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ABSTRACT

The secondary structures, as well as the nucleotide
sequences, are the important features of RNA
molecules to characterize their functions. According
to the thermodynamic model, however, the proba-
bility of any secondary structure is very small. As
a consequence, any tool to predict the secondary
structures of RNAs has limited accuracy. On the
other hand, there are a few tools to compensate the
imperfect predictions by calculating and visualizing
the secondary structural information from RNA se-
quences. It is desirable to obtain the rich information
from those tools through a friendly interface. We im-
plemented a web server of the tools to predict sec-
ondary structures and to calculate various structural
features based on the energy models of secondary
structures. By just giving an RNA sequence to the
web server, the user can get the different types of
solutions of the secondary structures, the marginal
probabilities such as base-paring probabilities, loop
probabilities and accessibilities of the local bases,
the energy changes by arbitrary base mutations as
well as the measures for validations of the predicted
secondary structures. The web server is available at
http://rtools.cbrc.jp, which integrates software tools,
CentroidFold, CentroidHomfold, IPKnot, CapR,
Raccess, Rchange and RintD.

INTRODUCTION

The primary sequences of RNAs are important for their
functions because the base-parings of the reverse com-

plementary sub-sequences identify the target RNAs. At
the same time, those RNAs frequently conserve their sec-
ondary structures. The secondary structures reflect the ter-
tiary structures and also related to the free sub-sequences
which can interact with the reverse complementary sub-
sequences of the other RNAs. While high-throughput ex-
perimental methods have still limitations, it is desirable to
characterize the secondary structures of RNAs in silico.

In silico prediction of RNA secondary structures is often
referred as ‘unreliable,’ often failing to predict well-known
secondary structures like the clover-leaf of tRNA e.g. (1).
Although the prediction gives approximately ‘correct’ sec-
ondary structures in considerable frequency, the predicted
structures almost always include many errors.

The probability distribution of the secondary structure θ
of an RNA sequence x is denoted as Boltzmann distribution
(2):

p(θ |x) = 1
Z(x)

exp
(−E(θ |x)

RT

)
, (1)

where E(θ |x) is the free energy of the secondary structure
θ , R is the ideal gas constant, T is a temperature and Z(x)
is the partition function,

Z(x) =
∑

θ

exp
(−E(θ |x)

RT

)
. (2)

The nearest neighbor energy model defines E(θ |x) as the
summation of the free energy of all the loops, which is cal-
culated according to the combinations of the nearest nu-
cleotides of the loops. The experimentally identified param-
eters are used for this calculation.

The number of possible secondary structures of an RNA
is huge, and the probability of the predicted structure (with
respect to the Boltzmann distribution) is very small, around
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1% even in the fortunate cases. For example, it is known
that the structure of an rRNA with the highest probability
is about 10−22 (3). Therefore, it is dangerous to proceed to
further biological inferences based on the predicted struc-
tures.

The in silico secondary structural analyses are, however,
not useless but productive if the combination of the tools
are appropriately utilized. Although the total probability of
a precise secondary structure of an RNA sequence is very
small, various marginal probabilities with respect to the dis-
tribution p(θ |x), which are not necessarily very small, can
be introduced. For example, the ‘base-pairing probability
matrix’ (BPPM), where each component pij is the marginal
probability that xi and xj form a base-pair (called ‘base-
pairing probability’) reflects the landscape of the probabil-
ity distribution of the secondary structures. BPPM can be
computed efficiently in O(L3) time (L is the length of RNA
sequence) by using a dynamic programming (DP) based on
the McCaskill model (2) (cf. Figure 2). Similar algorithms
give us the marginal probabilities of a variety of local struc-
tural features, such as loop probabilities and accessibilities
(4,5).

The extensions of DP algorithms also enable us to ex-
tract different types of secondary structural information.
For example, the energy change by all the possible base mu-
tations (including the combination of base mutations) can
be calculated (6). The validation of the predicted structure
is also important. Because the probability of the structure
itself is very small, more reasonable measures are required.
The credibility limit (7) is the measure of the concentration
of the probabilities around the predicted structures, which
reflects the stability and the reliability of the predicted struc-
ture.

DESIGN OF Rtools WEB SERVER

In Rtools web server, we implemented seven tools de-
scribed in the next section, all of which focus on analyz-
ing secondary structures for single RNA sequences, based
on probability distribution of RNA secondary structures.
Due to the reason, an interface of Rtools is quite simple,
where users paste an RNA sequence in the text-form and
press ‘Submit’ button; then Rtools quickly returns vari-
ous analyses for the sequence. The results (e.g. base-pairing
probability matrix and graphs) are offered as the following
formats: EPS, PNG and JPEG, which can be easily utilized
in the research paper. Additionally, users can easily adjust
internal parameters in each tool through web interface (Fig-
ure 1). In Rtools, we implemented a routine for visualiz-
ing base-pairing probability matrix in colors. Additionally,
users obtain ‘Request ID’ in the results page and can always
access the results by using the ID.

ALGORITHMS AND SOFTWARE

Given an RNA sequence x, a set of possible secondary
structures of x is denoted by S(x), where a secondary struc-
ture θ ∈ S(x) is represented as a (upper-)triangular binary-
valued matrix {θ ij}i < j: θ ij = 1 if the i-the nucleotide in x
(denoted by xi) forms a base-pair with xj. In addition, a
probability distribution of RNA secondary structure of x

is denoted by p(�|x) (θ ∈ S(x)), where
∑

θ∈S(x) p(θ |x) holds.
Several models for p(θ |x) have been proposed (as described
in Introduction section). By using this notation, a marginal
probability that xi and xj form a base-pair (a base-pairing
probability described in Introduction) is written as follows:

pi j =
∑

θ∈S(x)

I(θi j = 1)p(θ |x) (3)

where I( · ) is the indicator function and θ ij is (i, j)-element
of θ ∈ S(x) i.e., I(θ ij = 1) is equal to 1 only when xi and xj
form a base-pair (I(θ ij = 1) = 0 otherwise).

Each tool implemented in Rtools web server is closely
related to marginal probabilities (including base-pairing
probability) with respect to a distribution of RNA sec-
ondary structures, as described in the following.

CentroidFold

CentroidFold (8) predicts a pseudo-knot-free RNA sec-
ondary structure from an individual RNA sequence. The al-
gorithm of CentroidFold is based on � -centroid estima-
tors (9), a type of maximizing expected accuracy (MEA) es-
timators. The � -centroid estimators are known to have bet-
ter expected accuracy than the minimum free energy (MFE)
predictions, in terms of the number of true positives and
true negatives of base pairs (8). On average, it is known that
CentroidFold achieves better performance with respect to
accurate predictions of base-pairs than other tools (10).

The time complexity of CentroidFold using base-
pairing probability matrix {pij}i < j (Equation 3) is O(L3)
for an RNA sequence of length L. As probabilistic mod-
els for RNA secondary structures, CentroidFold can
utilize one of the following models: McCaskill model (2)
with Turner 2004 energy parameters (11) that were de-
termined experimentally; McCaskill model with Boltz-
mann Likelihood (BL) parameters (12) obtained by re-
training energy parameters using machine learning proce-
dures; CONTRAfold model (13) based on a machine learn-
ing based model called conditional random fields (CRFs).
The interface allows us to select the energy model between
McCaskill and CONTRAfold. In CentroidFold, Vien-
naRNA package (14) is utilized to compute base-pairing
probability matrix for McCaskill model.

CentroidHomfold

To improve the accuracy of secondary structure predic-
tions, comparative approaches with homologous sequences
are often utilized because important structures are con-
served evolutionarily. CentroidHomfold (15) aims to
predict secondary structures more accurately (than Cen-
troidFold) by using the information of the homolo-
gous sequences. The initial version of CentroidHom-
fold requires not only target RNA sequence whose sec-
ondary structure is to be predicted but also its homolo-
gous sequences. However, CentroidHomfold in Rtools
does not need homologous sequences because Rtools au-
tomatically collects homologous sequences of the input
from RNA sequence database (constructed based on Rfam
database) (16).

Downloaded from https://academic.oup.com/nar/article-abstract/44/W1/W302/2499336/Rtools-a-web-server-for-various-secondary
by Kyoto University Library user
on 15 September 2017



W304 Nucleic Acids Research, 2016, Vol. 44, Web Server issue

Figure 1. A snapshot of the Rtools web server (http://rtools.cbrc.jp/). Users can paste RNA sequence in the text form (located in the top part) and
press the submit button, then the server quickly returns various analyses based on secondary structures for the sequence (not shown); the results are
downloadable with a few formats: TEXT, PNG, PDF and EPS. Additionally, users can easily adjust several internal parameters in each tool through web
interface (shown in the bottom part).

IPKnot

IPKnot (17) predicts RNA secondary structures including
pseudo-knot, while CentroidFold predicts only pseudo-
knot-free RNA secondary structures. As with Centroid-
Fold, IPKnot employs the maximum expected accuracy
estimators in combination with integer programming for
optimizing the score function with base-pairing probabili-
ties derived from the principle of MEA. In general, compu-
tational costs should be much higher than secondary struc-
ture prediction without pseudo-knot. Although the worst
case time complexity of IPKnot is not polynomial order, it
has been empirically proven that IPKnot is fast enough for
long RNA sequences.

A predicted secondary structure by IPKnot is visualized
using VARNA (18). ViennaRNA package (14) are utilized
to compute base-pairing probability matrix for McCaskill
model. Additionally, NUPACK (Dirks-Pierce model) (19)
is utilized for computing base-pairing probability matrix
with considering pseudo-knot structures.

CapR

CapR (4) efficiently computes marginal probabilities that
each RNA base position is located within each secondary
structural context, where six categories of RNA structures
were taken into account: (i) stem, (ii) hairpin, (iii) bulge,
(iv) internal loop, (v) multi-branch loop and (vi) exterior
loop (cf. Figure 3). In CapR, those marginal probabilities
are computed according to a probability distribution of sec-
ondary structures of a given RNA sequence, provided by
McCaskill (energy) model.

In order to reduce computational time, CapR introduces
a maximal span of base-pairs, leading to the computational
time of O(Lw2), where w is a maximal span of base-pair
and L is the length of input sequence.

Raccess

Raccess (5) computes accessibility (the marginal proba-
bility of forming a single strand with respect to a proba-
bility distribution of secondary structures) of every region
of RNA sequences. In Raccess, McCaskill model is uti-
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Figure 2. The upper triangular matrix shows a base-pairing probability
matrix (BPPM) of a tRNA sequence (having a ‘clover-leaf’ secondary
structure), produced by Rtools web server (with CentroidFold). A
base-pairing probability is a marginal probability (with respect to a proba-
bility distribution of secondary structures) that a pair of nucleotides form
a base-pair. The colors of plots show the values of probabilities. On the
other hand, the lower triangle shows the optimal RNA secondary struc-
ture predicted by CentroidFold, using the base-pairing probability ma-
trix shown in the upper triangle.
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Figure 3. Results of CapR for a tRNA sequence. The horizontal axis
shows nucleotide position of the input sequence and the vertical axis shows
marginal probabilities for structural contexts (bulge, exterior, hairpin, in-
ternal, multi-branch and stem) with respect to a probability distribution
of secondary structures of the sequence. In CapR, the distribution is pro-
vided by McCaskill model (Equation 1), which is based on experimentally
determined energy parameters.

lized for a probability distribution of secondary structures.
Although the accessibility for every nucleotide is computed
by using probability of being unpaired, which is easily cal-
culated by base-pairing probability matrix, Raccess en-
ables users to specify the accessible length (Figure 4), which
would be useful for miRNA target predictions.

Given an input sequence x and a segment [a, b], which
means the sub-sequence xaxa + 1···xb of a given RNA se-
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Figure 4. Results of Raccess for a tRNA sequence, where the colors of
graph show accessible length. In this figure, Raccess computes the ac-
cessibility of a segment [a, b] = [x, x + l − 1] in the transcript for all the
positions x with fixed length l of 5, 10 and 20. Thermodynamic energy that
is required to keep range [a, b] being accessible is given by Equation 4. In
the figure, these access energy([a, b]) are plotted at (x +l/2).

quence x, the accessibility of the segment is defined by

access energy([a, b]) = −RT log(p([a, b])) (4)

where

p([a, b]) =
∑

θ∈S[a,b] exp(−E(θ )/RT)∑
θ∈S(x) exp(−E(θ )/RT)

(5)

In the above, S[a, b] is all the secondary structures having
range [a, b] as loop region (Clearly, S[a, b] ⊆ S(x) holds).
Accessible energy is considered to be energy that is required
to keep range [a, b] being accessible. Note that accessibility
is closely related to marginal probabilities with respect to a
probability distribution of secondary structures (cf. Equa-
tion 5).

Rchange

Rchange (6) computes entropy and internal energy
changes of secondary structures for mutated sequences.
Given an input RNA sequence x and its mutated sequence
x′, the relative change of ensemble free energy is defined by

d F
|F | = F(x) − F(x′)

|F(x)| (6)

where

F(x) = −RT log(Z(x)).

In the above, Z(x) is the partition function (defined in
Equation2). In Rtools, the maximum and minimum val-
ues of Equation 6 with respect to SNPs for each position in
the sequence are provided (cf. Figure 5).

Recently, ‘riboSNitch’ has been receiving great attentions
(20) and Rchangewill be useful for computational analysis
for riboSNitch.

RintD

RintD (1) provides an efficient method to summarize the
probability distribution p(θ |x), which cannot be summa-
rized (visualized) easily due to its high dimensionality of
each solution.
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Figure 5. Results of Rchange for a tRNA sequence. The upper and lower
bounds of the relative changes of the ensemble free energy (dF/|F| in Equa-
tion 6. Because there are three mutated nucleotides for each position, the
upper bound values (shown in black line) indicate the largest energy in-
crease caused by a single mutation, and the lower bound values (shown in
red line) indicate the largest energy decrease caused by a single mutation.
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Figure 6. The reference secondary structure was obtained by Centroid-
Fold. The horizontal axis indicates the (hamming) distance of the refer-
ence secondary structure (d in Equation 7), and the vertical axis shows
marginal probabilities pd in Equation 7. The dashed lines indicate α%-
credibility limits (7), CL(�) in Equation 8: CL(50) (red), CL(90) (green)
and CL(95) (blue).

Given a reference (or target) secondary structure y ∈ S(x)
of interest, Sd denotes a set of RNA secondary structures
whose hamming distance from y is equal to d. More for-
mally, we define

Sd =
⎧⎨
⎩θ ∈ S(x)

∣∣∣∣∣∣d =
∑
i< j

I(θi j �= yi j )

⎫⎬
⎭

where I( · ) is the indicator function. Then, RintD can effi-
ciently compute {pd}d (d = 0, 1, . . . ) where pd is a marginal
probability as follows:

pd =
∑
θ∈Sd

p(θ |x) (7)

In RintD, McCaskill model is utilized as p(θ |x).
For a given RNA secondary structure y, α% credibility

limit (7) (denoted by CL(�)) is defined as follows:

CL(α) = min

{
d ∈ N ∪ {0}

∣∣∣∣∣
∑

d ′:d ′≤d

pd ′ ≥ α

100

}
(8)

where N is the set of all natural numbers. In other words,
α%-credibility limit is the minimum Hamming distance ra-
dius that contain α% of the possible RNA secondary struc-
tures (7). Clearly, the credibility limit for the target sequence
can be computed by utilizing {pd}d = 0, 1, . . . . Note that the
smaller credibility limit indicates that the reference struc-
ture is more stable (reliable) in the ensemble of secondary
structures.
RintD computes {pd}d = 0, 1, . . . and credibility limits of

the reference structure. Moreover, RintD can efficiently
compute the distribution from two reference RNA sec-
ondary structures (cf. (1)), which is also implemented in
Rtools (cf. Figure 6).

AN EXAMPLE OF PERFORMING Rtools WEB
SERVER

As a case study of our web server (Rtools), we took
a transfer RNA (tRNA) sequence (AL138651.1/64525-
64597): GGGGAUGUAGCUCAUAUGGUAGAGCG
CUCGCUUUG CAUGCGAGAGGCACAGGGUUCG
AUUCCCUGCAUCU CCA, and analyzed it by using
Rtools. As a result, the execution time of Rtools was
within 1 min.

A base-pairing probability matrix and the optimal sec-
ondary structure predicted by CentroidFold of the
tRNA sequence are shown in upper and lower matrices in
Figure 2, respectively. The figure shows that Centroid-
Fold successfully predicted ‘clover-leaf secondary struc-
ture’ of tRNAs for this sequence. Although the BPPM does
not predict RNA secondary structures, it includes richer
information of secondary structures than the optimal sec-
ondary structure. Moreover, Figure 3 indicates the results
for CapR, where the marginal probabilities of six struc-
tural contexts (Bulge, Exterior, Hairpin, Internal, Multi-
blanch and stem) in each position are shown. We emphasize
that those structural information includes richer informa-
tion than conventional base-pairing probability matrix.

Figure 4 shows the accessibility (Equation 4) of the se-
quence, where three accessible lengths are shown. Users can
find accessible region from this figure; in this case the figure
suggests that the loop region of ‘clover-leaf secondary struc-
ture’ is accessible.

Figure 5 shows the results of Rchange for the same
tRNA sequence, where the upper bound and lower bound
of dF/|F| in Equation 6 are plotted in each position. By
utilizing this figure, users can easily find nucleotides whose
SNPs greatly affect the RNA secondary structures. Addi-
tionally, it would be useful to see predicted secondary struc-
tures (by CentroidFold) and context profiles (by CapR)
in combination with the results of Rchange.

Figure 6 (the results of RintD) shows the distribution of
secondary structures from the reference structure (the opti-
mal structure predicted by CentroidFold). Specifically, it
plots (d, pd) for d = 0, 1, 2, . . . , where pd is defined in Equa-
tion 7. The figure shows that there exists a peak of prob-
ability mass around d = 25. Moreover, the credibility lim-
its of the optimal secondary structure (CL(50), CL(90) and
CL(95) in Equation 8) are relatively large, indicating that
the sum of the probabilities of secondary structures near the
optimal secondary structure is not dominant in the ensem-
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ble distribution of secondary structures. (Note that all the
figures above were generated by Rtools web server.)

In summary, by utilizing Rtools, users can obtain not
only secondary structures but also various information in-
cluding marginal probabilities of structural context (com-
puted by CapR), accessibility (computed by Raccess),
the influence of single nucleotide mutation (computed by
Rchange) and the summary of the distribution with respect
to the predicted secondary structure (computed by RintD).

DISCUSSION

There exists several related web servers such as RNAfold
web server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)
(14), RNAstructure web server (21) and Sfold web server
(22). As described in previous sections, Rtools include
several features that are different from those existing web
server.

One direction to improve the web server is to incorporate
experimental probing information (23) into our structural
analyses. Because there exist several methods to incorpo-
rate the probing information into RNA secondary structure
prediction e.g. (24), we plan to implement one (or a few) of
those methods in the future.

CONCLUSION

In this study, we have developed a novel web server, Rtools
(http://rtools.cbrc.jp/), to perform various secondary struc-
tural analyses on single RNA sequences by Centroid-
Fold, CentroidHomfold, IPKnot, CapR, Rchange,
Raccess and RintD (all of which were published in reli-
able journals). The all tools in Rtools are closely related to
marginal probabilities with respect to probability distribu-
tion of RNA secondary structures of given RNA sequence.
By ‘one-click’, users can conduct various analyses of sin-
gle RNA sequences that they are interested in, and obtain
many results which will be utilized for their research paper
and/or their further study.

ENDNOTES

In general, marginal probabilities are computed by the fol-
lowing form: p = ∑

� ∈ Sp(�|x) where S is a subset of S(x)
(S ⊂ S(x)). Various marginal probabilities are introduced
according to S.
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