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Abstract. We consider a variant of the online buffer management prob-
lem in network switches, called the k-frame throughput maximization
problem (k-FTM). This problem models the situation where a large
frame is fragmented into k packets and transmitted through the Internet,
and the receiver can reconstruct the frame only if he/she accepts all the
k packets. Kesselman et al. introduced this problem and showed that its
competitive ratio is unbounded even when k = 2. They also introduced
an “order-respecting” variant of k-FTM, called k-OFTM, where inputs
are restricted in some natural way. They proposed an online algorithm
and showed that its competitive ratio is at most 2kB

⌊B/k⌋ +k for any B ≥ k,

where B is the size of the buffer. They also gave a lower bound of B
⌊2B/k⌋

for deterministic online algorithms when 2B ≥ k and k is a power of 2.

In this paper, we improve upper and lower bounds on the competitive
ratio of k-OFTM. Our main result is to improve an upper bound of
O(k2) by Kesselman et al. to 5B+⌊B/k⌋−4

⌊B/2k⌋ = O(k) for B ≥ 2k. Note
that this upper bound is tight up to a multiplicative constant factor
since the lower bound given by Kesselman et al. is Ω(k). We also give
two lower bounds. First we give a lower bound of 2B

⌊B/(k−1)⌋ + 1 on the
competitive ratio of deterministic online algorithms for any k ≥ 2 and
any B ≥ k− 1, which improves the previous lower bound of B

⌊2B/k⌋ by a
factor of almost four. Next, we present the first nontrivial lower bound
on the competitive ratio of randomized algorithms. Specifically, we give
a lower bound of k− 1 against an oblivious adversary for any k ≥ 3 and
any B. Since a deterministic algorithm, as mentioned above, achieves an
upper bound of about 10k, this indicates that randomization does not
help too much.
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1 Introduction

When transmitting data through the Internet, each data is fragmented into
smaller pieces, and such pieces are encapsulated into data packets. Packets are
transmitted to the receiver via several switches and routers over a network, and
are reconstructed into the original data at the receiver’s side. One of the bottle-
necks in achieving high throughput is processing ability of switches and routers.
If the arrival rate of packets exceeds the processing rate of a switch, some pack-
ets must be dropped. To ease this inconvenience, switches are usually equipped
with FIFO buffers that temporarily store packets which will be processed later.
In this case, the efficiency of buffer management policies is important since it
affects the performance of the overall network.

Aiello et al. [1] initiated the analysis of buffer management problem using
the competitive analysis [10, 32]: An input of the problem is a sequence of events
where each event is an arrival event or a send event. At an arrival event, one
packet arrives at an input port of the buffer (FIFO queue). Each packet is of
unit size and has a positive value that represents its priority. A buffer can store
at most B packets simultaneously. At an arrival event, if the buffer is full, the
new packet is rejected. If there is room for the new packet, an online algorithm
determines whether to accept it or not without knowing the future events. At
each send event, the packet at the head of the queue is transmitted. The gain of
an algorithm is the sum of the values of the transmitted packets, and the goal of
the problem is to maximize it. If, for any input σ, the gain of an online algorithm
ALG is at least 1/c of the gain of an optimal offline algorithm for σ, then we
say that ALG is c-competitive.

Following the work of Aiello et al. [1], there has been a great amount of work
related to the competitive analysis of buffer management. For example, Andel-
man et al. [5] generalized the two-value model of [1] into the multi-value model
in which the priority of packets can take arbitrary values. Another generalization
is to allow preemption, i.e., an online algorithm can discard packets existing in
the buffer. Results of the competitiveness on these models are given in [18, 33,
20, 4, 3, 12]. Also, management policies not only for a single queue but also for
the whole switch are extensively studied, which includes multi-queue switches [7,
5, 2, 6, 28, 9], shared-memory switches [14, 19, 27], CIOQ switches [21, 8, 25, 22],
and crossbar switches [23, 24]. See [13] for a comprehensive survey.

Kesselman et al. [26] proposed another natural extension, called the k-frame
throughput maximization problem (k-FTM), motivated by a scenario of recon-
structing the original data from data packets at the receiver’s side. In this model,
a unit of data, called a frame, is fragmented into k packets (where the jth packet
of the frame is called a j-packet for j ∈ [1, k]) and transmitted through the In-
ternet. At the receiver’s side, if all the k packets (i.e., the j-packet of the frame
for all j) are received, the frame can be reconstructed (in such a case, we say
that the frame is completed); otherwise, even if one of them is missing, the re-
ceiver can obtain nothing. The goal is to maximize the number of completed
frames. Kesselman et al. [26] considered this scenario on a single FIFO queue.
They first showed that the competitive ratio of any deterministic algorithm for



k-FTM is unbounded even when k = 2 (which can also be applied to randomized
algorithms with a slight modification). However, their lower bound construction
somehow deviates from the real-world situation, that is, although each packet
generally arrives in order of departure in a network such as a TCP/IP network,
in their adversarial input sequence the 1-packet of the frame fi arrives prior to
that of the frame fi′ , while the 2-packet of fi′ arrives before that of fi. Moti-
vated by this, they introduced a natural setting for the input sequence, called the
order-respecting adversary, in which, roughly speaking, the arrival order of the
j-packets of fi and fi′ must obey the arrival order of the j′-packets of fi and fi′
(j′ < j) (a formal definition will be given in Sec. 2). We call this restricted prob-
lem the order-respecting k-frame throughput maximization problem (k-OFTM).
For k-OFTM, they showed that the competitive ratio of any deterministic algo-
rithm is at least B/⌊2B/k⌋ when 2B ≥ k and k is a power of 2. As for an upper
bound, they designed a non-preemptive algorithm called StaticPartitioning
(SP ), and showed that its competitive ratio is at most 2kB

⌊B/k⌋ + k for any B ≥ k.

1.1 Our Results

In this paper, we present the following results:
(i) We design a deterministic algorithm Middle-Drop and Flush (MF )

for B ≥ 2k, and show that its competitive ratio is at most 5B+⌊B/k⌋−4
⌊B/2k⌋ . Note that

this ratio is O(k), which improves O(k2) of Kesselman et al. [26] and matches
the lower bound of Ω(k) up to a constant factor.

(ii) For any deterministic algorithm, we give a lower bound of 2B
⌊B/(k−1)⌋ + 1

on the competitive ratio for any k ≥ 2 and any B ≥ k − 1. This improves the
previous lower bound of B

⌊2B/k⌋ by a factor of almost four. Moreover, we show

that the competitive ratio of any deterministic online algorithm is unbounded if
B ≤ k − 2.

(iii) In the randomized setting, we establish the first nontrivial lower bound
of k − 1 against an oblivious adversary for any k ≥ 3 and any B. This bound
matches our deterministic upper bound mentioned in (i) up to a constant factor,
which implies that randomization does not help for this problem.

Because of the space restriction, all the proofs of the lemmas and theorems
are omitted and are included in [17].

1.2 Used Techniques

Let us briefly explain an idea behind our algorithm MF . The algorithm SP by
Kesselman et al. [26] works as follows: (1) It virtually divides its buffer evenly
into k subbuffers, each with size A = ⌊B

k ⌋, and each subbuffer (called j-subbuffer
for j ∈ [1, k]) is used for storing only j-packets. (2) If the j-subbuffer overflows,
i.e., if a new j-packet arrives when A j-packets are already stored in the j-
subbuffer, it rejects the newly arriving j-packet (the “tail-drop” policy). It can
be shown that SP behaves poorly when a lot of j-packets arrive at a burst,
which increases SP ’s competitive ratio as bad as Ω(k2) (such a bad example for



SP is included in the full version of this paper [17]). In this paper, we modify
the tail-drop policy and employ the “middle-drop” policy, which preempts the
(⌊A/2⌋+1)st packet in the j-subbuffer and accepts the newly arriving j-packet,
which is crucial in improving the competitive ratio to O(k), as explained in the
following.

MF partitions the whole set of given frames into blocks BL1, BL2, . . ., each
with about 3B frames, using the rule concerning the arrival order of 1-packets.
(This rule is explained in Sec. 3.1 at the definition of MF , where the block
BLi corresponds to the set of frames with the block number i.) Each block
is categorized into good or bad: At the beginning of the input, all the blocks
are good. At some moment during the execution of MF , if there is no more
possibility of completing at least ⌊A/2⌋ frames of a block BLi (as a result of
preemptions and/or rejections of packets in BLi), then BLi turns bad. In such
a case, MF completely gives up BLi and preempts all the packets belonging to
BLi in its buffer if any (which is called the “flush” operation). Note that at the
end of input, MF completes at least ⌊A/2⌋ frames of a good block.

Consider the moment when the block BLi turns bad from good, which can
happen only when preempting a j-packet p (for some j) of BLi from the j-
subbuffer. Due to the property of the middle-drop policy, we can show that there
exist two integers i1 and i2 (i1 < i < i2) such that (i) just after this flush oper-
ation, BLi1 and BLi2 are good and all the blocks BLi1+1, BLi1+2, . . . , BLi2−1

are bad, and (ii) just before this flush operation, all the j-packets of BLi (in-
cluding p) each of which belongs to a frame that still has a chance of being
completed are located between p1 and p2, where p1 and p2 are j-packets in the
buffer belonging to BLi1 and BLi2 , respectively. The above (ii) implies that even
though i2 may be much larger than i1 (and hence there may be many blocks
between BLi1 and BLi2), the arrival times of p1 and p2 are close (since p1 is
still in the buffer when p2 arrived). This means that j-packets of BLi1 through
BLi2 arrived at a burst within a very short span, and hence any algorithm (even
an optimal offline algorithm OPT ) cannot accept many of them. In this way,
we can bound the number of packets accepted by OPT (and hence the number
of frames completed by OPT ) between two consecutive good blocks. More pre-
cisely, if BLi1 and BLi2 are consecutive good blocks at the end of the input, we
can show that the number of frames in BLi1 , BLi1+1, . . . , BLi2−1 completed by
OPT is at most 5B + A − 4 = O(B) using (i). Recall that MF completes at
least ⌊A/2⌋ = Ω(B/k) frames of BLi1 since BLi1 is good, which leads to the
competitive ratio of O(k).

1.3 Related Results

In addition to the above mentioned results, Kesselman et al. [26] proved that
for any B, the competitive ratio of a preemptive greedy algorithm for k-OFTM
is unbounded when k ≥ 3. They also considered offline version of k-FTM and
proved the approximation hardness. Recently, Kawahara and Kobayashi [16]
proved that the optimal competitive ratio of 2-OFTM is 3, which is achieved by
a greedy algorithm.



Scalosub et al. [31] proposed a generalization of k-FTM, called the max frame
goodput problem. In this problem, a set of frames constitute a stream, and a
constraint is imposed on the arrival order of packets within the same stream.
They established an O((kMB + M)k+1)-competitive deterministic algorithm,
where M denotes the number of streams. Furthermore, they showed that the
competitive ratio of any deterministic algorithm is Ω(kM/B).

Emek et al. [11] introduced the online set packing problem. This problem
is different from k-FTM in that each frame may consist of different number
(at most kmax) of packets. Also, a frame f consisting of s(f) packets can be
reconstructed if s(f)(1 − β) packets are transmitted, where β (0 ≤ β < 1) is
a given parameter. There is another parameter c representing the capacity of a
switch. At an arrival event, several packets arrive at an input port of the queue.
A switch can transmit c of them instantly, and operates a buffer management
algorithm for the rest of the packets, that is, decides whether to accept them (if
any). Emek et al. designed a randomized algorithm Priority, and showed that
it is kmax

√
σmax-competitive when β = 0 and B = 0, where σmax is the maximum

number of packets arriving simultaneously. They also derived a lower bound of
kmax

√
σmax(log log k/ log k)

2 for any randomized algorithm. If the number of
packets in any frame is exactly k, Mansour et al. [29] showed that for any β the
competitive ratio of Priority is 8k

√
σmax(1− β)/c. Moreover, some variants

of this problem have been studied [15, 30].

2 Model Description and Notation

In this section, we give a formal description of the order-respecting k-frame
throughput maximization problem (k-OFTM). A frame f consists of k packets
p1, . . . , pk. We say that two packets p and q belonging to the same frame are
corresponding, or p corresponds to q. There is one buffer (FIFO queue), which
can store at most B packets simultaneously. An input is a sequence of phases
starting from the 0th phase. The ith phase consists of the ith arrival subphase
followed by the ith delivery subphase. At an arrival subphase, some packets
arrive at the buffer, and the task of an algorithm is to decide for each arriving
packet p, whether to accept p or reject p. An algorithm can also discard a packet
p′ existing in the current buffer in order to make space (in which case we say
that the algorithm preempts p′). If a packet p is rejected or preempted, we say
that p is dropped. If a packet is accepted, it is stored at the tail of the queue.
Packets accepted at the same arrival subphase can be inserted into the queue
in an arbitrary order. At a delivery subphase, the first packet of the queue is
transmitted if the buffer is nonempty. For a technical reason, we consider only
the inputs in which at least one packet arrives.

If a packet p arrives at the ith arrival subphase, we write arr(p) = i. For any
frame f = {p1, . . . , pk} such that arr(p1) ≤ · · · ≤ arr(pk), we call pi the i-packet
of f . Consider two frames fi = {pi,1, . . . , pi,k} and fi′ = {pi′,1, . . . , pi′,k} such
that arr(pi,1) ≤ · · · ≤ arr(pi,k) and arr(pi′,1) ≤ · · · ≤ arr(pi′,k). If for any j and
j′, arr(pi,j) ≤ arr(pi′,j) if and only if arr(pi,j′) ≤ arr(pi′,j′), then we say that fi



and fi′ are order-respecting. If any two frames in an input sequence σ are order-
respecting, we say that σ is order-respecting. If all the packets constituting a
frame f are transmitted, we say that f is completed, otherwise, f is incompleted.
The goal of k-FTM is to maximize the number of completed frames. k-OFTM
is k-FTM where inputs are restricted to order-respecting sequences.

For an input σ, the gain of an algorithm ALG is the number of frames
completed by ALG and is denoted by VALG(σ). If ALG is a randomized al-
gorithm, the gain of ALG is defined as an expectation E[VALG(σ)], where the
expectation is taken over the randomness inside ALG. If VALG(σ) ≥ VOPT (σ)/c
(E[VALG(σ)] ≥ VOPT (σ)/c) for an arbitrary input σ, we say that ALG is c-
competitive, where OPT is an optimal offline algorithm for σ. Without loss of
generality, we can assume that OPT never preempts packets and never accepts
a packet of an incompleted frame.

3 Upper Bound

In this section, we present our algorithm Middle-Drop and Flush (MF ) and
analyze its competitive ratio.

3.1 Algorithm

We first give notation needed to describe MF . Suppose that n packets p1, p2, . . . ,
pn arrive at MF ’s buffer at the ith arrival subphase. For each packet, MF
decides whether to accept it or not one by one (in some order defined later).
Let tpj denote the time when MF deals with the packet pj , and let us call tpj

the decision time of pj . Hence if p1, p2, . . . , pn are processed in this order, we
have that tp1 < tp2 < · · · < tpn . (We assume that OPT also deals with pj at
the same time tpj , which makes the competitive analysis simpler.) Also, let us
call the time when MF transmits a packet from the head of its buffer at the ith
delivery subphase the delivery time of the ith delivery subphase. A decision time
or a delivery time is called an event time, and any other moment is called a non-
event time. Note that during the non-event time, the configuration of the buffer
is unchanged. For any event time t, t+ denotes any non-event time between t
and the next event time. Similarly, t− denotes any non-event time between t
and the previous event time.

Let ALG be either MF or OPT . For a non-event time t and a packet p of a
frame f , we say that p is valid for ALG at t if ALG has not dropped any packet
of f before t, i.e., f still has a chance of being completed. In this case we also
say that the frame f is valid for ALG at t. Note that a completed frame is valid
at the end of the input. For a j-packet p and a non-event time t, if p is stored
in MF ’s buffer at t, we define ℓ(t, p) as “1+(the number of j-packets located in
front of p)”, that is, p is the ℓ(t, p)th j-packet in MF ’s queue. If p has not yet
arrived at t, we define ℓ(t, p) = ∞.

During the execution, MF virtually runs the following greedy algorithm GR1

on the same input sequence. Roughly speaking, GR1 is greedy for only 1-packets



and ignores all j(≥ 2)-packets. Formally, GR1 uses a FIFO queue of the same
size B. At an arrival of a packet p, GR1 rejects it if it is a j-packet for j ≥ 2.
If p is a 1-packet, GR1 accepts it whenever there is a space in the queue. At a
delivery subphase, GR1 transmits the first packet of the queue as usual.

MF uses two internal variables Counter and Block. Counter is used to count
the number of packets accepted by GR1 modulo 3B. Block takes a positive
integer value; it is initially one and is increased by one each time Counter is
reset to zero.

Define A = ⌊B/k⌋. MF stores at most A j-packets for any j. For j = 1, MF
refers to the behavior of GR1 in the following way: Using two variables Counter
and Block, MF divides 1-packets accepted by GR1 into blocks according to
their arrival order, each with 3B 1-packets. MF accepts the first A packets of
each block and rejects the rest. For j ≥ 2, MF ignores j-packets that are not
valid. When processing a valid j-packet p, if MF already has A j-packets in its
queue, then MF preempts the one in the “middle” among those j-packets and
accepts p.

For a non-event time t, let b(t) denote the value of Block at t. For a packet
p, we define the block number g(p) of p as follows. For a 1-packet p, g(p) = b(t−)
where t is the decision time of p, and for some j(≥ 2) and a j-packet p , g(p) =
g(p′) where p′ is the 1-packet corresponding to p. Hence, all the packets of the
same frame have the same block number. We also define the block number of
frames in a natural way, namely, the block number g(f) of a frame f is the
(unique) block number of the packets constituting f . For a non-event time t and
a positive integer u, let hALG,u(t) denote the number of frames f valid for ALG
at t such that g(f) = u.

Recall that at an arrival subphase, more than one packet may arrive at a
queue. MF processes the packets ordered non-increasingly first by their frame
indices and then by block numbers. If both are equal, they are processed in arbi-
trary order. That is, MF processes these packets by the following rule: Consider
an i-packet p and an i′-packet p′. If i < i′, p is processed before p′ and if i′ < i,
p′ is processed before p. If i = i′, then p is processed before p′ if g(p) < g(p′) and
p′ is processed before p if g(p′) < g(p). If i = i′ and g(p) = g(p′), the processing
order is arbitrary. The formal description of MF is as follows.

Middle-Drop and Flush

Initialize: Counter := 0, Block := 1.
Let p be a j-packet to be processed.
Case 1: j = 1:

Case 1.1: If GR1 rejects p, reject p.
Case 1.2: If GR1 accepts p, set Counter := Counter +1 and do the following.
Case 1.2.1: If Counter ≤ A, accept p. (We can guarantee that MF ’s buffer

has a space whenever Counter ≤ A, as proven in [17].)
Case 1.2.2: If A < Counter < 3B, reject p.
Case 1.2.3: If Counter = 3B, reject p and set Counter := 0 and

Block := Block+ 1.



Case 2: j ≥ 2:
Case 2.1: If p is not valid for MF at tp−, reject p.
Case 2.2: If p is valid for MF at tp−, do the following.
Case 2.2.1: If the number of j-packets in MF ’s buffer at tp− is at most

A− 1, accept p.
Case 2.2.2: If the number of j-packets in MF ’s buffer at tp− is at least A,

then preempt the j-packet p′ such that ℓ(tp−, p′) = ⌊A/2⌋+ 1,
and accept p. Preempt all the packets corresponding to p′ (if any).

Case 2.2.2.1: If hMF,g(p′)(tp−) ≤ ⌊A/2⌋, preempt all the packets p′′

in MF ’s buffer such that g(p′′) = g(p′). (Call this operation “flush”.)
Case 2.2.2.2: If hMF,g(p′)(tp−) ≥ ⌊A/2⌋+ 1, do nothing.

3.2 Overview of the Analysis

Let τ be any fixed time after MF processes the final event, and let c denote the
value of Counter at τ . Also, we define M = b(τ) − 1 if c = 0 and M = b(τ)
otherwise. Note that for any frame f , 1 ≤ g(f) ≤ M . Define the set G of integers
as G = {M}∪{i | there are at least ⌊A/2⌋ frames f completed by MF such that
g(f) = i} and let m = |G|. For each j ∈ [1,m], let aj be the jth smallest integer
in G. We call a block number good if it is in G and bad otherwise. Note that
aj denotes the jth good block number, and in particular that am = M since
M ∈ G. Our first key lemma is the following:

Lemma 1. a1 = 1.

Since at the end of the input any valid frame is completed, we have VOPT (σ) =∑M
i=1 hOPT,i(τ) and VMF (σ) =

∑M
i=1 hMF,i(τ) ≥

∑m
i=1 hMF,ai

(τ).
We first bound the gain of MF for good block numbers, which follows from

the definition of G:
hMF,ai(τ) ≥ ⌊A/2⌋ for any i ∈ [1,m− 1]. (1)

We next focus on the mth good block number M . Since it has some exceptional
properties, we discuss the number of completed frames with block number M
independently of the other good block numbers as follows:

Lemma 2. (a) If either c = 0 or c ∈ [⌊A/2⌋, 3B − 1], hMF,M (τ) ≥ ⌊A/2⌋.
(b) If c ∈ [1, ⌊A/2⌋ − 1] and M ≥ 2, hMF,M (τ) + B − 1 ≥ hOPT,M (τ). (c) If
c ∈ [1, ⌊A/2⌋ − 1] and M = 1, hMF,M (τ) ≥ hOPT,M (τ).

Also, we evaluate the number of OPT ’s completed frames from a viewpoint of
good block numbers:

Lemma 3. (a) hOPT,M (τ) ≤ 4B − 1. (b)
∑a2−1

j=a1
hOPT,j(τ) ≤ 4B + A − 3. (c)∑ai+1−1

j=ai
hOPT,j(τ) ≤ 5B +A− 4 for any i ∈ [2,m− 1].

Using the above inequalities, we can obtain the competitive ratio of MF by case
analysis on the values ofM and c. First, note that ifM = 1 then c ≥ 1 because at



least one packet arrives. Thus VOPT (σ) > 0. Now if M = 1 and c ∈ [1, ⌊A/2⌋−1],

then VOPT (σ)
VMF (σ) =

hOPT,1(τ)
hMF,1(τ)

≤ 1 by Lemma 2 (c). If M = 1 and c ∈ [⌊A/2⌋, 3B−1],

then VOPT (σ)
VMF (σ) =

hOPT,1(τ)
hMF,1(τ)

≤ 4B−1
⌊A/2⌋ < 5B+A−4

⌊A/2⌋ by Lemma 2(a) and Lemma 3(a).

If M ≥ 2 and c ∈ {0} ∪ [⌊A/2⌋, 3B − 1],

VOPT (σ) =
M∑
i=1

hOPT,i(τ) =
m−1∑
i=1

ai+1−1∑
j=ai

hOPT,j(τ) + hOPT,am(τ)

≤ (m− 1)(5B +A− 4)−B + 1 + (4B − 1) < m(5B +A− 4)

by Lemma 3 (note that a1 = 1 by Lemma 1 and am = M). Also, VMF (σ) ≥∑m
i=1 hMF,ai(τ) ≥ m⌊A/2⌋ by (1) and Lemma 2(a). Therefore, VOPT (σ)

VMF (σ) <
5B+A−4
⌊A/2⌋ . Finally, if M ≥ 2 and c ∈ [1, ⌊A/2⌋ − 1],

VOPT (σ) =

M∑
i=1

hOPT,i(τ) =

m−1∑
i=1

ai+1−1∑
j=ai

hOPT,j(τ) + hOPT,am(τ)

≤ (m− 1)(5B +A− 4)−B + 1 + hOPT,M (τ)

≤ (m− 1)(5B +A− 4) + hMF,M (τ)

by Lemma 2(b) and Lemma 3(b) and (c). Also, VMF (σ) =
∑m

i=1 hMF,ai(τ) ≥
(m− 1)⌊A/2⌋+ hMF,M (τ) by (1). Therefore,

VOPT (σ)

VMF (σ)
≤ (m− 1)(5B +A− 4) + hMF,M (τ)

(m− 1)⌊A/2⌋+ hMF,M (τ)
<

5B +A− 4

⌊A/2⌋
.

We have proved that in all the cases VOPT (σ)
VMF (σ) < 5B+A−4

⌊A/2⌋ . By noting that
5B+A−4
⌊A/2⌋ = 5B+⌊B/k⌋−4

⌊B/2k⌋ , we have the following theorem:

Theorem 1. When B/k ≥ 2, the competitive ratio of MF is at most 5B+⌊B/k⌋−4
⌊B/2k⌋ .

4 Lower Bound for Deterministic Algorithms

In this section, we give a lower bound on the competitive ratio for deterministic
algorithms, improving the previous lower bound by a constant factor.

Theorem 2. Suppose that k ≥ 2. The competitive ratio of any deterministic
algorithm is at least 2B

⌊B/(k−1)⌋ + 1 if B ≥ k − 1, and unbounded if B ≤ k − 2.

5 Lower Bound for Randomized Algorithms

As for randomized algorithms, we give a first nontrivial lower bound. As men-
tioned previously, this matches the upper bound we proved in Sec. 3.2 up to a
constant factor, implying that randomization does not help too much.

Theorem 3. When k ≥ 3, the competitive ratio of any randomized algorithm is
at least k − 1− ϵ for any constant ϵ against an oblivious adversary.
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