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Abstract

The present paper shows an extension of the theory of principal partitions for submodular
functions to that for bisubmodular functions. We examine the structure of the collection of
all solutions of a parametric minimization problem described by a bisubmodular function and
two vectors. The bisubmodular function to be minimized for each parameter is the sum of the
bisubmodular function and a parameterized box-bisubmodular function given in terms of the two
vectors. We show that the collection of all the minimizers for all parameters forms a signed ring
family and it thus induces a signed poset on a signed partition of the underlying set. We further
examine the structure of the signed ring family and reveal the decomposition structure depending
on critical values of the parameter. Moreover, we discuss the relation between the results of this
paper on bisubmodular functions and the theory of principal partitions developed for submodular
functions.
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1. Introduction

The combinatorial structure with bisubmodularity was considered in [4, 5, 7, 8, 9, 23] and
was further investigated in [11, 6, 13, 14, 21] and others. Bisubmodularity is a generalization of
submodularity and has been still drawing researchers’ attention (see, e.g., [19, 24]).

The present work is an extension of the theory of principal partitions for submodular func-
tions ([11, 12]) to that for bisubmodular functions. The theory of principal partitions was inau-
gurated with the graph tri-partition based on maximally distant pairs of spanning trees in graphs
by Kishi and Kajitani in 1967 (see a survey paper [12] for the history of theoretical develop-
ments in principal partitions). The tri-partition of a connected graph G = (V, E) with a vertex
set V and an edge set E is given by a chain F1 ⊆ F2 ⊆ E such that (1) (if F1 , ∅) for the
subgraph G · F1 (obtained by restriction of G on F1 and deletion of isolated vertices) the edge
set F1 cannot be covered by any two spanning trees, (2) (if F1 ⊂ F2) for the subgraph G · F2/F1
(obtained by restriction of G on F2, contraction of F1, and deletion of isolated vertices) the edge
set F2 \ F1 can exactly be covered by two spanning trees, and (3) (if F2 ⊂ E) for the subgraph
G/F2 (obtained by contraction of F2) the edge set E \ F2 can be covered by two spanning trees
with at least one edge being covered by twice. The edge set F1 is a denser part of G, E \ F2 is a
coarser part, and F2 \F1 has a density 1

2 (called a critical value). Historically, it has been revealed
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that the submodularity plays a crucial rôle in the principal partitions, so that the extensions from
graph rank functions to rank functions of matrices, matroids, and polymatroids, and further to
combinatorial systems with general submodular functions could have successfully been made.
Through a parametric submodular function minimization defined by the associated submodular
functions, we obtain a family D of subsets of the underlying set E which forms a distributive
lattice with respect to the set union and intersection as the lattice operations. Then any maximal
chain ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Fk+1 = E of D leads us to a unique decomposition of the
relevant system into subsystems on Fi+1 \ Fi for i = 0, 1, · · · , k (see [12] for more details). The
theoretical developments along this line seems to have been completed.

But beyond the ordinary submodularity a possible extension of the theory of principal parti-
tions to that for bisubmodular functions in particular has been an interesting open question, since
bisubmodular function minimization can be made efficiently and the collection of minimizers of
a bisubmodular functions forms what is called a signed ring family (a signed version of distribu-
tive lattice) (see [1, 2, 3, 14, 17, 18, 21]). However, the trouble has been that we do not know any
right formulation of a parameterized bisubmodular function minimization that leads us to a nice
decomposition. We will answer this question in the present paper.

We will see that what we need is a box-bisubmodular function defined by two positive vectors
(considered in [15]). Given a bisubmodular function we consider a box-bisubmodular function
with a parameter and investigate a parametric minimization of the sum of the given bisubmodular
function and the box-bisubmodular function with a parameter (the detailed description will be
given in Section 3). We examine the structure of the collection, denoted by L∗, of all solutions
of the parametric bisubmodular function minimization and reveal that the collection L∗ nicely
forms a signed ring family ([1, 2, 6]) and induces a signed poset on a signed partition of the
underlying set ([1, 2, 3]).

The present paper is organized as follows. We give some definitions and preliminaries in
Section 2. In Section 3 we introduce a parametric bisubmodular function minimization problem,
where we consider the sum of a bisubmodular function and a parameterized box-bisubmodular
function [15]. For each fixed parameter λ the minimization problem induces a signed ring family
Lλ and we show that the union of all the signed ring families Lλ is a single signed ring family
L∗. In Section 4 we examine the structure of the signed ring family L∗ in more detail. Moreover,
we discuss the relation of the results of this paper to the theory of principal partitions and related
topics in Section 5. Section 6 gives remarks on some problems left open.

2. Definitions and Preliminaries

Let V be a nonempty finite set and 3V be the set of ordered pairs of disjoint subsets of V ,
i.e., 3V = {(X,Y) | X,Y ⊆ V, X ∩ Y = ∅}. Define two binary operations, reduced union ⊔ and
intersection ⊓, on 3V as follows. For any (X1,Y1), (X2,Y2) ∈ 3V ,

(X1,Y1) ⊔ (X2,Y2) = ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2)), (1)
(X1,Y1) ⊓ (X2,Y2) = (X1 ∩ X2,Y1 ∩ Y2). (2)

A function f : 3V → R is called bisubmodular ([11]) if f satisfies

f (X1,Y1) + f (X2,Y2) ≥ f ((X1,Y1) ⊔ (X2,Y2)) + f ((X1,Y1) ⊓ (X2,Y2)) (3)

for all (X1,Y1), (X2,Y2) ∈ 3V . If inequality (3) holds with equality for a given pair of (X1,Y1), (X2, Y2) ∈
3V , then we call {(X1, Y1), (X2,Y2)} an f -bimodular pair. Also, when −g is bisubmodular, we call
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g bisupermodular. A function that is both bisubmodular and bisupermodular is called bimodu-
lar. When L ⊆ 3V is closed with respect to reduced union ⊔ and intersection ⊓, L is called a
signed ring family ([2, 3]). If a function f : L → R on a signed ring family L satisfies (3) for all
(X1, Y1), (X2,Y2) ∈ L, we also call f a bisubmodular function on L.

Consider two positive vectors w+,w− : V → R>0 and define

λ∗ = max{λ ∈ R | ∀v ∈ V : λw−(v) ≤ w+(v)} (> 0). (4)

Also for any λ ≤ λ∗ define a function wλ : 3V → R by

wλ(X,Y) = w+(X) − λw−(Y) (∀(X,Y) ∈ 3V ), (5)

where for any x ∈ RV and X ⊆ V we define x(X) =
∑

v∈X x(v). Then we can easily see that wλ is
a bisubmodular function, which is called a box-bisubmodular function in [15]. We give a proof
of this bisubmodularity for the sake of completeness and to use it in the subsequent arguments.

Lemma 2.1 ([15]). For any λ ≤ λ∗ the function wλ defined by (5) is bisubmodular.

(Proof) For any (X1,Y1), (X2,Y2) ∈ 3V we have

wλ(X1,Y1) + wλ(X2,Y2)
= w+(X1) − λw−(Y1) + w+(X2) − λw−(Y2)
= w+((X1 ∪ X2) \ (Y1 ∪ Y2)) + w+(X1 ∩ X2) + w+((X1 ∪ X2) ∩ (Y1 ∪ Y2))
−λw−((Y1 ∪ Y2) \ (X1 ∪ X2)) − λw−(Y1 ∩ Y2) − λw−((X1 ∪ X2) ∩ (Y1 ∪ Y2))

= wλ((X1,Y1) ⊔ (X2,Y2)) + wλ((X1,Y1) ⊓ (X2,Y2))
+w+((X1 ∪ X2) ∩ (Y1 ∪ Y2)) − λw−((X1 ∪ X2) ∩ (Y1 ∪ Y2))

≥ wλ((X1,Y1) ⊔ (X2,Y2)) + wλ((X1,Y1) ⊓ (X2,Y2)), (6)

where the inequality in (6) follows from the assumption that λ ≤ λ∗. □

Corollary 2.2. Suppose λ < λ∗. Then a pair of (X1,Y1), (X2, Y2) ∈ 3V is a wλ-bimodular pair if
and only if (X1 ∪ X2) ∩ (Y1 ∪ Y2) = ∅.

(Proof) Because of the definition of λ∗ and the assumption that λ < λ∗, (6) holds with equality if
and only if (X1 ∪ X2) ∩ (Y1 ∪ Y2) = ∅. □

3. Parametric Bisubmodular Function Minimization

Suppose that we are given a bisubmodular function f : 3V → R and a box-bisubmodular
function wλ : 3V → R as given in Section 2. Then let us consider the following parametric
minimization problem (Pλ) of bisubmodular functions f + wλ for all λ ≤ λ∗.

(Pλ) : Minimize f (X,Y) + wλ(X, Y) subject to (X,Y) ∈ 3V . (7)

Denote by pλ the minimum value of Problem (Pλ).
For each λ ≤ λ∗ let Lλ be the collection of all minimizers of bisubmodular function f + wλ.

As is well known (see, e.g., [6, 2]), we see the following.
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Lemma 3.1. For each λ ≤ λ∗, Lλ is closed with respect to the binary operations ⊔ and ⊓.
Moreover, both f and wλ restricted on Lλ are bimodular functions.

(Proof) The latter follows from the fact that we minimize the sum of two bisubmodular functions
f and wλ. □

Any signed ring family L is a meet semi-lattice with respect to the partial order ⊑ defined by
(X,Y) ⊑ (X′,Y ′)⇔ X ⊆ X′ and Y ⊆ Y ′. The minimum element of L is given by ⊓(X,Y)∈L(X,Y).

Now, we can show the following theorem.

Theorem 3.2. For any λ1, λ2 ∈ R with λ1 < λ2 ≤ λ∗ let (Xi,Yi) ∈ Lλi for i = 1, 2. Then we have

(X1,Y1) ⊓ (X2,Y2) ∈ Lλ1 , (X1,Y1) ⊔ (X2, Y2) ∈ Lλ2 . (8)

Moreover,

(a) the pair of (X1,Y1) and (X2,Y2) is an f -bimodular pair and also a wλ2 -bimodular pair,

(b) Y1 ⊆ Y2,

(c) if λ2 < λ∗, then Y2 ∩ X1 = ∅.

(Proof) Under the assumption of the present lemma we have

pλ1 + pλ2

= f (X1,Y1) + wλ1 (X1,Y1) + f (X2,Y2) + wλ2 (X2,Y2)
= f (X1,Y1) + w+(X1) − λ1w−(Y1) + f (X2,Y2) + w+(X2) − λ2w−(Y2)
≥ f ((X1,Y1) ⊔ (X2, Y2)) + f ((X1,Y1) ⊓ (X2,Y2))
+w+(X1) + w+(X2) − λ1w−(Y1) − λ2w−(Y2)
= f ((X1,Y1) ⊔ (X2, Y2)) + f ((X1,Y1) ⊓ (X2,Y2))
+w+(X1) + w+(X2) − λ2w−(Y1) − λ2w−(Y2) + (λ2 − λ1)w−(Y1)
≥ f ((X1,Y1) ⊔ (X2, Y2)) + f ((X1,Y1) ⊓ (X2,Y2))
+wλ2 ((X1, Y1) ⊔ (X2,Y2)) + wλ2 ((X1,Y1) ⊓ (X2,Y2))
+(λ2 − λ1)w−(Y1)
= f ((X1,Y1) ⊔ (X2, Y2)) + f ((X1,Y1) ⊓ (X2,Y2))
+wλ2 ((X1, Y1) ⊔ (X2,Y2)) + wλ1 ((X1,Y1) ⊓ (X2,Y2))
+(λ2 − λ1)(w−(Y1) − w−(Y1 ∩ Y2))
≥ f ((X1,Y1) ⊔ (X2, Y2)) + wλ2 ((X1,Y1) ⊔ (X2,Y2))
+ f ((X1, Y1) ⊓ (X2,Y2)) + wλ1 ((X1,Y1) ⊓ (X2,Y2))
≥ pλ1 + pλ2 . (9)

Hence (9) must hold with equality for each inequality appearing there, which implies (8), (a),
and (b). Also (c) follows from (a), (b), and Corollary 2.2. □

Put
L∗ =

∪
λ≤λ∗
Lλ. (10)

We then have the following.
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Corollary 3.3. L∗ is a signed ring family.

(Proof) Immediate from Lemma 3.1 and Theorem 3.2. □

It is shown in [1] that given any signed ring family L ⊆ 3V , such as L∗ here, L can be
represented as a collection of ideals of an associated bidirected graph G(L) with vertex set V .
Roughly speaking, the underlying set V is partitioned into components, each corresponding to
a strongly connected component of bidirected graph G(L) (see [1, 2, 3] for more details). This
decomposition structure should be called the principal partition of bisubmodular function f as-
sociated with vectors w±. The relation to the (classic) theory of principal partitions ([12]) will be
discussed in Section 5.

We further investigate the structure of the signed ring family L∗ in the next section.

4. The Structure of Signed Ring Family L∗

We first show the following lemma.

Lemma 4.1. There exists a finite sequence of reals λ1 < · · · < λℓ < λℓ+1 = λ∗ such that (i) for
each i = 1, · · · , ℓ+1, Lλs for all λ ∈ (λi−1, λi) are the same and (ii)Lλi , Lλ for each i = 1, · · · , ℓ
and λ ∈ (λi−1, λi) ∪ (λi, λi+1), where we define λ0 = −∞.

(Proof) For each parameter λ let Lλ be the set of minimizers (X,Y) of f + wλ. Now, for any
distinct parameters λ < λ′, suppose that Lλ = Lλ′ . Then we can easily see Lµ = Lλ(= Lλ′ ) for
all µ such that λ < µ < λ′, as follows. Choose arbitrary (X,Y) ∈ Lλ(= Lλ′ ) and (Z,W) ∈ Lµ.
Then we have

f (X,Y) + wλ(X,Y) ≤ f (Z,W) + wλ(Z,W), (11)
f (X,Y) + wλ′ (X,Y) ≤ f (Z,W) + wλ′ (Z,W). (12)

Note that we have a unique convex combination representation µ = αλ + βλ′ with α > 0 and
β > 0 satisfying α+β = 1. Using this convex combination coefficients α and β, (11)×α+ (12)×β
becomes

f (X,Y) + wµ(X,Y) ≤ f (Z,W) + wµ(Z,W). (13)

Hence (13) (as well as (11) and (12)) must hold with equality, which implies Lµ = Lλ(= Lλ′)
due to the arbitrary choices of (X,Y) ∈ Lλ and (Z,W) ∈ Lµ.

Since the number of distinct Lλs for all λ ≤ λ∗ is finite (because V is finite), the infinite in-
terval (−∞, λ∗] is thus divided into a finite number of subintervals (−∞, λ1), (λ2, λ3), · · · , (λℓ, λ∗]
such that on each subinterval we have a common set of minimizersLλ for all λ in the subinterval.

□

We call λi (i = 1, · · · , ℓ) critical values for f + wλ (or for Problem (Pλ)). If Lλ∗ , Lλ for
λ ∈ (λℓ, λ∗), then we also call λ∗ a critical value. Define ℓ∗ = ℓ + 1 if λ∗ is a critical value
and ℓ∗ = ℓ otherwise. It should be noted that Lemma 4.1 only shows that the number of critical
values is finite (possibly exponential). Later, Theorem 4.3 shows that the number is at most |V |,
based on the results in Section 3.

Define (X∗λ,Y
∗
λ) to be the minimum element of Lλ for λ ≤ λ∗. For each i = 1, · · · , ℓ∗ we put

(X∗i ,Y
∗
i ) = (X∗λi

,Y∗λi
).
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Theorem 4.2. For each i = 2, · · · , ℓ∗, we have

Lλ = Lλi−1 ∩ Lλi (λi−1 < ∀λ < λi). (14)

Moreover, for i = 2, · · · , ℓ∗ and λ with λi−1 < λ < λi we have Y = Y∗i for all (X, Y) ∈ Lλ and
hence Lλ is a distributive lattice with respect to the partial order ⊑.

(Proof) Because of the definition of critical values we have (14). Moreover, it follows from
(14) and (b) of Theorem 3.2 that Y = Y ′ for all (X,Y), (X′,Y ′) ∈ Lλ with λi−1 < λ < λi and
i = 2, · · · , ℓ∗. Hence, puttingDλi = {X | (X,Y∗i ) ∈ Lλi },Dλi is closed with respect to ∪ and ∩. □

Denote by X̂i the maximum element of Dλi . Then (X̂i,Y∗i ) is the maximum element and
(X∗i ,Y

∗
i ) is the minimum element of Lλ with λi−1 < λ < λi. It should be noted that (X̂i,Y∗i ) is a

maximal, but not necessarily a unique maximal, element of Lλi−1 .

Theorem 4.3. We have Y∗1 ⊂ · · · ⊂ Y∗ℓ . In particular, ℓ ≤ |V |.
(Proof) For any i ∈ {2, · · · , ℓ}, by Theorem 4.2 and the definition of critical values λis, we have

Lλi−1 , Lλ = Lλi−1 ∩ Lλi (λi−1 < ∀λ < λi). (15)

Hence there exists (W,Z) ∈ Lλi−1 \ Lλi . It follows from Theorem 3.2 that

Y∗i−1 ⊆ Z ⊆ Y∗i . (16)

If Z = Y∗i , then we have

f (X∗i , Y
∗
i ) + w+(X∗i ) − λi−1w−(Y∗i )

= f (W,Z) + w+(W) − λi−1w−(Y∗i ). (17)

Hence we also have

f (X∗i ,Y
∗
i ) + w+(X∗i ) − λiw−(Y∗i )

= f (W, Z) + w+(W) − λiw−(Y∗i ). (18)

That is, (W,Z) = (W,Y∗i ) ∈ Lλi , a contradiction. It follows that Y∗i−1 ⊆ Z ⊂ Y∗i for each i = 2, · · · ℓ.
Hence ℓ ≤ |V |. □

Now, let us examine the structures of Lλ∗ and Lλ for λ < λ1. Every maximal element (X,Y)
of ring family L ⊆ 3V has the same set X ∪ Y ([1, 2]), which is called the support of L and is
denoted by Supp(L). If Supp(L) = V , then we say L spans V .

Theorem 4.4. Suppose that f (∅, ∅) = 0. The following two statements hold:

(i) If λ∗w−(v) ≥ f (∅, {v}) for all v ∈ V, then Lλ∗ spans V.

(ii) If f (X, ∅) + w+(X) ≥ 0 for all X ⊆ V, then we have (∅, ∅) ∈ Lλ for all λ < λ1.

(Proof) (i) For any (X, Y) ∈ 3V and v ∈ V \ (X ∪ Y) we have from the assumption

f (X,Y) + w+(X) − λ∗w−(Y)
≥ f (X, Y) + f (∅, {v}) + w+(X) − λ∗(w−(Y) + w−(v))
≥ f (X, Y ∪ {v}) + w+(X) − λ∗(w−(Y ∪ {v}). (19)

Hence every maximal (X,Y) ∈ Lλ∗ must satisfy X ∪ Y = V .
(ii) We see that for a negative real λ < λ1 with sufficiently large |λ| there exists an element

(X, ∅) ∈ Lλ. Then by the assumption we have (∅, ∅) ∈ Lλ, where recall that Lλ is the same for
all λ < λ1 due to the definition of λ1. □
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5. Historical Notes

We have shown how a triple ( f ,w+,w−) of a bisubmodular function f : 3V → R and positive
vectors w+,w− : V → R determines a signed ring family L∗ = ∪λ≤λ∗ Lλ, which gives the
decomposition and signed poset structure represented by a bidirected graph associated with L∗
due to [1, 2, 3]. This result can be regarded as a theory of what is called a principal partition
([12]) for bisubmodular functions. We discuss how the result of the present paper extends those
considered in the theory of principal partitions.

5.1. Principal partition of a polymatroid with respect to a weight vector

The principal partition of a polymatroid (V, ρ) (ρ: the rank function) with respect to a weight
vector w : V → R>0 ([10]) is based on the parametric minimization of

ρ(X) − λw(X) (X ⊆ V)

for all λ ∈ R. Define f (X,Y) = ρ(Y)+ ρ(V \ X)− ρ(V) for all (X, Y) ∈ 3V , which is bisubmodular
(see [14, p. 1066]). Also define w+(v) to be sufficiently large for all v ∈ V and w− = w. We
consider λs such that λw−(v) is sufficiently small compared with w+(v) for all v ∈ V . Then, every
minimizer (X,Y) of f + wλ for such λ satisfies X = ∅, so that it is equivalent to considering the
parametric minimization of ρ − λw−(= ρ − λw).

5.2. Principal partition of a bipartite graph

The principal partition of a bipartite graph G = (V+,V−; A) was considered by Tomizawa.1

Consider a parametric minimization of

|Γ(X)| − λ|X| (X ⊆ V+) (20)

for all λ ≥ 0, where Γ(X) is the set of vertices in V− adjacent to X ⊆ V+ in G. Since |Γ(X)| as a
function in X ∈ 2V− is a polymatroid rank function, (20) can be regarded as a special case of the
principal partition of a polymatroid with respect to weight vector w = 1 (a vector of all ones).
This extends the Dulmage-Mendelsohn decomposition (see [20]) of bipartite graphs and gives a
finer (possibly non-square) block triangularization of matrices, allowing arbitrary permutations
of rows and of columns. (Note that the existence of any non-square block implies that the whole
matrix is non-regular.)

It was further extended to a pair of polymatroids (V, ρi) (i = 1, 2) by [16, 22], where they
considered the parametric minimization

ρ1(X) + λρ2(V \ X) (X ⊆ V)

for λ ≥ 0. This is, however, outside the framework of the present paper.

1Private communication in 1976.
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5.3. The Dulmage-Mendelsohn type decomposition of general graphs

The partition (signed poset decomposition) of undirected graphs due to Iwata [17, 18] ex-
tends the Edmonds-Gallai decomposition (see [20]) of graphs and the Dulmage-Mendelsohn
decomposition of bipartite graphs. Here he considered the minimization of

ρ(Y, X) + |X| − |Y | ((X,Y) ∈ 3V ),

where ρ is the rank function of the matching delta-matroid of a graph G = (V, E) and is a bisub-
modular function ([5, 6]). We may consider a parametric minimization

ρ(Y, X) + |X| − λ|Y | ((X,Y) ∈ 3V ).

We see that this is a special case of our parametric setting by considering f (X, Y) = ρ(Y, X) for
all (X,Y) ∈ 3V and w+,w− : V → R>0 as w±(v) = 1 for all v ∈ V . In this case we have λ∗ = 1
and the conditions of (i) and (ii) in Theorem 4.4 are satisfied. Then Lλ∗ gives the decomposition
in [17]. The partition of V into X∗λ∗ , Y∗λ∗ , and V \ (X∗λ∗ ∪ Y∗λ∗) corresponds to the Edmonds-
Gallai tri-partition of V . Moreover, our decomposition byL∗ gives a (possibly non-square) block
triangularization of skew-symmetric matrices. This is a skew-symmetric version of Tomizawa’s
block triangularization of matrices.

6. Concluding Remarks

We have shown an extension of the theory of principal partitions for submodular functions to
that for bisubmodular functions.

In the theory of principal partitions ([12]) it has been revealed that there exists a universal
base [10] or a universal pair of bases [22] which solves a kind of resource allocation problem
associated with the principal partition. It is left open to investigate whether there exists a certain
universal vector, in the bisubmodular polyhedron P∗( f ) ≡ {x ∈ RV | ∀(X,Y) ∈ 3V : x(X)−x(Y) ≤
f (X,Y)} ([2, 11]), characterized byL∗ for a given triple ( f ,w+,w−) such that it solves some (non-
trivial) optimization problem associated with the triple. Here note that L∗ determines a face of
P∗( f ) since f restricted on L∗ is bimodular, due to Lemma 3.1 and Theorem 3.2.

Finally, we have not considered an algorithmic issue about how to compute the critical values
and the signed ring familyL∗. Based on Theorems 4.3 and 4.4, we may find the critical values by
the binary search and then for each critical value λi we can obtain the bidirected graph represen-
tation of signed ring family Lλi by bisubmodular function minimization algorithms ([14, 21]).
Getting more efficient algorithms is left open.
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