EE=iE
IEICE Technical Report
COMP2007-41 (2007-10)

HEEAN BEFEHREEFR
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

3SANFEBRZEN — b AA T ED NP 522

RA Fnt =1 =l —Et
T RERFE KRERIEREMER
T 606-8501 AR A R X 7 HAHT
Tt REKE EMBERAT 4T F—
T 606-8501 AT AL R X HAHT

E-mail: {{okia,iwama}@kuis.kyoto-u.ac.jp, {Tshuichi@media.kyoto-u.ac.jp

HoEL DEL—b AL ML, FLY AMIESHT TLett) 2Tk 92, 2N ADOAHZ N o7
BT ARMETHD. BEN—b AL FEBEIIRERZRVES LI, BEFONENZHEL, FoBAII
W EfR%E Bl 22T AT ) ZLRHAHILTHWS,. AFRETIRZ OMELZ LKL, 3N ADAMZ NEADKNY
FNCHETHMEEZRETSH. 2L T, ZOBBIIBWTROGFELHET 2N NP R2THDHZ L &7
X—D—F RE~VvFUI, BELV—L AL NUEE, NPEL2

NP-Completeness of the Stable Roommates Problem with Triple Rooms

Kazuya OKAMOTO?, Shuichi MIYAZAKI', and Kazuo IWAMA'

1 Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501, Japan
11 Academic Center for Computing and Media Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku
Kyoto 606-8501, Japan
E-mail: {{okia,iwama}@kuis.kyoto-u.ac.jp, tfshuichi@media.kyoto-u.ac.jp

Abstract In the stable roommates problem, we are given 2N people, each having a preference list that ranks re-
maining 2N — 1 people in a strict order according to his/her preferences. It asks to find a stable matching, namely,
a set of N pairs that satisfies the “stability” condition. There are instances that have no solution, but Irving has
developed a polynomial time algorithm that decides if there exists a solution, and finds one if exists. We extend this

problem into 3-dimension. In our problem, we are given 3N people and are asked to partition them into NV triples.

We prove that the problem of deciding if a stable matching exists is NP-complete.
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1. Introduction

The stable roommates problem, which we call SR, is one of
the stable matching problems first introduced by Gale and
Shapley [5]. An instance of SR consists of 2N men, each hav-
ing a preference list which is a total order of other 2N —1 men
according to his preference. A matching is a set of N disjoint

pairs of men‘”’

. For a matching M, a pair {mi,mz} ¢ M is
said to be a blocking pair for M if the following conditions
are met: {mi,m},{ma, my} € M, m; prefers ma to mj,

and mg prefers m1 to mb. A matching M is unstable if there

(1) : We consider only perfect matchings in this paper, and hence, we

define “matching” in this way.

is a blocking pair for M; otherwise, M is stable. There are
instances of SR that have no stable matching [5], but Irving
has developed an O(N?) time algorithm that cither finds a
stable matching or reports that no stable matching exists for
a given instance [8].

There are several practical applications of SR: The most
natural one is to assign people to double rooms based on
their preferences as the problem name suggests. Another
application occurs in forming pairings of players for chess
tournaments [11]. Recently, SR is studied for pairwise kid-
ney exchange between incompatible patient-donor pairs [16].

Unlike American or European styles, it is quite common
to have rooms for three or more people in Japan. For exam-

ple, resort hotels in Japan, called “Ryokan”, have Japanese



style rooms that are typically used for two or more persons.
As another example, in university dormitories, students are
sometimes packed into 4-person rooms until they become the
3rd grade. It is then quite natural to extend 2-person rooms
to k-person rooms (2 3) in the stable roommates problem.
In this paper, we consider the case of k¥ = 3 and verify its

computational complexity.

Our Contribution.
which we call 3D-SR (3-Dimensional SR). An instance of

3D-SR. consists of 3N men, each having a preference list. A

We extend SR to 3-person rooms,

preference list of each man is a totally ordered list includ-
ing all the other 3N — 1 men according to his preference. A
matching is now a set of N disjoint triples, i.e., we want to
pack 3N men into N 3-person rooms. A matching is stable
if there is no three men, each of whom becomes better off if
they constitute a new triple (a formal definition will be given
later). Such a triple is called a blocking triple. 3D-SR asks
if there exists a stable matching for a given instance. Recall
that in the case of the classical stable roommates problem
(for 2-person rooms), the problem is solved in polynomial
time. In this paper, we show that the situation changes when

we congider 3-person rooms, namely, 3D-SR, is NP-complete.

Related Results. SR can be considered as a matching
problem in non-bipartite graphs, and its bipartite counter-
part, usually interpreted as matchings between men and
women, is the stable marriage problem (SM), also intro-
duced by Gale and Shapley [5].

of SM admits a stable matching and one can be found in

Unlike SR, any instance

O(N?) time. SM and its many-one variant, called Hospi-
tals/Residents problem, are used in several assignment sys-
tems. For example, it is used to assign medical students to
hospitals in the U.S. (NRMP) [7], [14], Canada (CaRMS) [9],
Scotland (SPA)[10], and Japan (JRMS). As another exam-
ple, it is used to assign students to schools in Norway [3] and
in Singapore [18].

For SM, the extension to three dimension was proposed
by Knuth[12]. Later, Ng and Hirschberg defined 3D-SM
and proved its NP-completeness [15]. Subsequently, Subra-
manian gave an alternative NP-completeness proof[17]. In
their definition, each preference list of a member of one party
is an ordered list of pairs of the other two parties. So, if each
party contains N members, the length of each preference list
is N2?. Ng and Hirschberg pointed out the complexity of 3D-
SM with cyclic preference lists as an open problem [15]: Let
A, B, and C be disjoint parties. In preference lists, each
member of A ranks members of B, each member of B ranks
members of C, and each member of C ranks members A, and

the definition of stability is given in some suitable way. The

complexity of this problem is still open but there are some
results when the instance size is small: Boros et al. [2] and
Eriksson et al. [4] showed that any instance admits a stable
matching when NV £ 3 and when N £ 4, respectively.
Recently, the extension to three dimension have been con-
sidered also for SR. Huang [13] defined 3D-SR in a way dif-
ferent from ours, and proved NP-completeness of its several
variants. Arkin et al.[1] treated geometric 3D-SR, where
each person is located in R? and their preference lists are
determined based on Euclidean distance between them. The
complexity of this problem is still open, but they developed
an algorithm to find a stable matching with a relaxed stabil-

ity definition.
2. Preliminaries

An instance of 3D-SR consists of 3N men and cach man’s
preference list. A preference list is a totally ordered list in-
cluding all the other 3N — 1 men according to his preference.
Fig. 1 shows an example of an instance of 3D-SR when
N =2.
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Figure 1 An instance of 3D-SR.

1:23456
2:34156
3:41256
4:12356
5:12346
6:12345

Figure 2 An instance of 3D-SR that has no stable matching.

Men are denoted by numbers 1 through 6. Each row rep-
resents a preference list of each man; for example, the man
2 likes other men in an order of 4, 6, 1, 3 and 5. If man
m prefers man ma to man mi, we write ma =, mi. For
example, 4 =5 2 in the above example. If m prefers ms to
my or mi and mg are the same man, we write ma >, m1.

A matching is a set of N disjoint triples. Suppose that
a matching M includes triples {m1,m7, m{}, {m2, ms, mj

and {ms,mj, m4 }. We say that the triple {m1, m2,m3} ¢ M



is a blocking triple for M if the following three conditions are
met: (i) m2 =m, m) and m3 =m, mY, or M3 Zm, M)
and ma >=m, my. (i) M1 =my My and mg rm, My,
Or M3 =my, My and M1 =m, my. (ili) m1 =m, mi and
M2 Zmg M3, OF M2 Zmy ms and mi1 =m,; mjs. If there
is a blocking triple for M, then M is unstable; otherwise,
M is stable. 3D-SR is to find a stable matching for a given
instance.

For example, the matching {{1, 2,3}, {4,5,6}} for the in-
stance shown in Fig. 1 is not stable because the triple
{3,4,5} is a blocking triple.
{{1,3,5},{2,4,6}} for the same instance is stable. There

are instances of 3D-SR that have no stable matching. Fig. 2

However, the matching

is one such example.

3. NP-completeness of 3D-SR

We will show that 3D-SR is NP-complete using a
polynomial-time reduction from PARTITION INTO TRIANGLES,
which is already known to be NP-complete[6]. We
first give a definition of PARTITION INTO TRIANGLES in
Sec. 3.1, and show a polynomial-time reduction from
PARTITION INTO TRIANGLES into 3D-SR in Sec. 3.2.

3.1 PARTITION INTO TRIANGLES

An instance of PARTITION INTO TRIANGLES consists of an
undirected graph G = (V, E) such that |V| = 3¢ for some
positive integer q. It asks if there exists a partition of V
into g sets (sometimes called triangles) 11,15, ..., Ty satis-
fying the following properties: (i) Each 7; contains exactly
three vertices. (ii) For each set T; = {ws, vi, wi (1 <4 < q),

{ui, ’Uz‘}, {ui,wi}, {‘Ui, w,;} € E.

3 4

Figure 3 An instance of PARTITION INTO TRIANGLES.

Fig. 3 shows an instance of PARTITION INTO TRIANGLES.
We can partition the vertices into two triangles {1,2,5} and
{3,4,6} satisfying the conditions, and hence the answer to
this instance is “YES”.

3.2 Reduction from PARTITION INTO TRIANGLES to

3D-SR

Before showing a reduction, we prepare a useful gadget.
Let M denote the set of all men in an instance. The gad-
get consists of four men a, b, ¢, and e. Fig. 4 shows the
preference lists of these four men.

Each of R,, Rp, and R, includes men in M \{a,b,¢c,e} in

an arbitrary order. In e’s list, C. is an ordered list of the
subset of men in M \{a,b,c, e}, and Re is an arbitrary or-
dered list of the remaining men. Let us call this gadget a
2D-SR gadget. We denote the 3D-SR gadget consisting of a,
b, ¢, and e, as illustlated in Fig. 4, by [a, b, c|€].

a:bce R
b:cea Ry
c:eabd R
e:ab Ce ¢ Re

Figure 4 The preference lists of four men constituting a gadget.

Observe that a 3D-SR gadget has little freedom: All we
can customize for a 3D-SR gadget is to specify the members
of Ce¢ and their order in the list. For a 3D-SR gadget Q,
denote by m¢g the man playing a role of e above, and call
him an essential man of Q. Also, denote by Cg the Ce part
of e’s preference list, and call this part a crucial part of e’s
list. The following lemma is crucial in our reduction.
[Lemma 3.1] Let I be an instance of 3D-SR which includes
a 3D-SR gadget [a, b, ¢|e]. Then, any stable matching M for
I includes two triples {a, b, ¢} and {e, z,y} where z,y € Ce.
Proof. To prove Lemma 3.1, we prove that M must contain
the triple {a,b,c} in Claim 3.2, and that M must contain
the triple {e, z,y} in Claim 3.3.

[Claim 3.2] If an instance I of 3D-SR includes a 3D-SR
gadget [a, b, c

e], then any stable matching M for I contains

the triple {a, b, c}.

Proof. Suppose that {a,b,c} ¢ M. Let T'(e) be the triple
that the essential man e belongs to. We have three cases to
consider: (i) None of a,b, and ¢ is in T'(e). (ii) Exactly one
of a,b, and cis in T'(e). (iii) Exactly two of a,b, and ¢ are in
T(e).
Case (i): It is casy to verify that {a, b, ¢} is a blocking triple
for M.
Case (ii): Let m' be the one belonging to T'(e) among a, b,
and ¢. If m’ = a, a and e belong to the same triple but
neither of b and ¢ can be in 7'(e). Then it can be seen that
{a,b,c} is a blocking triple for M. Similarly as above, we
can prove that in cases of m’ = b and m’ = ¢, {a,b,c} and
{a, b, e} are blocking triples for M, respectively.
Case (iii): In cases of T'(e) = {a,b, e}, T'(e) = {a, ¢, e}, and
T(e) = {b,¢, e}, {a,b,c}, {a,b,e}, and {a,c, e} are blocking
triples for M, respectively.

So, it contradicts the stability of M in any case, which

completes the proof. O



[Claim 3.3] If an instance I of 3D-SR includes 3D-SR gad-
get [a, b, c| ¢], then any stable matching M for I includes the
triple {e, z, y}, where z,y € Ce.

Proof.

namely e can constitute a triple with none of a, b, and c.

First, by Claim 3.2, M contains the triple {a, b, c},

Now, suppose that {e,m’,m"”} € M such that m’ € Re.
Then {b, ¢, e} is a blocking triple for M, a contradiction. [J

Now the proof of Lemma 3.1 is immediate from Claims 3.2
and 3.3. O

Next, using 3D-SR gadgets, we will reduce PARTITION
INTO TRIANGLES to 3D-SR. Let G = (V,E)(|V| = 3¢ =
n,V = {v1,v2,---,v,}) be an undirected graph which is an
instance of PARTITION INTO TRIANGLES. We will construct
an instance I(QG) of 3D-SR.

First of all, we enumerate all triangles (K3) of G. The time
complexity of this enumeration is O(n®). Let 11, Ts, - - -, Ti,
be all the triangles.

Next, for each triangle, we associate three 3D-SR gadgets,
one for each vertex of the triangle; we call these gadgets a-
gadgets. Hence, we prepare 3m a-gadgets. Note that if a
vertex v belongs to k triangles in G, then k a-gadgets are as-
sociated with v. Suppose that a vertex v¢(1 < ¢t < n) belongs
to the triangle 75(1 £ s £ m). Then, the a-gadget associ-
ated with v; in T is denoted by «s:. Let Mo be the set of
essential men in a-gadgets. Also, for a vertex vy, let M,
(EM.,) denote the set of men in M, who are associated
with v;.

We further prepare other gadgets. Suppose that a ver-
tex v¢ belongs to k¢ triangles. Associated with vy, we pre-
pare k; — 1 3D-SR gadgets 3:,1, Bt,2, -+, Bt,k—1, called -
gadgets, and k; — 1 3D-SR gadgets 7vi,1, Vt,2, = 'y Veke—1
called ~-gadgets. (Without loss of generality, we can as-
sume that there is no vertex participating in no triangle,
namely k; = 1, since otherwise, the answer to the instance G
of PARTITION INTO TRIANGLES is trivially “NO”.) The num-
bers of B-gadgets and ~y-gadgets are then 3m — n each. Sim-
ilarly to Maq,, define Mg, and M., be the sets of essen-
tial men in B-gadgets and y-gadgets, respectively, associated
with .

Finally, we will construct preference lists of men. Recall
that, for each 3D-SR gadget Q = [a, b, ¢| €], we have freedom
only for the crucial part Ce(= Cgq) in the preference list of the
essential man e(= mg). Then we will show how Cg is con-
structed. Consider a triangle Ts = {vt,, v, , Ut, } enumerated
at the first step of the reduction. Recall that three a-gadgets

Qg ¢, (s,t, and o, are associated with 75. Their crucial

parts Ca, ;, » Ca,,sy, and Ca, ,, are constructed as follows:

Cog,iy TP MBy 2 By k=1 Masey Mas,ig
Moy ke =1 0¥ kgy —2 My 1

Cas,tz :mﬁtz,l mﬁt2,2 mﬁt%kt?,l mas’h mas,tz
Mevig kg =1 Ty 1y, —2 Moy

Cas,L3 FMB 1 MBey 2 rm’ﬂts,ktsfl Mas,, Masi,

vy kg —1 TVig kyy —2 Meygy 1

Next, we will construct crucial parts of preference lists of
essential men in B- and y-gadgets. Consider a vertex v; par-
ticipating in k. triangles T%,,7Ts,, .. o Ly, Then the set of
essential men in a-gadgets associated with v is denoted as
Mo, = {ts, ty Csg,ty ** askrt}. Now, associated with vy,

Cﬂt,l! Cﬁt,‘zv ] CﬁL,kt—l’ Cﬂ't,u C’Yt,z: ) C’YL,kt—l of 3D-

SR gadgets ﬁt,la ﬂtﬂ) Tt ﬂt,kt*h Y1y V.25 70y Vike—1 Ar€
defined as follows.
CﬁL.l P My g Mas, + Masy t maskt,t
Cﬂz,2 F My o Masy ¢ Masy ¢ m(\‘skt,t
Cﬁt,kt—l S My 1 Masye Masy,e Mas, 4
M .
C'Yt,l MGy Mag, + Mas, ¢ maskt,t
C"rt,z S Mg, o Mag, 1 Masyy maskt,L
C’Yt,kt—l FMBrg—1 Masye Masye "0 Mag

The reduction from PARTITION INTO TRIANGLES to 3D-
SR is now completed. It is not hard to see that the reduction
can be performed in polynomial time. We will verify the cor-
rectness of the reduction in the next section.

3.3 Correctness of the Reduction

We show that an instance G of PARTITION INTO
TRIANGLES has a solution if and only if the instance I(G)
of 3D-SR has a solution. First, we prove the “only if” part.

[Lemma 3.4] If G has a solution, then I(G) has a solution.

Proof. Let Ti,T»,...,Tm be all triangles contained in
the instance G = (V,E)(|V| = 3q) of PARTITION INTO
TRIANGLES, that are enumerated in the first part of the
reduction. Since G has a solution, there are ¢ disjoint
triangles. Without loss of generality, let the solution be
T ={T1,Ts,...,Tq}. From this partition, we will construct a
matching M in I(G) and show that M is stable.

First of all, for each 3D-SR gadget @ = [a, b, c|¢], we con-
struct a triple {a, b, ¢} and add it to M. It then remains to
show how to match essential men.

Recall that for each triangle Ts = {v,, ey, Ve, }, We pre-

pared 3 a-gadgets as,iq, 0,00, and as,. If Ts is a part of



the solution 7', namely, if 1 £ s < ¢, then we match three es-
sential men in these three a-gadgets to make a triple in M.
It remains to show how to match essential men in 8- and
~v-gadgets, and in a-gadgets associated with triangles not in
T.

Consider a vertex v; participating in k; triangles. Associ-
ated with this vertex, there are k; essential men Mag, ¢ (1 <
t £ ki) in Mg, ki — 1 essential men meg, ; 1LiLk -1
in Mg,, and k; — 1 essential men m., ; (1 <3<k —1) in
M.,,. Since v; contributes to one triangle in 7', one man in
Mg, is already matched with some other men by the above
procedure. So, remaining essential men in Mgy,, Mg,, and
M., are ks — 1 each. For each ¢ (1 £ ¢ £ k¢ — 1), we match
mg, ; and m., ;, thus constructing k; —1 pairs. For each such
pair, add one essential man corresponding to a-gadget in an
arbitrary way, making the pairs into triples. The construc-
tion of M is now completed. Note that every essential man
is matched with two men in the crucial part of his list.

We then show that M constructed as above is stable. Con-
sider an arbitrary 3D-SR gadget Q = [a, b, c|€]. a is matched
with men at the first and the second positions of his pref-
crence list, and hence cannot be a part of a blocking triple.
Since b is matched with men in the first and the third posi-
tions, he can form a blocking triple only of the form {b,c, e}.
However, since e is matched with two men in the crucial
part, and ¢ is below this crucial part in e’s list, e does not
constitute the above blocking triple. So, b either cannot be
a part of a blocking triple. Similarly, if ¢ constitutes a block-
ing triple, then the triple must contain e. However, e prefers
his matched mates to ¢ and hence, ¢ does not constitute a
blocking triple. So, if there is a blocking triple for M, this
triple consists of only essential men.

Then we consider men in S-gadgets and ~-gadgets. Con-
sider essential men mg, ; and Moy, 5 associated with vertex vs.
Recall that constructing M, we put these men into the same
triple, and note that they write each other to the first posi-
tion of their crucial parts. So, if mg, ; constitutes a blocking
triple, then m., ; is also in the same blocking triple. Fur-
thermore, by the construction of preference lists of mg, ;
and m., ;, and by the construction of the matching M, the
remaining man in this blocking triple is an essential man
from an a-gadget associated with v¢, say me,, for some s.
By the construction of M, ma, , is matched with either (i)
Ma, o and Mear, where v, vy, and wvyr constitute a tri-
angle 75 and T, € 7', or (ii) mpg, ., and m., ., associated
with the same vertex v;. In either case, it is easy to see that
{mg, ;s M, ;,Ma, . } cannot constitute a blocking triple. So,
we can conclude that essential men from - or y-gadgets can-
not be a part of blocking triples. Thus, the only remaining

case we need to consider is that a blocking triple consists of

(@) ]

three essential men, all from a-gadgets.

As mentioned above, ma, , is matched by either case (i)
or (ii) above. In case (i), Ma,, is matched with Ma, ,, and
Ma, corresponding to the same triangle. Since in ma, ,’s
list, mq, ,, and Ma, ,, are the top two among Mg, so it is
impossible that me, , constitute a blocking triple. In case
(i1), Ma, . is matched with mg, . and m,, , corresponding
to the same vertex v;. Note that Ma, , prefers meg, . to any-
one in M,. Hence, mq,, cannot be a member of a blocking

triple. O

We then proceed to the “if” part.
[Lemma 3.5] If I(G) has a solution, then G has a solution.

Proof. Let M be a stable matching for I(G). We will con-
struct a solution for G. First of all, note that for a 3D-SM
gadget Q = [a,b,c|e€], a,b, and c are in the same triple in
M by Lemma 3.1. Hence, we verify how essential men are
matched in M in the following claim.

Consider a vertex
Toy,Tagse oy Loy, -
(1 £ < ke)in Mg, ke — 1 essential men mg, 1£:<
ki—1) in Mg,, and k;, —1 essential men My, 1£i<k—1)
in Ma,.

[Claim 3.6] Forany i (1 <4< ki — 1), mg,, and m., , are

vy participating in k; triangles

‘Then there are k. essential men maq,, ,

included in the same triple in M. Furthermore, the remain-

ing one is from Mg, , namely, ma,, , (1 £4< k).

Proof.

crucial part of his list, namely, two men in Cpg, ;. Cg, ; in-

By Lemma 3.1, mg, ; is matched with men in the

cludes my, ; and ma,, , (1 £ j £ k). There are two cascs:
(i) mg, ; is matched with m,, ; and some mq, , . (i) mg, , is
matched with two Mag, 1- By the same argument for m.y, ;,
we can see that m., ; is matched with either mg, ; and one
Moty OF tWO May .S Then it can be seen that triples con-
taining mg, ; or ms, ; (1 £ 4 < kt — 1) are of the following
types: (1) (Mg, My isMas; )i (2) (M50 Ma 0 Mas ),
(3) (M Tn’aa'j,t’masj,,t)‘

Let n1, ng, and ng be the numbers of triples of types (1),
(2) and (3), respectively. Then, a triple of type (1) contains
two men from Mg, U M.,,, and a triple of type (2) or (3)
contains one man from Mg, U M.,,. Since Mg, UM,,| =
2kt — 1), 2n1 + n2 + n3 = 2(ky — 1).
type (1) ((2) and (3), respectively) contains one (two and
So,

n1 + 2n2 + 2ns < k;. Since each of ni, n2, and ng is non-

Next, a triple of

two, respectively) man from Mgy, and |Mq,| = ki

negative integer, we have na = ns = 0, which means that all

O

triples under consideration are of type (1).

Hence, currently there are n = 3¢ unmatched men, all be-

ing in M, and each being associated with each vertex. So,



they construct g triples. Now, let {ma, ,, Moy 'm%",uf} is
an arbitrary such triple. We show that s = s’ = s”, namely
these three men correspond to the same triangle enumerated
at the beginning of the reduction. For, by the construction
of the list of mq, ,, there are only two men from M, who
is in the crucial part of his list; these two men are those
associated with other two vertices of the same triangle. By
Lemma 3.1, each man has to be matched with men in the

crucial part, so the claim holds. As a consequence, for a

triple {ma, ;. Moy m%",w} in M, vertices v¢, vy and vy
constitute a triangle in G. We can select g triangles in G
according to these ¢ triples of M, which completes the proof
of Lemma, 3.5. (|

Since it is easy to see that 3D-SR is in NP, we have the
following theorem:
[ Theorem 3.7] 3D-SR is NP-complete.

4. Conclusions

We extended the stable roommates problem into triple

rooms and proved that it is NP-complete. It may be in-

teresting to consider an optimization problem of finding a
large subset of triples containing no blocking triple, and in-
vestigate its approximability.
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