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SUMMARY An instance of the classical stable marriage problem re-
quires all participants to submit a strictly ordered preference list contain-
ing all members of the opposite sex. However, considering applications
in real-world, we can think of two natural relaxations, namely, incomplete
preference lists and ties in the lists. Either variation leaves the problem
polynomially solvable, but it is known that finding a maximum cardinality
stable matching is NP-hard when both variations are allowed. It is easy
to see that the size of any two stable matchings differ by at most a fac-
tor of two, and so, an approximation algorithm with a factor two is trivial.
A few approximation algorithms have been proposed with approximation
ratio better than two, but they are only for restricted instances, such as re-
stricting occurrence of ties and/or lengths of ties. Up to the present, there
is no known approximation algorithm with ratio better than two for general
inputs. In this paper, we give the first nontrivial result for approximation
of factor less than two for general instances. Our algorithm achieves the
ratio 2 − c log N

N for an arbitrarily positive constant c, where N denotes the
number of men in an input.
key words: stable marriage problem, incomplete lists, ties, approximation
algorithms, local search

1. Introduction

The stable marriage problem is a matching problem first in-
troduced by Gale and Shapley [9]. An instance of this prob-
lem consists of N men, N women, and each person’s prefer-
ence list. A preference list is a totally ordered list including
all members of the opposite sex according to his/her prefer-
ence. For a matching M between men and women, a pair
of a man m and a woman w is called a blocking pair if (i) m
prefers w to his partner in M, and (ii) w prefers m to her part-
ner in M. A matching with no blocking pair is called stable.
The stable marriage problem is to find a stable matching
for a given instance. Gale and Shapley showed that every
instance admits at least one stable matching, and they also
proposed so-called the Gale-Shapley algorithm to find one,
which runs in O(N2) time [9].

However, considering an application to large-scale as-
signment systems, it is unreasonable to force agents to write
all members of the other party in a strict order. Hence it
is natural to think of the following two relaxations: One
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is to allow for indifference [11], [16], in which each person
is allowed to include ties in his/her preference. When ties
are allowed, the definition of stability needs to be extended.
A man and a woman form a blocking pair if each strictly
prefers the other to his/her current partner. A matching with-
out such a blocking pair is called weakly stable. (There are
two other stability definitions, strong stability and super-
stability. However, in this paper, we consider only weak sta-
bility, and hence we say simply “stable” instead of “weakly
stable”.) It is known that the Gale-Shapley algorithm can be
modified to always find a stable matching [11]. The other
one is to allow participants to declare one or more unac-
ceptable partners. Thus each person’s preference list may
be incomplete. Again, the definition of a blocking pair is
extended as follows: A pair of a man m and a woman w is
called a blocking pair if (i) m prefers w to his current part-
ner, or m is currently single but includes w in the list, and
(ii) w prefers m to her current partner, or w is currently sin-
gle but includes m in the list. In this case, a stable matching
may not be a perfect matching, but all stable matchings for a
fixed instance are of the same size [10], and again, it is easy
to modify the Gale-Shapley algorithm for this relaxed case.
Hence, finding a maximum cardinality stable matching is
trivial.

However, if both ties and incomplete lists are allowed,
one instance can admit stable matchings of different sizes,
and it is known that the problem of finding a maximum sta-
ble matching, which we call MAX SMTI (MAXimum Stable
Marriage with Ties and Incomplete lists), is NP-hard [21],
[26]. For approximability, it is easy to see that two stable
matchings for the same instance differ in size by at most a
factor of two (see Theorem 5 of [26], for example). Since a
stable matching can be found in polynomial time by a mod-
ified Gale-Shapley algorithm, the existence of an approxi-
mation algorithm with a factor of two is trivial. Recently,
Halldórsson, et. al. [14] presented several approximability
upper bounds which are significantly better than two for re-
stricted inputs, such as a 2

(1+1/L2) -approximation algorithm
for instances where length of ties is at most L and ties ap-
pear in the lists of only one sex, and a 13/7-approximation
algorithm for instances where length of ties is two but ties
may appear in both sides.

Our Contribution. In this paper, we give the first nontriv-
ial approximability result for general MAX SMTI. Namely,
our new algorithm, based on local search, achieves an ap-
proximation factor of 2 − c log N

N , where c is an arbitrarily
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positive constant. From an initial stable matching, our algo-
rithm successively improves the size of the solution. While
the size of the current solution is at most OPT

2 +c log N where
OPT is the size of an optimal solution, we can increase the
size by at least one. Hence, we finally obtain a stable match-
ing of size greater than OPT

2 + c log N, which gives an upper
bound on the approximation ratio.

Related Results. There are several examples of using the
stable marriage problem in assignment systems. Among
others, one of the most famous applications is to assign med-
ical students to hospitals based on the preference lists of
both sides. For example, more than 30,000 applicants are
enrolled in the hospitals/residents matching system in the
U.S., which is known as NRMP [11], [25]. In Japan, this
kind of matching system is used since 2003, where more
than 95% of 8,000 applicants obtained their positions in the
first year. Other examples for hospitals/residents matching
include CaRMS in Canada, and SPA in Scotland [17], [18].
Another famous application is to assign students to schools
in Norway [7] and Singapore [29].

As for the problem of approximating MAX SMTI,
there have been a lot of positive and negative results. For
inapproximability, MAX SMTI was shown to be APX-
hard [12], and subsequently, a lower bound 21/19 on the
approximation ratio (under the assumption that P�NP) was
presented [14]. This lower bound holds for restricted in-
stances where ties appear in only one sex, the length of ties
is two, and each person has at most one tie. For approxima-
bility, there are some approximation algorithms with fac-
tor better than two for restricted inputs, in which, mainly
restrictions are done in terms of occurrence of ties and/or
lengths of ties [13], [14], [26], as mentioned previously.

Other than SMTI, research on stable matchings has
been quite intensive recently, which includes studies on
strong stability [20], [24], rank-maximal matchings [19],
Pareto optimal matchings [1], popular matchings [2], and
others [3], [6], [8].

There are several optimization problems that resemble
MAX SMTI, where designing a 2-approximation algorithm
is trivial but obtaining a (2 − ε)-approximation algorithm
for a positive constant ε appears to be extremely hard, such
as Minimum Vertex Cover (MIN VC for short) and Mini-
mum Maximal Matching (MIN MM for short). As is the
case with MAX SMTI, there are a lot of approximability
results for these problems by restricting instances. For ex-
ample, MIN VC is approximable within 7/6 if the maxi-
mum degree of an input graph is bounded by 3 [5], or within
2/(1 + ε) if every vertex has degree at least ε|V | [23]. For
MIN MM, there is a (2 − 1/d)-approximation algorithm
for regular graphs with degree d [30], and PTAS for planar
graphs [28]. For general inputs, (2−o(1))-approximation al-
gorithms are known for MIN VC, namely, 2 − log log |V |

2 log |V | and

2 − (1 − o(1)) 2 ln ln |V |
ln |V | [4], [15], [27]. Recently, this has been

improved to 2 − Θ
(

1√
log |V |

)
[22].

2. Preliminaries

In this section, we formally define MAX SMTI and approx-
imation ratio.

An instance I of MAX SMTI consists of N men, N
women, and each person’s preference list that may be in-
complete and may include ties. If a person q is included in
a person p’s list, we say that q is acceptable to p. Let m be
a man and wi and wj be women. If m strictly prefers wi to
wj in I, we write wi �m wj. If wi and wj are tied in m’s list,
we write wi =m wj. The statement wi �m wj is true if and
only if wi �m wj or wi =m wj. We use similar notations for
women’s preference lists.

A matching M is a set of pairs (m,w) such that m is
acceptable to w and vice versa, and each person appears at
most once in M. The size of a matching M, denoted |M|, is
the number of pairs in M. We sometimes call a pair (m,w) ∈
M an edge of M. If a man m is matched with a woman w in
M, we write M(m) = w and M(w) = m. If a person p is not
matched in M, we say that p is single in M. We say that m
and w form a blocking pair for M (or simply, (m,w) blocks
M) if the following three conditions are met: (i) M(m) � w
but m and w are acceptable to each other. (ii) w �m M(m) or
m is single in M. (iii) m �w M(w) or w is single in M. For
a matching M, BP(M) denotes the set of blocking pairs for
M. A matching M is called stable if and only if BP(M) = ∅.
MAX SMTI is a maximization problem defined as follows:

MAX SMTI
Instance: Men, women and preference lists.
Feasible solution: A stable matching.
Measure: The size of matching.

A goodness measure of an approximation algorithm T
of a maximization problem is defined as usual: the approx-
imation ratio of T is max{opt(x)/T(x)} over all instances x
of size N, where opt(x) and T (x) are the size of the optimal
and the algorithm’s solution, respectively.

3. Overview of Algorithm LOCALSEARCH(I)

Here we give an overview of our algorithm LS.
We need two parameters k and c, which are fixed constants
such that c < k

16 . LS takes an input I of MAX
SMTI and uses two subroutines, I and S.

I takes a stable matching M for I and a subset
S of M such that |S | = k log N. It outputs a (not necessarily
stable) matching M0 such that |M0| > |M|, satisfying the
following property Π:

Π: For any blocking pair (m,w) ∈ BP(M0), either m or w (or
both) is single in M0.

I may fail to find such a matching. In such a case, it
returns an error.

S takes a matching M0 with property Π, and
outputs a stable matching of size at least |M0|.
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Algorithm LOCALSEARCH(I)
1: M: = arbitrary stable matching for I;

/* This can be found in polynomial time by arbitrary tie-
breaking and applying the Gale-Shapley algorithm. */

2: while (true)
3: {Select (k + 4c) log N edges from M in an arbitrary way,

and let P be the set of selected edges;
4: Let P1, P2, · · · , Pn be all subsets of P of size k log N;
5: for i := 1 to n
6: Mi := I (M, Pi);

/* If I returns an error,
let Mi be empty. */

7: if (there is a non-empty Mi)
8: M0 := Mi;
9: else

10: Terminate and output M;
11: M := S (M0);
12: }

Fig. 1 Algorithm LS .

The full description of LS is given in Fig. 1.
One can see that application of the while-loop increases the
size of stable matching by at least one. This process can
continue as long as the condition at line 7 is true. Later,
we show in Lemma 4 that this is the case if (1) an input S
for I has some “nice” property, and (2) |M|, the size
of the input stable matching for I, is at most OPT

2 +

c log N, where OPT denotes the size of a maximum stable
matching, and c is a constant defined above. Furthermore,
we show in Lemma 3 that, among P1, P2, · · · , Pn obtained at
line 4, there is at least one “nice” Pi if |M| ≤ OPT

2 + c log N.
So, the condition at line 7 is true if |M| ≤ OPT

2 + c log N, and
hence we have the following theorem:

Theorem 1: Given an SMTI instance I of size N,
LS outputs a stable matching of size more than
OPT

2 + c log N in time polynomial in N.

Corollary 1: The approximation ratio of LS
is at most 2 − 2c log N

N .

Proof. Let M be the output of LS. Then, |M| >
OPT

2 + c log N by Theorem 1. By multiplying both sides by
2
|M| , we have that

OPT
|M| < 2 − 2c

log N
|M|

≤ 2 − 2c
log N

N
.

The last inequality comes from the fact that |M| ≤ N. �

Since the above constant c can be set arbitrarily large,
we have the following corollary.

Corollary 2: For any positive constant c, there is a
polynomial-time approximation algorithm for MAX SMTI
with approximation ratio at most 2 − c log N

N .

Before showing I and S, we define a
“nice” property stated above.

Fig. 2 A good edge (m,w).

Let us fix an optimal solution Mopt , a largest stable
matching for I (which we do not know of course). Given
a stable matching M for I, let us define the following bipar-
tite graph GMopt ,M: Each vertex of GMopt ,M corresponds to a
person in I. There is an edge between vertices m and w if
and only if Mopt(m) = w or M(m) = w. If both Mopt(m) = w
and M(m) = w hold, we include two edges between m and
w; hence GMopt ,M is a multigraph. An edge (m,w) associated
with Mopt(m) = w is called an OPT-edge. Similarly, an edge
associated with M(m) = w is called an M-edge. Observe
that the degree of each vertex is at most two, and hence each
connected component of GMopt ,M is a simple path, a cycle, or
an isolated vertex.

Let us partition M-edges of GMopt ,M into good edges
and bad ones. If an edge is in the path of length three start-
ing from and ending with OPT-edges, then it is called good.
Otherwise, it is bad. For convenience, we also call an edge
in M good (bad, respectively) if the corresponding M-edge
in GMopt ,M is good (bad, respectively). Figure 2 shows an
example of a good edge (m,w). Solid lines represent OPT-
edges and the dotted line represents an M-edge (good edge).

Lemma 1: Let (m,w) be a good edge of M. Then, w �m

Mopt(m) and m �w Mopt(w).

Proof. If Mopt(m) �m w, then (m,Mopt(m)) is a blocking
pair for M, which contradicts the stability of M. So, w �m

Mopt(m). For the same reason, m �w Mopt(w). �

Lemma 2: Let t be an arbitrary positive integer. If |M| ≤
|Mopt |

2 + t, then the number of bad edges in GMopt ,M is at most
4t.

Proof. First of all, we show that there is no path of length
one in GMopt ,M. This can be seen as follows: Suppose that
there is a path of length one, say (m,w), and suppose that
this is an OPT-edge. Then m and w are acceptable to each
other since they are matched in Mopt . However, both of them
are single in M. This means that (m,w) is a blocking pair for
M, which contradicts the stability of M. When (m,w) is an
M-edge, we can do a similar argument for a contradiction.

Consider then each connected component C of GMopt ,M.
Let R(C) be the ratio of the number of OPT-edges to the
number of M-edges in C. If C is a cycle, then it contains
the same number of OPT-edges and M-edges, and hence,
R(C) = 1. This is the same if C is a path of even length.
If C is a path of odd length starting from and ending with
M-edges, R(C) < 1 since the number of M-edges in C is
more than that of OPT-edges. If C is a path of length three
starting from and ending with OPT-edges, then the M-edge
it contains is good and R(C) = 2. If C is a path of length
more than three starting from and ending with OPT-edges,
then R(C) ≤ 3/2.
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Now, suppose that there are �1 good edges and �2 bad
edges. Then, the number of OPT-edges, namely |Mopt |, is at
most 2�1 + 3

2�2 by the above argument. Since �1 + �2 = |M|
and |M| ≤ |Mopt |

2 + t, we have that �2 ≤ 4t. �

Lemma 3: If |M| ≤ |Mopt |
2 + c log N, then, at line 4 of

LS, there is at least one i such that Pi contains
only good edges.

Proof. Since there are at most 4c log N bad edges in M as
proved in Lemma 2, P contains at most 4c log N bad edges.
Recall that |P| = (k + 4c) log N. Hence, P contains at least
k log N good edges. Since we consider all subsets of P of
size k log N, there must be one with only good edges. �

4. Procedure INCREASE(M, S)

Recall that I takes a stable matching M and its subset
S of size k log N as an input, and outputs a matching M0

such that |M0| > |M|. M0 may not be stable for I but it
satisfies the property Π. Before getting into the detail, we
roughly explain the execution of I.

In the following, we assume that S consists of
only good edges. (We are interested in computation of
I only in this case. As proved in Lemma 3, there
is one way of receiving such S if |M| ≤ |Mopt |

2 + c log N.)
Given S , let S 1, S 2, · · · , S n be all subsets of S of size |S |/4.
Fix S i. Since each edge in S i is good, for each person p in
S i, his/her partner in Mopt is single in M. We divorce all
pairs of S i, and then, make them find a partner who is single
in M (by the method described in Fig. 4). They may lose to
find a partner, but we can prove that if we apply the above
procedure to all S 1, S 2, · · · , S n, then at least one execution
will give us a good result, i.e., there exists an S i such that
every person in S i finds a partner who is at least as good as
the partner in Mopt (Lemma 5). Let Li be the set of newly
added edges. Then, it is not hard to see that |Li| = 2|S i|, and
hence we can increase the size of M by |S i|. (See Fig. 3 (a).)

In the latter half of the algorithm, we do the following:
If there is a blocking pair (m,w) such that both m and w have
a partner, say, w′ and m′, respectively, then we can prove
that exactly one of (m,w′) or (m′,w) is in Li (Lemma 6 (2)).
We then remove one which is not in Li. (See Fig. 3 (b).)
This process may decrease the size of a matching, but we
prove that its size-decrease is less than |S i|. In total, we
can increase the size of matching by at least one. The full
description of algorithm I is given in Fig. 4. (For the
Gale-Shapley algorithm, see [11] for example.)

4.1 Correctness of I

We give a sufficient condition for I to achieve a suc-
cessful computation.

Lemma 4: If S consists of only good edges, and if |M| ≤
|Mopt |

2 +c log N, then there is at least one i (at line 7) such that
I(M, S ) succeeds.

The proof of this lemma uses a series of lemmas. In

(a)

(b)

Fig. 3 Execution of I .

the following lemmas, we assume the same assumptions in
Lemma 4, namely, S consists of only good edges, and |M| ≤
|Mopt |

2 + c log N, even if they are not explicitly stated in the
statement of lemmas.

Lemma 5: There exists i∗ such that, after executing the
Gale-Shapley algorithm (at lines 9 and 10 of Fig. 4), every
person in S m

i∗ ∪ S w
i∗ is matched with a partner who is at least

as good as his/her partner in Mopt.

Proof. Consider the following procedure (note that we con-
sider this procedure only for the proof of this lemma, and is
not a part of I): Break all ties in preference lists of
persons in S m ∪ S w ∪ Fm ∪ Fw in the same way as in the
execution of line 5 of I. Furthermore, in each man
m(∈ S m)’s new list, remove all women below Mopt(m). Sim-
ilarly, in each woman w(∈ S w)’s new list, remove all men
below Mopt(w). (It should be noted that for any person p in
S m ∪ S w, Mopt(p) can be defined since any element of S is
a good edge. Furthermore, Mopt(p) is single in M, namely
Mopt(p) is in Fm ∪ Fw.)

Apply the men-propose Gale-Shapley algorithm to the
subinstance defined by S m and Fw. It is not hard to see
that at least half of S m are matched at the termination of
the Gale-Shapley. To see this, assume the contrary, and let
A ⊆ S m be the set of single men (|A| > |S m|/2). Then,
each man m(∈ A) was rejected by all women on his modified
list, especially, he was rejected by Mopt(m). (Recall that
Mopt(m) stays in m’s modified list.) When Mopt(m) rejected
m, Mopt(m) was matched with someone better than m, and
by the property of the Gale-Shapley algorithm, she never
becomes single after that. So, at the termination, at least
|A|(> |S m|/2) women are matched, but this means that more
than |S m|/2 men are matched, a contradiction.
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Procedure INCREASE(M, S)
1: Fm := set of single men in M;
2: Fw := set of single women in M;
3: S m := set of men in S ;
4: S w := set of women in S ;
5: Break all ties in preference lists of S m ∪ S w ∪ Fm ∪ Fw

in an arbitrary way;
6: Let S 1, S 2, · · · , S n be all subsets of S of size |S |/4;
7: for i := 1 to n
8: {S m

i := set of men in S i;
S w

i := set of women in S i;
9: Find a matching between S m

i and Fw using the
men-propose Gale-Shapley algorithm;

10: Find a matching between S w
i and Fm using the

women-propose Gale-Shapley algorithm;
11: if (∃p ∈ S m

i ∪ S w
i s.t. p remains single after the

Gale-Shapley algorithm)
12: exit for-loop;

/* The current i was not a good choice */
13: else
14: {Li := the set of all pairs obtained by the

Gale-Shapley algorithm;
15: Mi := M − S i ∪ Li;
16: while (∃(m,w) ∈ BP(Mi) s.t. both m and w

have a partner in Mi)
17: {if ( (m,Mi(m)) ∈ Li and (Mi(w),w) ∈ Li )
18: exit for-loop;

/* The current i was not a good choice */
19: if ( (m,Mi(m)) ∈ Mi − Li

and (Mi(w),w) ∈ Mi − Li )
20: exit for-loop;

/* The current i was not a good choice */
21: if ( (m,Mi(m)) ∈ Mi − Li

and (Mi(w),w) ∈ Li )
22: Mi := Mi − {(m,Mi(m))};
23: if ( (m,Mi(m)) ∈ Li

and (Mi(w),w) ∈ Mi − Li )
24: Mi := Mi − {(Mi(w),w)};
25: } /* end while */
26: if ( |Mi | > |M| )
27: output Mi and terminate;
28: else exit for-loop;

/* The current i was not a good choice */
29: } /* end else */
30: } /* end for */
31: output “error” and terminate;

Fig. 4 Procedure I .

Now, if m ∈ S m has a partner after the execution of
the Gale-Shapley algorithm, call m a successful man. Call a
woman in S w a successful woman if and only if her partner
in M is a successful man (there are at least |S |/2 successful
women). Now, apply the women-propose Gale-Shapley al-
gorithm to the subinstance defined by successful women in
S w and Fm. If a successful woman gets a partner in the re-
sulting matching, call her a super-successful woman. For the
same reason as above, at least half of successful women are
super-successful. Call a pair (m,w) ∈ S a super-successful
pair if and only if w is a super-successful woman. There are
at least |S |/4 super-successful pairs.

Since S 1, S 2, · · · , S n are all subsets of S of size exactly
|S |/4, there exists at least one i such that S i consists of only
super-successful pairs. Let i∗ be any such i, and consider

the execution of I at lines 7 through 10 for i∗. It
is not hard to see that after I completes the Gale-
Shapley algorithm (at lines 9 and 10), each person in S m

i∗ ∪S w
i∗

gets a partner not worse than the one obtained by the above
procedure. This implies that every person in S m

i∗ ∪ S w
i∗ is

matched with a partner not worse than the partner in Mopt

(with respect to preference lists after ties are broken at line
5 of I). To complete the proof, observe that this fact
also holds in terms of the original preference lists before ties
are broken. �

In the following lemmas, i∗ always denotes the one that
satisfies the condition of Lemma 5.

Lemma 6: Mi∗ at line 15 of Fig. 4 satisfies following (1)
and (2): (1) |Mi∗ | = |M| + k

4 log N. (2) Consider an arbitrary
blocking pair (m,w) ∈ BP(Mi∗ ) such that both m and w are
matched in Mi∗ . Then, one of (m,Mi∗ (m)) and (Mi∗ (w),w) is
in Mi∗ − Li∗ and the other is in Li∗ .

Proof. (1) Recall that |S i∗ | = |S |/4 = k
4 log N and |Li∗ | =

2|S i∗ |. Then, |Mi∗ | = |M| − |S i∗ | + |Li∗ | = |M| + |S i∗ | = |M| +
k
4 log N.

(2) First, suppose that both (m,Mi∗ (m)) and (Mi∗ (w),w)
are in Mi∗ − Li∗ . Observe that, by the construction of Mi∗ ,
both of these two pairs are also in M. This means that
(m,w) ∈ BP(M), which contradicts the stability of M.

Next, suppose that both (m,Mi∗(m)) and (Mi∗ (w),w) are
in Li∗ . We have four cases to consider: (i) m ∈ Fm,w ∈ Fw,
(ii) m ∈ S m

i∗ ,w ∈ Fw, (iii) m ∈ Fm,w ∈ S w
i∗ and (iv) m ∈

S m
i∗ ,w ∈ S w

i∗ .
Case (i): By the definition of Fm and Fw, both m and w

are single in M. But since (m,w) forms a blocking pair for
Mi∗ , m and w are acceptable to each other. Then, (m,w) ∈
BP(M), which contradicts the stability of M.

Case (ii): By the assumption that (m,w) is a blocking
pair for Mi∗ , w �m Mi∗ (m). Observe that w �m Mi∗ (m) holds
even after ties in m’s list is broken at line 5 of I.
Then, since w ∈ Fw, during the execution of the Gale-
Shapley algorithm at line 9, m proposed to w but w rejected
m. Hence, Mi∗ (w) �w m with respect to w’s list after ties are
broken. (This comes from the fact that when w rejected m,
w was matched with a man better than m, and in the rest of
the execution, she never changes partner to a worse man.)
Then, Mi∗ (w) �w m with respect to w’s original list. Hence,
(m,w) cannot block Mi∗ , a contradiction.

Case (iii): Similar to Case (ii).
Case (iv): Since (m,w) is a blocking pair for Mi∗ , w �m

Mi∗ (m) and m �w Mi∗ (w). But by Lemma 5, Mi∗ (m) �m

Mopt(m) and Mi∗ (w) �w Mopt(w). Then, w �m Mopt(m) and
m �w Mopt(w), which means that (m,w) is a blocking pair
for Mopt, a contradiction. �

The proof of Lemma 4 is completed by the following
lemma, which guarantees the size of |Mi∗ | at line 26 of Fig. 4.

Lemma 7: Mi∗ at line 26 of I satisfies |Mi∗ | > |M|.
Proof. First of all, it should be noted that I never
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fails on i∗ at lines 11 and 12 by Lemma 5. Also, during
the execution of the while-loop (starting from line 16) on
i∗, I never fails by Lemma 6 (2). By Lemma 6 (1),
we know that |Mi∗ | = |M| + k

4 log N. However, during the
execution of the while-loop, some pairs may be removed
from Mi∗ − Li∗ , which may decrease the size of Mi∗ . Note
that all pairs in Mi∗ − Li∗ are pairs in M. In the following,
we show that if a pair in Mi∗ − Li∗ is removed during the
while-loop, then the pair must be a bad edge of M. If this
is true, the number of removed pairs in the while-loop is at
most 4c log N by Lemma 2, and thus |Mi∗ | ≥ |M|+ k

4 log N −
4c log N > |M|. (Recall that c < k

16 .)
Suppose that during the while-loop of I, some

pair is removed from Mi∗ . Then, there is a blocking
pair (m,w) for Mi∗ and both m and w are matched in
Mi∗ . We have two cases: (1) (m,Mi∗(m)) ∈ Li∗ and
(Mi∗ (w),w) ∈ Mi∗ − Li∗ (and hence (Mi∗ (w),w) is removed).
(2) (m,Mi∗(m)) ∈ Mi∗ − Li∗ and (Mi∗ (w),w) ∈ Li∗ (and hence
(m,Mi∗ (m)) is removed). We consider only Case (1). (Case
(2) can be treated similarly.) Now, suppose that the removed
pair (Mi∗ (w),w) is a good edge of M. We will show a con-
tradiction. We further consider two subcases: (1-1) m ∈ Fm

and (1-2) m ∈ S m
i∗ .

Case (1-1): Note that m is single in M since m ∈ Fm.
Now observe that, as (Mi∗ (w),w) ∈ Mi∗ − Li∗ , w and Mi∗ (w)
are matched in M, namely, Mi∗ (w) = M(w). Since (m,w) ∈
BP(Mi∗ ), it results that (m,w) ∈ BP(M), which contradicts
the stability of M. (In this case, we can have a contradiction
without assuming that (Mi∗ (w),w) is a good edge of M.)

Case (1-2): Since we assume that (Mi∗ (w),w) is a good
edge of M, M(w) �w Mopt(w) by Lemma 1. For the same
reason as above, Mi∗ (w) = M(w). So, Mi∗ (w) �w Mopt(w).
As (m,w) is a blocking pair for Mi∗ , it results that m �w

Mi∗ (w) �w Mopt(w). Next, consider the man m which we
assumed to be in S m

i∗ . By Lemma 5, Mi∗ (m) �m Mopt(m).
Again, as (m,w) is a blocking pair for Mi∗ , w �m Mi∗ (m).
So, w �m Mi∗ (m) �m Mopt(m). Consequently, (m,w) is in
BP(Mopt), a contradiction. �

5. Procedure STABILIZE(M0)

S takes a matching M0 with property Π and makes
it stable without decreasing the size. Recall that for any
blocking pair (m,w) for M0, at least m or w is single in M0.
For a matching M, define BPs,m(M) ⊆ BP(M) to be the set
of blocking pairs (m,w) for M such that m is single in M
and w is matched in M. Similarly, BPm,s(M) (BPs,s(M) and
BPm,m(M), respectively) denotes the set of blocking pairs
(m,w) for M such that m is matched and w is single (both
m and w are single, and both m and w are matched, respec-
tively) in M. Define BP−,s(M) = BPm,s(M) ∪ BPs,s(M), and
BP−,m(M) = BPm,m(M) ∪ BPs,m(M). Figure 5 shows the
procedure S.

5.1 Correctness of S

Lemma 8: Suppose that an application of line 4 of

Procedure STABILIZE(M0)
1: while ( BPs,m(M0) � ∅ )
2: {Select (m,w) ∈ BPs,m(M0);
3: w∗ := woman s.t. (m,w∗) ∈ BPs,m(M0) and

there is no (m,w′) ∈ BPs,m(M0) s.t. w′ �m w∗;
4: M0 := M0 − {(M0(w∗),w∗)} ∪ {(m,w∗)};
5: }
6: while ( BP−,s(M0) � ∅ )
7: {Select (m,w) ∈ BP−,s(M0);
8: m∗ := man s.t. (m∗,w) ∈ BP−,s(M0) and

there is no (m′,w) ∈ BP−,s(M0) s.t. m′ �w m∗;
9: if ( m∗ is matched in M0 )

10: M0 := M0 − {(m∗,M0(m∗))} ∪ {(m∗,w)};
11: else
12: M0 := M0 ∪ {(m∗,w)};
13: }

Fig. 5 Procedure S .

Fig. 6 An update by S .

S updates M0 as follows. (see Fig. 6).

M′0 := M0 − {(M0(w∗),w∗)} ∪ {(m,w∗)}.
Then, following (1) through (3) hold. (1) M′0(w∗) �w∗

M0(w∗) and for any w(� w∗), M′0(w) = M0(w). (2) |M′0| =|M0|. (3) If BPm,m(M0) = ∅, then BPm,m(M′0) = ∅.
Proof. (1) Since (m,w∗) is in BP(M0), m �w∗ M0(w∗). So,
M′0(w∗) �w∗ M0(w∗) because M′0(w∗) = m. The latter part of
(1) is trivial because, among all women, only w∗ changed a
partner.

(2) This is easy because we removed one edge and
added one edge.

(3) Recall that BPm,m(M′0) ⊆ BP(M′0). To prove that
BPm,m(M′0) is empty, we show that any blocking pair in
BP(M′0) is not in BPm,m(M′0).

First, we will show that any element in BP(M′0) −
BP(M0) (namely, a pair non-blocking for M0 but blocking
for M′0) is not in BPm,m(M′0). Observe that three persons
changed the partner by updating from M0 to M′0: w∗ ob-
tained a better partner, m became matched from single, and
M0(w∗) became single from matched. So, any blocking pair
arising by changing from M0 to M′0 is associated with the
man M0(w∗). But, since M0(w∗) is single in M′0, that pair
cannot be in BPm,m(M′0).

Next, consider (m̃, w̃) ∈ BP(M′0) ∩ BP(M0). Since
BPm,m(M0) = ∅, at least one of m̃ and w̃ is single in M0. Re-
call that only m changed the status from single to matched.
So if m̃ � m, (m̃, w̃) � BPm,m(M′0). Hence, it remains to
consider the case m̃ = m.

Then, consider a blocking pair (m, w̃) ∈ BP(M′0) ∩
BP(M0). If w̃ was single in M0, she is also single in M′0
and hence (m, w̃) � BPm,m(M′0). So assume that w̃ was
matched in M0. In this case, both (m,w∗) and (m, w̃) were
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in BPs,m(M0). So, both w∗ and w̃ were candidates for being
matched with m in M′0. But since w∗ was selected, it must
be the case that w∗ �m w̃. Hence (m, w̃) cannot block M′0, a
contradiction. �

Lemma 9: Suppose that an application of lines 10 and 12
of S updates M0 as follows.

(Line 10) M′0 := M0 − {(m∗,M0(m∗))} ∪ {(m∗,w)}.
(Line 12) M′0 := M0 ∪ {(m∗,w)}.
Then, following (1) through (3) hold. (1) In case of exe-
cuting line 10, M′0(m∗) �m∗ M0(m∗) (in case of executing
line 12, m∗ becomes matched in M′0), and for any m(� m∗),
M′0(m) = M0(m). (2) |M′0| ≥ |M0|. (3) If BP−,m(M0) = ∅,
then BP−,m(M′0) = ∅.
Proof. Proofs are similar to that of Lemma 8, and we omit
(1) and (2).

(3) Observe that three or two persons changed the part-
ner by updating from M0 to M′0: m∗ obtained a better partner
or became matched from single, w became matched from
single, and M0(m∗), if exists, became single from matched.
So, in case of line 12, there arises no new blocking pair, and
hence BP(M′0) − BP(M0) is empty. In case of line 10, any
new blocking pair is associated with the woman M0(m∗).
Since M0(m∗) is single in M′0, any pair in BP(M′0)− BP(M0)
is not in BP−,m(M′0).

Next, consider (m̃, w̃) ∈ BP(M′0) ∩ BP(M0). Since
BP−,m(M0) = ∅, w̃ is single in M0. Recall that, among all
women, only w changed the status from single to matched.
So, if w̃ � w, (m̃, w̃) � BP−,m(M′0).

Now consider a blocking pair (m̃,w) ∈ BP(M′0) ∩
BP(M0). In this case, both (m∗,w) and (m̃,w) were in
BP−,s(M0). So, both m∗ and m̃ were candidates for being
matched with w in M′0. But since m∗ was selected, it must
be the case that m∗ �w m̃. Hence (m̃,w) cannot block M′0, a
contradiction. �

Using these two lemmas, we prove the correctness of
S.

Lemma 10: Let M′ be the output of S. Then M′ is
stable and |M′| ≥ |M0|.
Proof. Consider an application of line 4 of S. By
Lemma 8 (1), one woman gets better off and all other
women do not change the marital status. Since there are
N women, each with a preference list of length at most N,
the number of repetitions of the first while-loop is at most
N2. Let M′′ be the matching just before S starts
the second while-loop. Then BPs,m(M′′) is empty. (This is
the condition for S to exit from the first while-loop.)
Since BPm,m(M0) is empty, we can show that BPm,m(M′′)
is empty by applying Lemma 8 (3) repeatedly. Combining
these two facts, it results that BP−,m(M′′) is empty. Also, by
Lemma 8 (2), |M′′| = |M0|.

Similarly as above, each application of line 10 or 12
would make men better off (Lemma 9 (1)), and hence the
number of repetitions of the second while-loop is at most
N2. Since BP−,m(M′′) = ∅, we can show that, BP−,m(M′) =

∅ using Lemma 9 (3) repeatedly. However, the termina-
tion condition of S says that BP−,s(M′) = ∅. Con-
sequently, BP(M′) is empty and hence M′ is stable. By
Lemma 9 (2), |M′| ≥ |M′′|. So, |M′| ≥ |M0|. �
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