can
construct S at Step 4, and (2) in M∞, the total number of residents assigned to
hospitals in S is at least the number of empty [1, 1]-hospitals, so that Step 5 is
executable.

For (1), recall that we have assumed that the number of residents is at least
the sum of the lower bound quotas, which is the number of [1, 1]-hospitals. Also,
we can assume that all the residents are assigned in Ms (since otherwise, we
already have a feasible stable matching). Then, by the definition of D(I), we
have that |H ′

0,1| ≥ D(I). For (2), it suffices to show that the number N of
residents assigned to S∪H1,1 in M∞ is at least |H1,1|. Note that empty hospitals
in Ms are also empty in M∞ by Lemma 2. Therefore, the number N of residents
assigned to hospitals in H \ (S ∪H1,1) in M∞ is at most the number of hospitals
in H ′

0,1 \ S. Thus N ≤ |H ′
0,1| − |S| and N = |R| − N ≥ |R| − (|H ′

0,1| − |S|).
By the definition of D(I), we have that |H ′

0,1| + |H1,1| = |R| + D(I). Thus,
N ≥ |R| − (|R| + D(I) − |H1,1| − |S|) = |H1,1| (recall that |S| = D(I)).

4.2 Analysis of the Approximation Ratio

Lemma 3. The approximation ratio of Algorithm II is at most
√

|R|.

Proof. Let I be a given instance of 0-1 Min-BR HRMQ and let fopt and falg

be the costs of an optimal solution and the solution obtained by Algorithm II,
respectively. First, note that only residents moved at Step 5 can be blocking
residents. Hence, (1) falg ≤ g(S, S).

We then give a lower bound on the optimal cost. To do so, see the proof of
Theorem 2 [14], where it is shown that any optimal solution for instance I of Min-
BP HRMQ has at least D(I) blocking pairs. It should be noted that those D(I)
blocking pairs do not have any common resident. Thus we have (2) fopt ≥ D(I).

Now here is our key lemma to evaluate the approximation ratio.

Lemma 4. In Step 3 of Algorithm II, there are at least D(I) different hospitals
h ∈ H ′

0,1 such that g(h, h) ≤ fopt.

The proof will be given in a moment. By this lemma, we have g(h, h) ≤ fopt

for any h ∈ S by the construction of S. This implies that (3)
∑

h∈S g(h, h) ≤



D(I)fopt. Also, by Lemma 2, we have (4) g(h, S) ≤ g(h, h) for any h ∈ S. Hence,
by (1), (4), (3) and (2), we have

falg ≤ g(S, S) =
∑

h∈S

g(h, S) ≤
∑

h∈S

g(h, h) ≤ D(I)fopt ≤ (fopt)
2.

Therefore, we have that
√

falg ≤ fopt, and hence
falg

fopt
≤

√

falg ≤
√

|R|, com-

pleting the proof of Lemma 3. ⊓⊔

Proof of Lemma 4. Let h be a hospital satisfying the condition of the lemma. In
order to calculate g(h, h) in Step 3, we construct a stable matching, say Mh, for
the instance I∞(h) in which the upper bound quota of h is changed to ∞. We
do not know what kind of matching Mh is, but in the following, we show that
there is a stable matching, say M2, for I∞(h) such that |M2(h)| ≤ fopt. Mh and
M2 may be different, but we can guarantee that |Mh(h)| ≤ fopt by the Rural
Hospitals Theorem. A bit trickily, we construct M2 from an optimal matching.

Let Mopt be an optimal solution of I (which of course we do not know). Let
Rb and Rn be the sets of blocking residents and non-blocking residents for Mopt,
respectively. Then |Rb| = fopt by definition. We modify Mopt as follows: Take
any resident r ∈ Rb. If r is unassigned, we do nothing. Otherwise, force r to be
unassigned. Then there may arise new blocking pairs, all of which include the
hospital h′ to which r was assigned. Among residents who are included in such
new blocking pairs, we select the resident in Rn who is most preferred by h′ (if
any) and assign her to h′. In a similar way as the proof of Lemma 2, we continue
to move residents until no new blocking pair arises (but this time, we move only
residents in Rn as explained above). We do this for all the residents in Rb, and
let M1 be the resulting matching.

The following (a) and (b) are immediate: (a) There are at least fopt unas-
signed residents in M1, since residents in Rb are unassigned in M1. (b) Residents
in Rn are non-blocking for M1. We prove the following properties: (c) There are
at most fopt unassigned [1, 1]-hospitals in M1. (d) Define H ′ = {h | h ∈ H ′

0,1

and h is unassigned in M1}. Then |H ′| ≥ D(I).
(c) In Mopt, all the [1, 1]-hospitals are full. It is easy to see that an unassigned

hospital of Mopt is also unassigned in M1. Since at most fopt residents are made
to be unassigned by the above procedure, the claim holds.

(d) Let H1 be the set of hospitals assigned in M1. By the definition of H ′,
H ′ = H ′

0,1 \ (H1 ∩H0,1). By the definition of D(I), |H ′
0,1| = |R|+ D(I)− |H1,1|,

and by the properties (a) and (c), |H1 ∩ H0,1| ≤ |R| − |H1,1|. Then |H ′| ≥
|H ′

0,1| − |H1 ∩ H0,1| ≥ (|R| + D(I) − |H1,1|) − (|R| − |H1,1|) = D(I).
For any h ∈ H ′, we show that g(h, h) ≤ fopt. Then, this completes the proof

of Lemma 4 because H ′ ⊆ H ′
0,1 and (d) |H ′| ≥ D(I). Since h is unassigned in M1,

residents in Rn are still non-blocking for M1 in I∞(h) (whose definition is in the
beginning of this proof) by the property (b). Now, choose any resident r from Rb,
and apply the Gale-Shapley algorithm to I∞(h) starting from M1. This execution
starts from the proposal by r, and at the end, nobody in Rn ∪ {r} is a blocking
resident for I∞(h). Since hospitals assigned in M1 never become unassigned, and



since unassigned residents in Rn never become assigned, h receives at most one
resident. If we do this for all the residents in Rb, the resulting matching M2 is
stable for I∞(h), and h is assigned at most |Rb| = fopt residents. As mentioned
previously, this implies g(h, h) ≤ fopt. ⊓⊔

We can show that the analysis of Lemma 3 is tight up to a constant factor:
There is an instance of 0-1 Min-BR HRMQ for which Algorithm II produces a
solution of cost |R| −

√

|R| but the optimal cost is at most 2
√

|R| (see [14]).

4.3 Inapproximability of Min-BR HRMQ

For the hardness of Min-BR HRMQ, we have only NP-hardness, but we can
give a strong evidence for its inapproximabitily. The Dense k-Subgraph Problem
(DkS) is the problem of finding, given a graph G and a positive integer k, an
induced subgraph of G with k vertices that contains as many edges as possible.
This problem is NP-hard because it is a generalization of Max CLIQUE. Its
approximability has been studied intensively but there still remains a large gap
between approximability and inapproximability: The best known approximation
ratio is |V |1/4+ǫ [4], while there is no PTAS under reasonable assumptions [8,
19]. The following Theorem 6 shows that approximating Min-BR HRMQ within
a constant ratio implies the same for DkS.

Theorem 6. If Min-BR 1ML-HRMQ has a polynomial-time c-approximation
algorithm, then DkS has a polynomial-time (1 + ǫ)c4-approximation algorithm
for any positive constant ǫ. (Proof is omitted. See [14].)

5 Concluding Remarks

An obvious future research is to obtain lower bounds on the approximation factor
for Min-BR HRMQ (we even do not know its APX-hardness at this moment).
Since the problem is harder than DkS, it should be a reasonable challenge.
Another direction is to develop an FPT algorithm for Min-BP HRMQ, improving
Theorem 3. Finally, we remark on the possibility of generalization of instances:
In this paper, we guarantee existence of feasible matchings by the restriction Z
(Sec. 2). However, even if we allow arbitrarily incomplete lists (and even ties), it is
decidable in polynomial time if the given instance admits a feasible matching [9].
Thus, it might be interesting to seek approximate solution for instances without
restriction Z. Unfortunately, however, we can easily imply its |R|1−ǫ-hardness
(see [14]).
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