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Abstract. Neutron diffraction is well known to be a useful technique for measuring a bulk texture 

of metallic materials taking advantage of a large penetration depth of the neutron beam. However, 

this technique has not been widely utilized for the texture measurement because large facilities 

like a reactor or a large accelerator are required in general. In contrast, RANS (Riken 

Accelerator-driven Compact Neutron Source) has been developed as a neutron source which can 

be used easily in laboratories. In this study, texture evolution in steel sheets with plastic 
deformation was successfully measured using RANS. The results show the capability of the 

compact neutron source for the analysis of the crystal structure of metallic materials, which leads 

us to a better understanding of plastic deformation behavior. 

1.  Introduction 
Sheet forming technologies for high strength steel sheets are becoming more and more important in 

automotive body parts with the aim of weight reduction, but their use urgently requires further 

improvement by analyzing the behavior of plastic deformation. On the other hand, recent advances in 

numerical analyses have enabled the practical application of advanced sheet metal forming simulation 
technology using finite-element methods (FEM), e.g., simulations of shearing processes performed by 

authors [1]. It is obvious that the crystal plasticity FEM is one of the most powerful numerical tools to 

model microscopic deformation mechanisms and to predict macroscopic plastic behavior [2], which is 
often performed in conjunction with texture measurement techniques such as Electron backscatter 

diffraction (EBSD) or X-ray diffraction (XRD). However, these methods can provide information only 

from localized area or surface with the thickness of μm or 10μm. 

In contrast, neutron diffraction is well known to be a useful technique to quantitatively measure 

microstructural factors of metals [3] such as texture in bulk-average taking advantage of a large 

penetration depth of the beam, which is strongly related to its formability in metal forming processes, 
bringing advanced understanding of the mechanical behavior of metals by investigating the relationship 

with macroscopic behavior. Such studies using neutron diffraction typically require a neutron 

engineering diffractometer [4-11] installed in large experiment facilities such as a reactor and a large 
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accelerator to obtain high flux neutrons. Therefore, we have only few chances in a year to use their 

facilities because of high-level competition of the beam time. However, investigations of plastic 

deformation require much more opportunities to measure the texture anywhere at any time like 

commercial X-ray equipment available at their own locations. 
In contrast, Riken Accelerator-driven Compact Neutron Source (RANS) [12, 13] has been developed 

as a neutron source which can be used easily in laboratories. If we can evaluate microstructural factors 

easily by neutron diffraction using a compact neutron source at our own laboratory, it is expected to 
achieve effective analyses of metal forming processes more efficiently. Authors have recently shown 

diffraction patterns of ferritic steels obtained by RANS and evaluation results of retained austenite 

volume fraction [14]. In this study, the neutron diffraction experiments are carried out using RANS and 

plastically deformed mild steel samples to clarify a capability of the compact neutron source for the 
analysis of the texture evolution, which leads us to a better understanding of plastic deformation 

behavior. 

2.  Experimental method 
Figure 1 shows an entire view of RANS [12-14], which consists of a proton accelerator, a neutron 

production target and instruments for the neutron experiment. Protons are accelerated with a proton 

liniac to 7 MeV, and injected to a beryllium (Be) target [15]. Neutrons with the maximum energy of 
about 5 MeV are generated via the Be (p,n) reaction. The fast neutrons are moderated in a polyethylene 

moderator, and the thermal neutrons with approximately 0.01 eV (0.1 nm in wavelength), which is a 

suitable energy for the diffraction experiment, can be extracted from the moderator surface. Neutrons 

with 104 s-1cm2 in flux are provided to the camera box installed at approximately 5 m far away from the 
moderator. 

 

 

Figure 1. Entire view of RANS. This is about 15 m in total length, consists of an ion source, a proton 

accelerator, a target station, a neutron beam pipe and a camera box. 

 
Figure 2 shows the experimental setup for measuring diffraction from steel samples [14]. A neutron 

detector, which consists of a ZnS(Li) scintillator and a position sensitive photo multiplier tube RPMT, 

were installed inside the camera box. Diffraction patterns were measured based on the time-of-flight 
(TOF) principle. Energy range from 0.05 to 0.5 nm in wavelength is used to measure the diffraction 

pattern from the steel in this study.  

The sample used here was IF (interstitial free) steel with the thickness of 1.0 mm, which was 

plastically deformed by 10 % in uniaxial compression along the rolling direction. A cylindrical-shaped 

specimen with the height of 10 mm and the diameter of 10 mm (φ10) was prepared by following 

procedure. The small pieces of the plate with a size ofφ10 were, at first, taken from a specimen by 

milling, and then assembled together into the cylindrical shape, preserving the orientation of the pieces. 

The diffraction angle 2θ and the distance from the sample to the detector L2 were set to be 140° and 

100 mm, respectively. The diffraction patterns were taken for 10 minutes to get sufficient intensity. 
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Figure 2. Schematic illustration of the experimental setup. 

 

3.  Results and discussion 

Figure 3 shows the diffraction pattern in the rolling direction of the deformed specimen, in comparison 

with that of the undeformed specimen. It can be seen in figure 3 that the undeformed specimen may 

originally have strong texture even before tensile deformation because the intensity of the 110 reflection 
is much higher than other peaks. After applying compressive deformation by 10 %, the 110 reflection is 

the intensity of the 110 reflection is obviously decreased by 0.79 times, while that of the 211 reflections 

that are perpendicular relation to the 110 reflection is increased by 1.4 times. This is a typical texture 
evolution for the BCC structure, caused by plastic deformation [16]. Figure 4 shows the variation of 

diffraction patterns of the deformed specimen with respect to diffraction direction from RD to TD. The 

variation in the peak intensity shows a possibility of this measurement method for the generation of pole 
figures. These results suggest that the texture evolution due to the plastic deformation can be observed 

by RANS. TOF neutron diffraction has an advantage for efficient texture measurement by measuring 

multiple neutron TOF histograms in various directions of the pole figure, which are simultaneously 

measured by a wide area detector [17]. For RANS based on TOF neutron diffraction, therefore, it is also 
expected to measure the texture of material for relatively short time by using similar technique. 

 

 

 

 

Figure 3. Comparison of the diffraction patterns 
of the IF steel before and after 10% compressive 

deformation. 

 Figure 4. Variation of diffraction patterns 
with respect to diffraction direction. 

 

Numisheet IOP Publishing
Journal of Physics: Conference Series 734 (2016) 032047 doi:10.1088/1742-6596/734/3/032047

3



 

 
 

 

 

 

4.  Conclusions 

In this study, the neutron diffraction experiments were carried out using Riken accelerator-driven 

compact neutron source, RANS. The diffraction pattern of IF steel samples was successfully measured 

by the TOF method. The texture evolution due to plastic deformation was successfully observed by 
measuring a change in the diffraction peak intensity. Consequently, RANS has been proved to be 

capable for neutron engineering diffraction aiming for the easy access measurement of texture evolution. 

In the future scene of the metal forming analysis, texture measurement by a compact accelerator-
based neutron source can be compared with and can validate the crystal plasticity analysis results and, 

at the same time, can provide valuable input information for the numerical analyses. Accurate crystal 

plasticity analysis can make a contribution to the macroscopic material modeling and can improve 

drastically the accuracy of forming simulations in industrial use. 
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