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Abstract The stable marriage problem is a classical matching problem introduced by Gale and Shapley. It is
known that for any instance, there exists a solution, and there is a polynomial time algorithm to find one. However,
the matching obtained by this algorithm is man-optimal, that is, the matching is preferable for men but unprefer-
able for women, (or, if we exchange the role of men and women, the resulting matching is woman-optimal). The
sex-equal stable marriage problem, posed by Gusfield and Irving, asks to find a stable matching “fair” for both
genders, namely it asks to find a stable matching with the property that the sum of the men’s score is as close as
possible to that of the women’s. This problem is known to be strongly NP-hard. In this paper, we give a polyno-
mial time algorithm for finding a near optimal solution in the sex-equal stable marriage problem. Furthermore, we
consider the problem of optimizing additional criterion: among stable matchings that are near optimal in terms of
the sex-equality, find a minimum egalitarian stable matching. We show that this problem is NP-hard, and give a
polynomial time algorithm whose approximation ratio is less than two.

Key words the stable marriage problem, the sex-equal stable marriage problem, approximation algorithms



1. Introduction

An instance I of the stable marriage problem consists of n
men, n women, and each person’s preference list. A prefer-
ence list is a totally ordered list including all members of the
opposite sex depending on his/her preference. For a match-
ing M between men and women, a pair of a man m and a
woman w is called a blocking pair if both prefer each other
to their current partners. A matching with no blocking pair
is called stable. Gale and Shapley showed that every in-
stance admits at least one stable matching, and proposed
a linear time algorithm to find one, which is known as the
Gale-Shapley algorithm [2]. However, in general, there are
many different stable matchings for a single instance, and
the Gale-Shapley algorithm finds only one of them (man-
optimal or woman-optimal) with an extreme property: In
the man-optimal stable matching, each man is matched with
his best possible partner, while each woman gets her worst
possible partner, among all stable matchings. Hence, it is
natural to try to obtain a matching which is not only stable
but also “good” in some criterion.

There are three major optimization criteria for the quality
of stable matchings. Let pm (w) (pw(m), respectively) denote
the position of woman w in man m’s preference list (the po-
sition of man m in woman w’s preference list, respectively).

For a stable matching M, define a regret cost r(M) to be

r(M) = mz;xM max{pm(w), pw(m)}.

(m,w)€
Also, define an egalitarian cost ¢c(M) to be
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and a sex-equalness cost d(M) to be

dM)y= D" pmw) = D pulm).
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The minimum regret stable marriage problem (the minimum
egalitarian stable marriage problem and the sex-equal stable
marriage problem, respectively) is to find a stable matching
M with minimum (M) (c(M) and |d(M)|, respectively) [4].
Note that the number of stable matchings for one instance
grows exponentially in general (see[6], e.g.). Nevertheless,
for the first two problems, Gusfield [3], and Irving, Leather
and Gusfield [7], respectively, proposed polynomial time al-
gorithms by exploiting a lattice structure which is of poly-
nomial size but contains information of all stable matchings.

In contrast, it is hard to obtain a sex-equal stable match-
ing. The question of its complexity was posed by Gusfield
and Irving [4], and was later proved to be strongly NP-hard
by Kato [9]. Thus, the next step should be its approximabil-

ity for which we have no knowledge so far.

—;A 8 eA d(M;) > dM)

d(Mo)

1 The sex-equalness costs of stable matchings

Our Contribution. In this paper, we consider finding near
optimal solutions for the sex-equal stable marriage problem.
Let My and M, be the man-optimal and the woman-optimal
stable matchings, respectively. Note that d(Mp) < d(M) <
d(M;) for any stable matching M (see Fig. 1). Our goal is
to obtain a stable matching M such that —eA < d(M) < eA
for a given constant ¢, where A = min{|d(Mbo)|, |d(M.)|}.
Namely, we define the following problem called Near SexE-
qual (NSE for short). Given a stable marriage instance I
and a positive constant ¢, it asks to find a stable matching
M such that [d(M)| £ €A if such M exists, or answer “No”
otherwise. We give a polynomial time algorithm for NSE,
which runs in time O(n3+% )-

NSE asks to find an arbitrary stable matching whose sex-
equalness cost lies within some range. However, we may
want to find a good one if there are several solutions in the
range. In fact, there is an instance I that has two stable
matchings M and M’ such that d(M) = d(M’) = 0 but
(M) < ¢(M'). This motivates us to consider the follow-
ing corresponding optimization problem MinESE (Minimum
Egalitarian Sez-Equal stable marriage problem): Given a sta-
ble marriage instance I and a positive constant €, find a
stable matching M which minimizes ¢(M) under the condi-
tion that |d(M)| £ €A, (or answer “No” if none exists). We
show that MinESE is NP-hard, and give a polynomial time

(2—(e—6)/(2+3¢))-approximation algorithm for an arbitrary
4+ 1 «({;C )‘

4 such that 0 < § < ¢, whose running time is O(n
Here, Algorithm A is said to be a c-approximation algorithm
if A(I)/OPT(I) £ c¢ holds for any input I, where A(I) and
OPT(I) are the costs of A’s solution and an optimal solution,
respectively.

Although details are omitted, our results in this paper
can be easily extended to the weighted versions of the above
problems, in which p.,(w) (pw(m), respectively) represents
not simply a rank of w in m’s preference list, but an ar-
bitrary score of m for w (of w for m), where p,(w) > 0
(pw(m) > 0) and pp,(w) < pp.(w’) if and only if m prefers w
to w’' (pw(m) < pw(m’) if and only if w prefers m to m’) for

all m and w.

Related Results.

regret stable marriage problem and the minimum egalitar-

As mentioned above, the minimum

ian stable marriage problem can be solved in polynomial
time [3], [4], [7], but the sex-equal stable marriage problem is
strongly NP-hard [9]. If we allow ties in preference lists, all

these problems become hard, even to approximate, if we seek



for optimal weakly stable matching: For each problem, there
exists a positive constant § such that there is no polynomial-
time approximation algorithm with approximation ratio dn
unless P=NP [5].

2. Rotation Poset

In this section, we explain a rotation poset (partially-
ordered set), originally defined in [6], which is an underly-
ing structure of stable matchings. Here, we give only a
brief sketch necessary for understanding the algorithms given
later. Readers can refer to [4] for further details.

We fix an instance I. Let M be a stable matching for I.
For each such M, we can associate a reduced list, which is ob-
tained from the original preference lists by removing entries
by some rule. One property of the reduced list associated
with M is that, in M, each man is matched with the first
woman in the reduced list, and each woman is matched with
the last man. A rotation exposed in M is an ordered list of
pairs p = (mo, wo), (M1, w1),. .., (Mmr—1,wr—1) such that, for
every ¢ (0 £4¢ < r—1), m; and w; are matched in M, and
wiy1 is at the second position in m;’s reduced list, where
i+ 1 is taken modulo r. There exists at least one rotation
for any stable matching except for the woman-optimal stable
matching M, .

For a stable matching M and a rotation p =
(mo, wo), (m1,w1),...,(Mr—1,wr_1) exposed in M, elimi-
nating p from M means to replace m;’s partner from w; to
wit1 for each ¢ (0 <4 < r—1), (and to update a reduced list
accordingly). Note that by eliminating a rotation, men be-
come worse off while women become better off. The resulting
matching is denoted by M/p. It is well known that M/p is
also stable for I. If a rotation is exposed in M/p, then we
can similarly obtain another stable matching by eliminating
it.

Now, let M be the set of all stable matchings for I, and
IT be the set of rotations p such that p is exposed in some
stable matching in M. Then, it is known that |TT| < nZ.
The rotation poset (I1, <), which is uniquely determined for
instance I, is the set Il with a partial order < defined for
elements in IlI. For two rotations p1 and p2 in II, p1 < p2
intuitively means that p; must be eliminated before ps, or
p2 is never exposed until p; is eliminated. It is known that
the rotation poset can be constructed in O(n?) time.

A closed subset R of the rotation poset (IL, <) is a subset
of II such that if p € R and p' < p then p’ € R. There
is a one-to-one correspondence between M and the set of
closed subsets of (II, <): Let R be a closed subset. Starting
from the man-optimal stable matching My, if we eliminate
all rotations in R successively in any order following <, then

we can obtain a stable matching. Conversely, any stable

matching can be obtained by this procedure for some closed
subset. We denote the stable matching corresponding to a
closed subset R by Mg. For simplicity, we sometimes write
¢(R) and d(R) instead of ¢(Mg) and d(Mg), respectively. Es-
pecially, the empty subset corresponds to the man-optimal
stable matching My, and the set I itself corresponds to the
woman-optimal stable matching M,. From My, if we elimi-
nate all rotations according to the order <, then we eventu-
ally reach M,.

For a rotation p = (mo,wo), (m1,w1),...,(Mr—1,wr_1),
we define w.(p) and wq(p), which represent the cost change
of egalitarian and sex-equalness, respectively, by eliminating
P

r—1

we(p) = D (B, (wis1) = prny (w3))

i=0

+ D (Pus (Mim1) = pu (M),

r—1

wq(p) = Z(pmi(wi+1) = Pm; (wi))

i=0

=D (Pu (mim1) = pu, (m2)).
1=0

Here, note that wgq(p) > 0 for all p since by eliminating
a rotation, some men become worse off, some women be-
come better off, and other people remain matched with the
same partners. Now, let p be a rotation exposed in a stable
matching M. Then, it is obvious from the definition that
c(M/p) = (M) +w.(p) and d(M/p) = d(M) +wa(p). Also,

it is easy to see that for any closed subset R,

e(Mp) = ¢(Mo) + Y we(p)
pER
and
d(MR) = d(Mo) + Y wa(p).
pPER
Hence, the minimum egalitarian stable marriage problem
(the sex-equal stable marriage problem, respectively) is
equivalent to the problem of finding a closed subset R such
that c(Mo) + 3, we(p) ([d(Mo) + 3, wa(p)|, respec-
tively) is minimum. For example, the algorithm for finding
a minimum egalitarian stable matching in [7] efficiently finds

such R by exploiting network flow.

3. The Sex-Equal Stable Marriage Prob-
lem

Recall that My is the man-optimal stable matching and
M, is the woman-optimal stable matching. Note that any
stable matching M satisfies d(Mo) £ d(M) £ d(M,). Thus,
this problem is trivial if d(My) = 0 or d(M,) < 0, namely, if



2 Examples of Ry, and Rmax.

d(Mpy) = 0, My is optimal, while if d(M.) < 0, M. is optimal.
Therefore, we consider the case where d(Mo) < 0 < d(M.).
Recall that A = min{|d(Mo)|, |d(M;)|}. In the following,
we assume without loss of generality that |d(Mo)| < |d(M.)|
since otherwise, we can exchange the role of men and women.
Hence, A = min{|d(Mo)|, |d(M.)|} = |d(Mo)|.

We first briefly give the underlying idea of our algorithm
presented in this section. Recall that, for a given instance
I and ¢, we are to find a stable matching M such that
—eA £ d(M) £ €A if any. As an easy case, assume that
all rotations p of I satisfy wq(p) < 2eA. Now, we con-
struct a rotation poset (II, <) of I, and starting from Mo,
we eliminate rotations in an order of any linear extension of
<. Recall that by eliminating a rotation, the sex-equalness
cost increases, but by at most 2¢A by assumption. Note
that d(Mo) < 0 < d(M.), and recall that if we eliminate all
rotations from My, we eventually reach M,. Then, in this
sequence, we certainly meet a desirable stable matching at
some point.

However, this procedure fails if there is a rotation with
large sex-equalness cost: If we eliminate such a rotation, then
we may “jump” from M to M’ such that d(M) < —eA and
d(M') > €A even if there is a feasible solution. To resolve
this problem, we will try all combinations of selecting such
“large” rotations, and treat “small” rotations in the above
manner. To evaluate the time complexity, we show that the
number of large rotations is limited.

Before giving a description of our algorithm, we give
Let R be any (not necessarily
closed) subset of a poset (II,<). Then define Rmin =
RU{p | there exists a o’ € R such that p < p’'} and Rmax =
R U {p | there exists a p’ € R such that p’ < p}. See Fig.

a couple of notations.

2 for example. Fig. 2 (a) represents a Hasse diagram of a
poset, where black circles are elements of R. Rmin and Rmax
are depicted in Fig. 2 (b) and Fig. 2 (c), respectively. Intu-
itively speaking, when constructing a closed subset A, if we
decide to include all elements of R to A, then Rmin is the
set of elements that must be included in A. Similarly, if we
decide to include no elements of R, then Rnax is the set of

elements that must not be included in A.

Algorithm 1
1. Construct the rotation poset (II, <).
2. Let R” be the set of rotations p such that wq(p) > 2€A,
and R® be T\ RL.
3. For each set R in 2% such that |R| < k<. do,
(a) If —eA < d(Rmin) < €A, then output Mg, .
(b) Fix an arbitrary order p1,p2,--,pr € R®\ (Rmin U
(RY\ R)max) which is consistent with <.
(c)Fori=1tok
if —eA £ d(Rmin U {p1,p2," -
then output Mz

1 pit) S el
1 and halt.

minU{p1,02,,0;
4. Output “No,” and halt.

[Theorem 3.1] There is an algorithm for NSE whose run-

ning time is O(n*" %)

Proof. Correctness Proof.
ble matching M such that —eA < d(M) £ €A, then the
algorithm answers “No.” On the other hand, suppose that
there is stable matching Mx such that —eA < d(Mx) < €A,
where X is the set of rotations corresponding to Mx. Let
X' = XnRYand X5 = X N RS, Then, d(Xt) <
d(X) = d(Mx) £ eA. Because wq(p) > 2eA for any ro-

; L L d(xEy—a |d(Mo)|+eA _ 1
fation p € X7, [X*] < S0 < Mipss _ age

Clearly, if there is no sta-

So, Algorithm 1 selects X% at Step 3 as R, and we consider
this particular execution of Step 3.

First, note that d((X%)min) < €A since otherwise, d(X) =
d((XE)min) > €A, a contradiction. If —eA < d((X%)min) £
€A, then Algorithm 1 outputs M yr) , at Step 3(a).
Finally, suppose that d((X%)min) < —eA. Note that
d(( XY min U {p1,p2, -+, px}) = d(X) = —€A and that any
rotation p; (1 £ i £ k) satisfies wq(p;) < 2¢A. Hence
there must be j (1 £ j < k) such that —eA < d((XX)min U
{p1,p2,-+,p;}) £ eA.

Time Complexity. Steps 1 and 2 can be performed in
O(n?). Inside the loop of Step 3 can be performed in O(n?)
since the number of rotations is at most O(n?). Clearly, Step
4 can be performed in constant time.

We consider the number of repetitions of Step 3, i.e., the
number of R satisfying the condition at Step 3. Let this
number be ¢. Recall that the number of rotations is at most

n? as mentioned in Sec. 2.. So, |R¥| < n?. Since |R| < 12+€e’

ite | 5ke) Lie
< c

2e J 2 2
n (n ) el 14e
= < ASEArA—— < ).
t E ( ’ ) < x O(n"<")

k=1 k=1

Hence the time complexity of Algorithm 1 is O(n?) -
O(n™ <) = O(n3+4). O



Remark. We can improve Algorithm 1 when |d(Mo)| and
|d(M)| are close, more precisely, when they differ at most
logn factor. Let A’ be logn max{|d(Mo)|, |d(M.)|} and we
can find a stable matching M which satisfies —eA’ < d(M) <

€A’ in polynomial time by using a modified version of Algo-
rithm 1 (Algorithm 1).

uses A’ instead of A and executes Step 3 for all subsets of

We modify Algorithm 1 so that it

2RL. Note that, from the discussion in Sec. 2.,

+ szt(ﬂ)

peM

d(M) = d(Mo)

Hence |RV| < 9M)=d(Mo) o 2max{|d(Mo)l.[d0M)[} _ logn

Thus the number of repetltlons of Step 3 is at most 2|R ' =
n'/¢, which is polynomial.

Remark. There are several goodness measures of an ap-
proximation algorithm A for a minimization problem. The
usual measure is the approximation ratio of A, which is
defined as max{A(xz)/opt(z)} over all instances z, where
opt(z) and A(x) are the costs of the optimal and the algo-
rithm’s solutions, respectively. However, this measure can-
not be used for the sex-equal stable marriage problem, be-
cause opt(z) can be zero. For such a case, there is another
measure: the relative accuracy[l],[10], which is defined as
max{(max(z) — opt(z))/(max(zx) —

x, where opt(z), max(z), and A(x) are the costs of the op-

A(x))} over all instances

timal solution, the worst solution, and the algorithm’s solu-
tion, respectively. By using Algorithm 1’ in the above re-
mark, we can construct an algorithm 7" which achieves the
relative accuracy 1+ ¢/ logn for an arbitrary constant ¢ > 0.

Let M,p: be an optimal solution for the sex-equal sta-
ble marriage problem. Recall that we are considering the
case where d(Mo) < 0 < d(M.). If |d(Mop:)| > D/2,
where D = max{|d(Mo)|,|d(M.)|}, Mept can be obtained
in polynomial time in the following way: Let M, be the
stable matching such that no other stable matching M sat-
isfies d(M,) < d(M) < —D/2 and let M, be the stable
matching such that no other stable matching M satisfies
D/2 < d(M) < d(Mp). Then, Mop: is either M, or M.
Since d(M) — d(M,) > D, there exists a rotation py such
that wq(pr) > D (otherwise there must be a stable match-
ing M, such that d(M,) < d(M.) < d(My)).
is unique because

> walp) = d

pell

Also, this pu

M) — d(Mo) < 2D.

It is easy to see that the maximum closed subset which does
not contain py corresponds to M, and that the minimum
Thus,
M, and M, can be obtained in polynomial time. Finally,
assume that |d(Mop:)| £ D/2. For each ¢ such that i =

1,2,..., [1"%] we find a stable matching with sex-equalness

closed subset which contains py corresponds to Mp.

5Taay Pt and 5
1’, and output the best one. Then it is easy to see that an
output matching M satisfies |d(M)| — |d(Mopt)| £ 57— D.

2 log n
Now, the relative accuracy is

cost between — 51y, D1 if any using Algorithm

210 n

max(z) — opt(zx) _ T(z) — opt(z)
max(z) — T'(x) max(x) — T(x)
(e/2logn)D
=T
= iogn

4. The Minimum Egalitarian Sex-Equal
Stable Marriage Problem

In NSE, we are asked to find a stable matching whose
sex-equalness cost is in some range close to 0. However, if
there are several stable matchings satisfying the condition,
there might be good ones and bad ones. In fact, there is an
instance I that has two stable matchings M and M’ whose
sex-equalness costs are the same (0), but egalitarian costs are
significantly different. (Because of the space restriction, we
omit the construction of this instance.) This motivates us
to consider the following problem, MinESE (the Minimum
Egalitarian Sex-Equal stable marriage problem): Given an
instance I and a constant e such that 0 < ¢ < 1, find a stable
matching M with minimum ¢(M), under the condition that
|d(M)| £ €A, (or answer “No” if no such solution exists).
First, in Sec. 4.1, we show that MinESE is NP-hard. Then,
in Sec. 4. 2, we give an approximation algorithm for MinESE.

4.1 NP-hardness of MinESE

It turned out that there is a polynomial-time algorithm for
obtaining a stable matching M such that (a) —eA < d(M) <
eA or (b) ¢(M) is minimum. Interestingly, it is hard to ob-
tain M satisfying (a) and (b).

[Theorem 4.1] MinESE is NP-hard.

Proof. Because of the space restriction, we give only a
rough idea of the proof, and omit the details.

‘We show that MinESE is NP-hard by a reduction from
the k-clique problem. In this problem, we are given a graph
G(V, E) and an integer k, and asked if there exists a clique
of size k. This problem is NP-complete.

Given a graph G = (V, E) and an integer k, we first con-
struct a poset (II, <) in a similar manner as the construction
in [8]. Let II be V U E, and define the precedence relation <
as follows: v < e if and only if v € V is incident to e € E
in G(V, E). We then give weights to each element in (11, <):
We give some negative weight to each element corresponding
to an edge, and positive weight to an element corresponding
to a vertex. Note that if we want to select a closed subset
with smaller weight, we want to select many elements corre-

sponding to edges, but to make the subset closed, we need



to select elements corresponding to adjacent vertices, which
may increase the weight. We give weights to vertices and
edges appropriately, so that only closed subsets correspond-
ing to k-cliques can have a desirable (negative) weight.

Next, we construct an instance I of MinESE from the poset
(I, <) using a similar construction as [9], so that the rotation
poset of I is exactly (II, <). In the construction, we ensure
that the egalitarian cost of each rotation is exactly the same
to the weight of the corresponding element defined above.
We also adjust sex-equalness cost of rotations so that if R is
a closed subset corresponding to a k-clique of G, then d(Mr)
lies between —eA and €A. In summary, our reduction satis-
fies the following: G has a k-clique if and only if there is a
stable matching M in I such that —eA < d(M) £ eA and
(M) < c(Mo).

We can show that MinESE is NP-hard as follows: Given
an instance of the clique problem, we construct a MinESE
instance I by the above reduction. Then, we find an opti-
mal solution M and the man-optimal stable matching M.
Finally, we compare c(My) and c¢(M): If ¢(M) < ¢(Mo), the

answer to the clique problem is “yes,” otherwise, “no.” [l

Remark. Although details are omitted, the reduction in the
NP-hardness proof produces an instance (I,¢) of MinESE
such that |d(Mo)| = |d(M.)| in I, and e is any constant such
that 0 < € < 1. Observe that if |d(Mo)| = |d(M.)| and e = 1,
then MinESE is equivalent to the minimum egalitarian stable
marriage problem, which can be solved in polynomial time.

4.2 Approximation Algorithms for MinESE

Here, we give a (2 — (e — 0)/(2 + 3¢))-approximation algo-
rithm for MinESE for an arbitrary ¢ such that 0 < § < e.
Similarly as Sec. 3., we assume that |d(Mo)| £ |d(M,)|. In
this section, we prove two simple but important lemmas
that link the egalitarian cost and the sex-equalness cost,
whose proofs are given later. (i) For any stable matching
M, |d(M)| < ¢(M) (Lemma 4.4). (i) For any stable match-
ing M and a rotation p exposed in M, by eliminating p from
M, the cost change in the egalitarian cost is less than the
cost change in the sex-equalness cost (Lemma 4.5).

To illustrate an idea of the algorithm, we first consider
a restricted case and show that our algorithm achieves 2-
approximation. For a fixed § such that € > § > 0, suppose
that all rotations satisfy wa(p) < dA. Given I and €, we
first find a minimum egalitarian stable matching M.y, which
can be done in polynomial time. If —eA £ d(Mey) < €A,
then we are done since M,y is an optimal solution for Mi-
nESE. If d(M.y) < —eA, then we eliminate rotations one
by one as Algorithm 1 does until the sex-equalness cost first
becomes —eA or larger. If d(M.y,) > €A, then we “add”

rotations one by one until the sex-equalness cost first be-

(M)

- d(M)
—€A 0 €A

K3 C < Bby (i) and A < C by (ii). Hence A+B < C+B < 2B.

comes €A or smaller. Here, “adding a rotation” means the
reverse operation of eliminating a rotation. If we do not
reach a feasible solution by this procedure, then we can con-
clude that there is no feasible solution, by a similar argu-
ment as in Sec. 3.. If we find a stable matching M such
that —eA < d(M) £ €A, then we can show that this is
a 2-approximation, namely, ¢(M) < 2¢(M.,) using (i) and
(ii) above (note that the optimal cost is at least c¢(Meg)):
Suppose, for example, that d(Mey) < —eA (see Fig. 3).
Then, by (ii), ¢(M) — c«(Meg) < d(M) — d(M.g), and by
(i), |d(Meg)| < c(Meg). Also, since the costs of rotations are
at most dA, and since M is the first feasible solution found
by this procedure, d(M) £ —(¢ — §)A < 0. Putting these
together, we have that ¢(M)/c(Mey) < 2.

However, we may have rotations of large costs. Then we
take a similar approach as in Sec. 3.: Let R” be the set of
such large rotations. Then, for any partition R; and Ry of
RE (RiUR; = RY and RiNRs = 0), we want to obtain
a minimum egalitarian stable matching whose correspond-
ing closed subset A contains all rotations in R but none in
Rs. For this purpose, we need to solve the following prob-
lem: Given an instance I and disjoint subsets of rotations
Ri1 and Rs of RL, find a minimum egalitarian stable match-
ing M4 under the condition that the corresponding closed
subset A satisfies ADR;1 and AN Ry = (0. For this problem,
we can use the same algorithm for the minimum egalitarian
stable marriage problem in[4]. We denote this procedure
by minEgalitarian(R1, R2). First, we review the following
proposition described in [4]:

[Proposition 4.2]

O(n*)-time algorithm which finds a minimum-weight closed

[4] Given a poset (II, <), there is an

subset of (II, <) with respect to the egalitarian cost.

Our procedure minEgalitarian( R1, Rz) is as follows: With-
out loss of generality, assume that there are no elements such
that 72 < 71 (r1 € R1 and r2 € Rz) since there exists no solu-
tion in such a case. Construct the poset (I, <) by removing
all the rotations in (R1)min and (R2)max from (II, <) (recall
the definitions of Rmin and Rmax given before Algorithm 1),
and let R’ be the subset obtained by using Proposition 4.2
to (II', <). Then, it is easy to see that (Ri)min U R’ is an



optimal solution for minEgalitarian(R1, R2). Now, we are

ready to give the algorithm for MinESE.

Algorithm 2
1. Construct the rotation poset (II, <).
2. Let Mpes: = NULL.
3. Let R be the set of rotations p such that wa(p) > 5A,
and R® be II\ RL.
4. For each set R in 27" such that |R| < 1=, do,
(a) Let A = minFgalitarian(R, R" \ R).
If d(A) < —eA, go to (b).
If d(A) > €A, go to (c).
If —eA < d(A) £ €A, go to (d).
(b) Fix an arbitrary order p1, p2, - -

< pe € RO\ (AU(RM\

R)max) which is consistent with <.
For i =1 to k,

if —eA < d(AU{p1,p2,

then let A= AU {p1,p2,---

1Pi}) = €,
,pi} and go to (d).
(c) Fix an arbitrary order p1, p2, -+, pr € (ANR%)\ Rmin
which is consistent with <.
For i =k to 1,
if —eA < d(AN\{pi,pit1, -, pK}) S €A,
then let A = A\ {ps, pit1, -+, pr} and go to (d).
(d) If ¢(A) < c(Mpest), then let Myese = Ma.
5. If Myest + NULL, then output Mpest, otherwise output
“No,” and halt.

[Theorem 4.3] There is a (2 — (e — §)/(2 + 3¢))-
approximation algorithm for MinESE whose running time

14e
is O(n*"75") for an arbitrary § such that 0 < § < e.

Proof. Correctness Proof. Clearly, if there is no stable
matching M such that —eA < d(M) £ €A, then the algo-
rithm answers “No.” On the other hand, suppose that there
is a feasible solution, and let M,,: be an optimal solution.
We first show that Algorithm 2 finds a feasible solution. Let
OPT be the rotation set corresponding to Myp:, and de-
fine OPTY = OPT N R". Then, d(OPT*) < d(OPT) =
d(Mopt) £ €A. Because wa(p) > JA for any rotation
p € OPTY, |OPT*| < d(OPT;)Afd(MO) < |d(Mg£|cA _ %_rs
So, Algorithm 2 selects OPTT at Step 4 as R, and we con-

sider this particular execution of Step 4. We show that in
this execution, Algorithm 2 finds a feasible solution. Let
Aopt = minEgalitarian(OPTY, R“\ OPT"). There are three
cases:

(i) —eA < d(Aopt) < €A. Ma,,, is clearly a feasible
solution.

(i) d(Aopt) < —eA. Note that d(AopU{p1, p2, -, pr}t) =
d(Mopt) = —eA and that any rotation p; (1 £ ¢ < k) satisfies

wq(ps) £ 6A. Hence there must be j (1 £ j < k) such that
—€eA < d(Aopt U{p1,p2,-+,pi}) £ —(e = §)A.

(iii) d(Aopt) > €A. Note that d(Aope \ {p1,p2, ", pe}) £
d(Mopt) < €A and that any rotation p; (1 £ 4 < k) satisfies
wq(p;) £ 6A. Hence there must be j (1 £ j < k) such that
(€ = 0)A < d(Aopt \ {pss s+, Pr}) = €A

Next, we analyze the approximation ratio. Let M™ be the
matching found in this particular execution of Step 4. We
show that ¢(M™) £ (2—(e—9)/(2+3¢€))c(Mopt), which gives
a proof for the approximation ratio. We first prove the fol-
lowing two lemmas:

[Lemma 4.4] For any stable matching M, |[d(M)| < c(M).

Proof. If d(M) = 0, then c¢(M) — |[dM)| =
QZ(m,w)eMpw(m) > 0. Otherwise, ¢(M) — |[d(M)| =
QE(m,w)eMpm(w) > 0. 1

[Lemma 4.5] Let R = {p1,...
and let My,---, M, be stable matchings such that M;1; =
M;/pifor1 <4 < r. Then, |c(M;)—c(M1)| < d(M;)—d(M-).

,pr—1} be a set of rotations

Proof.

included in a rotation p;.

Suppose that for a pair (m,w) € M;, m and w are
Let m' = M;41(w) and w’' =
M;+1(m). By the properties of the rotation [4], m prefers w
to w’ and w prefers m’ to m. Let d(m) = pm(w') — pm(w)
and d(w) = pw(m) — pw(m’). Then d(m) > 0 and d(w) > 0,
and it follows that

le(Miy1) — (M)

D dim) =D d(w)
D dim) + ) d(w)

d(Mz'+1) — d(Mz)

A

By summing up the above inequality for all ¢, we have

le(Mr) = (M) £ ) [e(Mig1) = (M)

r—1

< Z(d(MH—l) — d(M;))

= d(M,) — d(My).

O

Note that Aoy, = minEgalitarian(OPTY RE\OPTY). So,
¢(Aopt) £ c(Mop:) since OPT, the rotation set corresponding
to Mope, is one of the candidates for Aop:. We will consider
the following four cases (note that d(A.p:) = —A for any
stable matching M):

Case (i): —eA £ d(Aopt) £ €A. In this case, M* =
Ma,,, , which is an optimal solution since c(Aopt) = c(Mopt).

Case (ii): €A < d(Aopt) £ (2 + 3€)A. In this
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case, Step 4(c) of Algorithm 2 is executed. ~We have

|c(Aopt) — c(M™)| < d(Aopt) — d(M™) by Lemma 4.5. Since
d(M™) = (e—06)A and (ii) hold, |c(Aopt) —c(M™)] < (1—(e—
8)/(243€))d(Aopt). Since |d(Aopt)| < c(Aopt) by Lemma 4.4
and ¢(Aopt) £ c(Mopt), c(M™) < (2—(e—8)/(2+3¢€))c(Mopt)-

Case (iii): (2 4+ 3€)A < d(Aopt). Since both Myp:
and M™ can be obtained by repeatedly eliminating rota-
tions from Mo, |c(Mop:) — ¢(Mo)| < d(Mopt) — d(Mo) and
le(M™) — e(Mp)| < d(M*) — d(Mo) by Lemma 4.5 (See
Fig. 4). Since both d(Mop:) and d(M™) are at most €A,
(M™) — e(Mopt) < 2(1 + €)A (note that |[d(Mo)| = A). Tt
follows that c¢(M™) — ¢(Mopt) £ 2(1 + €)d(Aopt)/(2 + 3€) =
(2 — ¢/(2 4 3¢€))d(Aopt). Since we have |d(Aopt)| < c(Aopt)
by Lemma 4.4 and ¢(Aopt) £ c(Mopt), c(M*) < (2—¢/(2+
3e))e(Mopt).

Case (iv): —A < d(Aopt) < —€eA. The same as Case
(ii).
Time Complexity. Steps 1, 2, 3, and 5 can be executed
in O(n?) time. Step 4(a) is performed in the same time
complexity as finding a minimum egalitarian stable match-
ing, namely, O(n*). We can see that Steps 4(b) through
4(d) can be performed in time O(n?) by a similar analysis
of Algorithm 1. The number of repetitions of Step 4 can
be analyzed in the same way as the proof of Theorem 3.1,
which is O(n¥) Hence the time complexity of Algorithm

2 is O(n+ %), O

5. Concluding Remarks

In this paper, we gave a polynomial time algorithm for
finding near optimal sex-equal stable matching. Further-
more, we proved NP-hardness and developed a polynomial
time approximation algorithm whose approximation ratio is
less than 2 for MinESE. Our future work is to improve the
approximation ratio of MinESE.
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