<table>
<thead>
<tr>
<th>Title</th>
<th>Proceedings of 14th International Workshop on Asian Network for Accelerator-Driven System and Nuclear Transmutation Technology (ADS-NTT 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pyeon, Cheol Ho</td>
</tr>
<tr>
<td>Citation</td>
<td>KUR REPORT OF KYOTO UNIVERSITY RESEARCH REACTOR INSTITUTE (2016), 8: 1-72</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2016-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/227256</td>
</tr>
</tbody>
</table>
| Rights | 掲載された論文等の出版権、複製権および公衆送信権は原則として京都大学原子炉実験所に帰属する。本誌は京都大学学術情報リポジトリに登録・公開するものとする。
http://repository.kulib.kyoto-u.ac.jp/dspace/ |
| Type | Research Paper |
| Textversion | publisher |
| | Kyoto University |
第14回加速器駆動システムおよび核変換技術に関する
アジアネットワークワークショップ報告書

Proceedings of 14th International Workshop on Asian Network for Accelerator-Driven System and Nuclear Transmutation Technology (ADS-NTT 2016)

編集：卞 哲浩
Edited by Cheol Ho Pyeon

京都大学原子炉実験所
Research Reactor Institute, Kyoto University
Preface

The proceedings describe the current status on research and development (R&D) of accelerator-driven system (ADS) and nuclear transmutation techniques (NTT), including nuclear data, accelerator techniques, Pb-Bi target, fuel technologies and reactor physics, in East Asian countries: China, Korea and Japan.

The proceedings also include all presentation materials presented in “the 14th International Workshop on Asian Network for ADS and NTT (ADS-NTT2016)” held at Mito, Japan on 5th September, 2016. The objective of this workshop is to make actual progress of ADS R&D especially in East Asian countries, as well as in European countries, through sharing mutual interests and conducting the information exchange each other.

The report is composed of these following items:

- Presentation materials: ADS-NTT 2016

Cheol Ho Pyeon

September 2016

Keywords:
Status report, ADS, NTT, Asian countries
Contents

The 14th International Workshop on Asian Network for Accelerator-Driven System (ADS) and Nuclear Transmutation Technology (NTT) (ADS-NTT2016), 5th September, 2016, at Mito, Japan

Chair: Dr. Kazufumi Tsujimoto, (JAEA, Japan)

Activities in JAEA induced 1st Technical Meeting (Sep., 2015) for ADS-NTT 2015
Dr. Toshinobu Sasa (JAEA, Japan) .. 1

Status of SNF, Gen-IV & ADS in Korea
Prof. Seung-Woo Hong (Sungkyunkwan Univ., Korea) 24

Current Status of Subcritical Reactor Technology for ADS in China
Prof. Yunqing Bai (INES, CAS, China) 51

Current Status on ADS Experiments at KUCA
Prof. Cheolho Pyeon (KURRI, Japan) 62
14th International Workshop (General Meeting) on Asian Network for Accelerator-Driven System (ADS) and Nuclear Transmutation Technology (NTT) in 2016 (ADS-NTT 2016)

- Agenda -

organized by Research Reactor Institute, Kyoto University
sponsored by J-PARC, Japan Atomic Energy Agency

5th September, 2016, at Hotel Terrace Garden Mito

September 5th (Monday)

13:30 Registration
13:55 - 14:00 Opening remarks (Prof. Cheolho Pyeon, Kyoto Univ., Japan)

Progress and Status on ADS in Asian countries
(Chairman: Dr. Kazufumi Tsujimoto, JAEA)

14:00 - 14:40 “Activities in JAEA induced 1st Technical Meeting (Sep., 2015) for ADS-NTT 2015” (Dr. Toshinobu Sasa, JAEA, Japan)
14:40 - 15:20 “Status on Gen-IV research activities in Korea” (Prof. Seung-Woo Hong, SSKU, Korea)
15:20 - 15:40 Break
15:40 - 16:20 “Current Status of Subcritical Reactor Technology for ADS in China” (Prof. Yunqing Bai, INEST, CAS)
16:20 - 17:00 “Current Status on ADS Experiments at KUCA” (Prof. Cheolho Pyeon)
17:00 - 17:20 Break
17:20 - 17:50 Round Table by Speakers (Chairman: Prof. Cheolho Pyeon)
17:50 - 18:00 Closing remarks (Chairman: Dr. Toshinobu Sasa)
18:30 - 21:00 Dinner with information exchange hosted by JAEA and KURRI
Secretary office
Contact with Prof. Cheolho Pyeon
Phone: +81-72-451-2356, Fax: +81-72-451-2603
E-mail: pyeon@rri.kyoto-u.ac.jp
Activities in JAEA inducing 1st Topical Meeting for ADS-NTT 2015

14th International Workshop on Asian Network for ADS-NTT 2016
5th Sep. 2016, Mito Japan

Toshinobu Sasa

J-PARC Center, Japan Atomic Energy Agency

Contents

- Activities for ADS development in JAEA
 - National Policy for Energy Supply
 - Future ADS Design
 - Status of J-PARC Facility Design

- Topics in 1st topical meeting

- Summary
Nuclear Energy Situation in Japan
- Nuclear Power in Latest Strategic Energy Plan -

- Important base-load power source as a low carbon and quasi-domestic energy source, contributing to stability of energy supply-demand structure, on the major premise of ensuring of its safety, because of the perspectives; 1) superiority in stability of energy supply and efficiency, 2) low and stable operational cost and 3) free from GHG emissions during operation.

- Dependency on nuclear power generation will be lowered as much as possible by energy saving and introducing renewable energy as well as improving the efficiency of thermal power generation, etc.

- Under this policy, we will carefully examine a volume of electricity to be secured by nuclear power generation, taking Japan’s energy constraints into consideration from the viewpoint of stable energy supply, cost reduction, global warming and maintaining nuclear technologies and human resources.
Government Of Japan (GOJ) will promote technology development on volume reduction and mitigation of degree of harmfulness of radioactive waste. Specifically, development of technologies for decreasing the radiation dose remaining in radioactive waste over a long period of time and enhancing the safety of processing and disposal of radioactive waste, including nuclear transmutation technology using fast reactors and accelerators, will be promoted by utilizing global networks for cooperation. Also, while GOJ examines the situation of study and progress in terms of final disposal, it studies the feasibility of integrated implementation of the R&D for final disposal and reduction of volume, international research cooperation and a researcher resource development related to them.
Issues and R&Ds for ADS using J-PARC

Accelerator
- High Power, Reliability, Cost, etc.

J-PARC Accelerator
- Operation Experience, etc.

Structure
- Design of Reactor Vessel, Pumps, SGs, Quake-proof Structure, Beam Duct & Window, etc.

MA-loaded Subcritical Core
- Physics and Control of Subcritical Core with MA-bearing Fuel, etc.

R&D using JAEA Experiences
- Utilize existing resources & knowledge

Fuel, Cycle
- Fabrication, Irradiation, Reprocessing of MA-bearing Fuel, etc.

Pb-Bi Spallation Target
- Material Irradiation, Operation, Lifetime Evaluation, etc.

J-PARC Transmutation Experimental Facility
- 2 Individual Facilities
 - Transmutation Physics Experimental Facility: TEF-P
 - ADS Target Test Facility: TEF-T
 - Neutronics Tests by Low Power Beam
 - Material Irradiation by High Power Beam

J-PARC Transmutation Experimental Facility
- TEF-M
- Neutronics Tests by Low Power Beam

ADS Plant
- 30MW-beam, 800MWth
- MA transmutation

J-PARC Transmutation Experimental Facility
- 250kW-beam
- Pb-Bi target
- ADS core

ADS Demo⇒MYRRHA
- ~2.4MW-beam, 50~100MWth
- Demonstration of ADS

TEF-MYRRHA Joint Roadmap to Accelerate Establishment of ADS Transmutation

Physics of MA fuel and Target Development

J-PARC
- Purposes:
 - Elemental Technology (Target, Physics)
 - System demonstration
- Power:
 - Proton: 250kW
 - Core: 500W (10Wbeam)
- MA:
 - Simulate MA loaded core (Several tens kg)

MYRRHA
- Purposes:
 - MA transmutation
- Power:
 - Proton: 2.4MW
 - Core: 50~100MW
- MA:
 - Small Amount Irradiation

ADS Demo⇒MYRRHA
- Power Proton: 250kW
 - Core: 500W (10Wbeam)

ADS Plant
- 30MW-beam, 800MWth
- MA transmutation

J-PARC Transmutation Experimental Facility
- 250kW-beam
- Pb-Bi target
- ADS core

Basic tests (Pb-Bi loop, KUCA, etc.)

<table>
<thead>
<tr>
<th>Year</th>
<th>J-PARC</th>
<th>MYRRHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lead the worldwide RD&D for transmutation technology in cooperation with J-PARC and MYRRHA
- Obtain knowledge & experience to realize ADS in 2030th
ADS Proposed by JAEA - LBE Target/Cooled Concept -

- Proton beam: 1.5 GeV ~30 MW
- Spallation target: Pb-Bi
- Coolant: Pb-Bi
- Subcriticality: $k_{\text{eff}} = 0.97$
- Thermal output: 800 MWt
- Core height: 1000 mm
- MA initial inventory: 2.5 t
- Fuel composition: (60%MA + 40%Pu) Mono-nitride
- Transmutation rate: 10%MA / Year (10 units of LWR)
- Burn-up reactivity swing: 1.8%Δk/k

Grant-In-Aid for Nuclear

Research and development to solve the engineering issues for transmutation system using accelerator-driven system

1. MA partitioning process development using actual waste solution

- Spent fuel → Rough separation of U → Separation of U, Pu, Np → Separation of An(III), Ln → Separation of Cs, Sr → Separation of An(III) and lanthanide from HLLW:
 - New extractants based on “CHON principle”:
 - TDdDGA
 - Separation of An(III) from lanthanide:
2. Feasibility design study of ADS

- Improved reliability of proton LINAC for ADS
- Enhanced feasibility of beam window of ADS by compensating the burnup reactivity change
- Robust safety aspects based on detailed plant dynamic analysis

2016/9/12
Asian ADS-NTT Workshop 2016
Increase Beam Reliability

- To improve the reliability of accelerator, parallel accelerator layout is an ultimate solution
- By running two accelerators by 50% of rated power each, reliability requirement for ADS can be satisfied
- Optimum layout of parallel accelerator should be determined

k_{eff} adjustment by control rod

- ADS with Control Rods for k_{eff} adjustment
 - Install Three B$_4$C CRs (Total Worth: 1.5%dk/k)
 - Possible to keep proton beam current around **10mA** during the burnup cycle
Improvement of passive safety

- Reflecting the Fukushima Accident, addition of PRACS (Primary Reactor Auxiliary Cooling System) is studied
- PLOHS with PRACS was analyzed by RELAP5-Mod3
- Confirm the coolant temperature can be kept below 400°C even on Black Out

Subcritical core

- Layout of reactor components including newly added equipment was performed
- The scheme to replace beam window and fuel is confirmed
Transmutation Experimental Facility

Status of J-PARC Facility Design

Transmutation Experimental Facility (TEF-P)

- **ADS Target Test Facility (TEF-T)**
 - Investigate engineering characteristics of LBE spallation target
 - 400MeV-250kW Proton Beam
 - LBE Temperature 500 °C max
 - Oxygen Potential Controlled
 - Hot Cell for PIE samples preparation

- **Transmutation Physics**
 - Explore neutronic performances of ADS and/or MA-loaded core
 - 400MeV-10W Proton Beam
 - Table-split type Critical Assembly
 - MA-bearing pin type fuel for experiments
Minor Actinide Fuel Handling

- Requires remote handling device to storage/transport/loading of MA fuel
- Basic functional tests for MA fuel loading device is performed and confirmed the operation
- Heat removal test in Pb Coolant mockup is underway
- To improve accuracy of experiments, fuel rod identification methods is under consideration

Design of Target Trolley

- Base layout was finished considering the drain route and maintainability through shield window.
- Further design harmonized with remote operation by MSM and PM will be performed.
Lessons Learned in past 10 years

- To realize TEF-T and ADS, JAEA built a static corrosion experimental equipment (JLBS), four experimental lead-bismuth loops (JLBL-1, 2, 3 and 4)

- The equipment were installed for corrosion/erosion examination (JLBS, JLBL-1), measurement device development (JLBL-2, 4) and thermal-hydraulic experiments around beam window (JLBL-3).

New Test Equipment for TEF-T Design

- Material corrosion database for various temperature, oxygen potential, LBE flow rate will be collected
- The loop will be operated from next April
- Addition of corrosion test section with mechanical stress are planned

Oxygen-controlled Lbe LOop for Corrosion tests in HIgh temperature

IMMORTAL Integrated Multi-functional MOckup for TEF-T Real-scale TArget Loop

Oxygen Sensor Calibration Device

- To prevent corrosion by flowing LBE, oxygen potential in LBE should be controlled in appropriate potential range (10^{-6} to 10^{-7} %)
- Development of oxygen potential sensor and loop tests for oxygen potential control mechanism are underway
Outline of "OLLOCHI"

Purpose
- Fundamental study for future ADS development
- Corrosion data collection for PIE on TEF-T irradiated materials.
- Development of filtering system

Design concept
- High temperature (>500°C) corrosion test
- Multi test section
- Non-contact type flow meter
- Oxygen sensor, oxygen concentration control system
- Purification system of LBE
- Exchange test-piece without drain (to keep oxygen concentration)
- Decrease flange connection to prevent LBE leakage

Appearance of OLLOCHI

- Extended pipes to Pressure Difference gauge
- Globe box
- Expansion tank
- Test sections
- Heater
- Control panel
- Gas control panel
- EMP
- Air Cooler
- Ultra sonic flow meter
- Filter
- Drain tank (Behind)
Schematic flow diagram of OLLOCHI

High temp. section: max. 550°C, T91
Low temp. section: max. 450°C, SS316L
Flow rate: 1 m/s at high temp. test section

Tentative Corrosion Test Program

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Proof test)</td>
<td>2</td>
<td>(Corrosion test, benchmark)</td>
<td>3</td>
<td>(Corrosion test)</td>
<td>4</td>
<td>(Corrosion test, reproducibility)</td>
</tr>
<tr>
<td>Oxygen concentration (wt.%)</td>
<td>10⁻⁷ - 10⁻⁵</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LBE flow rate</td>
<td>1 m/s</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ΔT (°C)</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Test section No.1</td>
<td>Temp. (°C)</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Time</td>
<td>3,000 h</td>
<td>1,000 h</td>
<td>3,000 h</td>
<td>5,000 h</td>
<td>1,000 h</td>
<td>3,000 h</td>
<td>5,000 h</td>
</tr>
<tr>
<td>Test section No.2</td>
<td>Temp. (°C)</td>
<td>450</td>
<td>450</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Time</td>
<td>3,000 h</td>
<td>5,000 h</td>
<td>1,000 h</td>
<td>3,000 h</td>
<td>5,000 h</td>
<td>1,000 h</td>
<td>3,000 h</td>
</tr>
<tr>
<td>Specimen</td>
<td>Austenitic F/M steel</td>
<td>Austenitic, F/M steel, welds, coating, ODS, etc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F/M steel, welds, coating, ODS, etc.</td>
</tr>
</tbody>
</table>
Outline of "IMMORTAL"

- Target Mock-Up loop "IMMORTAL" is a demonstration test loop with most of same configuration/components of the primary cooling system of TEF –T target

- Most of component are actual scales, except a temperature conditioner simulating heat generation by the incidence of proton beam.

Purpose of IMMORTAL
1. Dynamic behavior of heat removal
2. Confirmation of operation procedure
3. Integral test of individually developed components of LBE technologies (including EMP & HX)
4. Production of control sample for PIE of TEF-T irradiation sample
Major Specifications of IMMORTAL/TEF-T

<table>
<thead>
<tr>
<th>Specifications</th>
<th>IMMORTAL</th>
<th>TEF-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. temperature</td>
<td>500 °C</td>
<td>500 °C</td>
</tr>
<tr>
<td>Temperature difference ΔT</td>
<td>100 °C</td>
<td>100 °C</td>
</tr>
<tr>
<td>Max. Flow rate</td>
<td>120 liter/min</td>
<td>120 liter/min</td>
</tr>
<tr>
<td>Heat deposition by proton beam</td>
<td>n/a</td>
<td>200 kW</td>
</tr>
<tr>
<td>Power of temperature conditioner</td>
<td>67 kW: to simulate heat generation (about 1/3 of heat deposition)</td>
<td>< 10 kW: to control inlet temp. only</td>
</tr>
<tr>
<td>Amount of heat exchanger</td>
<td>Design 200 kW</td>
<td>200 kW</td>
</tr>
<tr>
<td></td>
<td>Working 67 kW</td>
<td></td>
</tr>
<tr>
<td>Inventory of LBE</td>
<td>≈ 290 liter</td>
<td>≈ 290 liter</td>
</tr>
<tr>
<td>Main piping</td>
<td>i.d. 69.3 mm</td>
<td>i.d. 69.3 mm ⇒ i.d. 42.6 mm</td>
</tr>
<tr>
<td>Main material</td>
<td>316 SS</td>
<td>316 SS / T91</td>
</tr>
<tr>
<td>Flow monitoring system</td>
<td>Ultrasonic flowmeter</td>
<td>Ultrasonic flowmeter</td>
</tr>
<tr>
<td>Oxygen Concentration (OC) control system</td>
<td>Available (Pt/Air type sensor)</td>
<td>Available (Pt/Air type sensor)</td>
</tr>
<tr>
<td>Liquid pressure gauge</td>
<td>To be installed</td>
<td>Available</td>
</tr>
<tr>
<td>Freeze seal type of drain valve</td>
<td>To be installed</td>
<td>Available</td>
</tr>
</tbody>
</table>

2016/9/12 Asian ADS-NTT Workshop 2016

Full Scale TEF-T Target Mockup

Purpose
A) Confirmation of manufacturing method
B) Confirmation of the residual LBE after drain operation
C) Structural durability in non-irradiation condition (erosion/corrosion)
D) Confirmation of dynamic behavior (LBE flow, heat transfer, flow vibration)

Result of A) & present design of B)
A) BW(2mm thick) part was made by shaving from ingot, and successfully manufactured.
B) To reduce residual LBE, drain hole (6(W) × 5(H) mm) was provided at the end of inner pipe.

![Manufactured target vessel](image_url)

confirmed by long-run test & flow visualization
LBE Flow visualization in Target

Purpose of flow visualization experiment
- To verify the simulated LBE flow (in particular instability of central stagnant region)
- Confirmation of the effect of planned guide fin (to remove the central stagnant region)
- Experimental data acquisition to verify the fluid analysis result for upgrade of target vessel

Estimation of the instability of central stagnant region is important issue for TEF-T target.

Fabrication of Oxygen Sensor

- **Pt type**: Air hole is prepared. To prevent LBE leakage by YSZ failure, freeze seal design was employed in housing.
- **Bi type**: No air hole

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of sensor</td>
<td>240mm</td>
</tr>
<tr>
<td>Diameter of YSZ</td>
<td>6/4 mm (O/I)</td>
</tr>
<tr>
<td>Length of housing</td>
<td>140mm</td>
</tr>
<tr>
<td>For Pt type</td>
<td>Pt paste /SUS304 wire</td>
</tr>
<tr>
<td>For Bi type</td>
<td>Bi/Bi₂O₃=95:5 /Mo wire</td>
</tr>
</tbody>
</table>

Air hole

SS housing

Pt type

Bi type
Control of Co in flowing LBE condition

Outline of JLBL-4

- Main material: 316SS
- Inventory: 20 L
- Max. pressure: 6 bar
- Max. electrical power: 7 kW heaters
- Max. design temperature: 500 °C
- Flow rate of LBE: Max. 40 L/min
- Flow rate of observation: EMF

O2 sensor: Bi type sensor (made by SCK·CEN)
LBE temperature: 350 ℃
LBE flowrate: 26 L/min

Specifications of JLBL-4

Control of Co in flowing LBE condition

Result

① Ar continuous (2days)
② Ar+O₂*₁ 150cc (50sccm×3min)
③ Ar+H₂*₂ 500cc (100sccm×5min)
④ Ar+O₂ 150cc (50sccm×3min)
⑤ Ar+O₂ 75cc (50sccm×1.5min) *₁: 20vol% O₂ *₂: 4.5vol% H₂

- Basic oxidation operation was performed
- It is required to comprehend the relationship between change of Co and input of oxygen.
- #③ will be also the effect of residual oxygen.
To increase professional information exchange, topical meeting was held in-between the regular ADS-NTT meeting

LBE handling technology was selected as a specific topic

Prof. J. Konys (KIT) gave an invited talk

14 presentations from China, Korea and Japan were discussed
Group Photo

Topical Meeting on Asian Network for ADS & NTT
(Oct. 2015, J-PARC/JAEA, Japan)

Slide in Final Discussion

Things to do

- Safe application of LBE for ADS and/or FRs
- Common Knowledge
 - Formation of oxide layer is a key

However, issues are still exists...

- Stable formation of oxide layer
- Oxygen potential management for real-scale ADS/FR
- Film formation on fuel cladding
- Thermal conductivity of oxide film
Proceedings is available online!

- All presentations during 2 days were collected in a report
- You can find the digital document on JAEA website

Summary

- P&T is specified as an option of Japanese energy policy
- JAEA proceeds P&T using ADS and TEF design works

Future ADS Design is performed
- Studies to improve reliability of intense proton beam
- Researches to increase k-eff stability and safety of MA-core

Design study of TEF-T have been performed
- Apply existing knowledge from J-PARC Mercury Target
- Design optimization to prepare irradiation database for ADS

1st topical meeting for Asian ADS-NTT network
Status of SNF, GEN IV & ADS in Korea

The 14th Workshop on Asian Network for ADS-NTT
Mito, Japan
September 5, 2016

Seung-Woo Hong, SKKU
Il-Soon Hwang, SNU
Jueun Lee, SNU
Yong-Hoon Shin, SNU
Myung Jae Song, HYU

Contents

I. Status of NPP and SNF in Korea
II. Status of GEN IV in Korea
III. ADS research in SKKU
IV. TORIA
V. Summary
I. Status of NPP and SNF in Korea

Current Status of NPPs in Korea

- **In operation (27.053 GWe)**
 - 23 units
 - 19 PWRs
 - 4 PHWRs (CANDU)

- **Under construction (3.8 GWe)**
 - 3 PWRs
 - Shin-Kori-3: '08.10~
 - Shin-Kori-4: '09.08~
 - Shin Wolsung-2: '08.09~

- **Under license review (5.6 GWe)**
 - 4 PWRs
 - Shin-Ulchin-1
 - Shin-Ulchin-2
 - Shin-Kori-5
 - Shin-Kori-6

Generation in 2011
- Total: 496 TWh
- Nuclear: 154.7 TWh (31.2%)
Lessons we learned from failures since 1983

- The government made nine attempts to look for a repository site since 1983, but failed mostly until 2005.

- Two examples of Decide-Announce-Defend
 - Anmyeon-Do (1990-1991) - failure
 - Guleop-Do (1994-1995) - failure

- (Partial) Engagement of Public and Local Government
 - Buan (2003) – still a failure

- Success with LILW through Public Engagement
 - Gyeongju city (2005-)

- PECOS for SNF
Example 1: Decide-Announce-Defend

Anmyeon-Do (1990-1991)

- Plan: To build a spent fuel interim storage (HLW)
 - To invest ~ $900M till 2000
 - To establish the 2nd KAERI in the local area
- Initiated by the government without engagement of local public
- The plan was cancelled in June 1991

Example 2: Decide-Announce-Defend

Guleop-Do (1994-1995)

- The government decided and announced.
- Proposed site for nuclear waste:
 - Island made of granite (and considered as a safe geological formation)
 - HLW (Interim storage), LILW (Permanent)
 - only 10 people lived in that island (small compensation)
Guleop-Do (1994-1995)

- The residents in the island agreed with the government plan.
- However, people in neighboring islands and Incheon City objected.
- An active fault was found under the sea near the island, and the plan was cancelled in the end of 1995.

(Partial) Engagement of Public and Local Government

Buan (2003)

- Government requested **public participation**
- Several **local governments** applied for the nuclear waste management site.
 - Package: Nuclear waste storage site & Proton Accelerator Project
 - The headquarter of Korea Hydro & Nuclear Power Co. will move to the site.
 - The local government supported and applied.
- Eruption of violence. Injuries of people. Conflict among the local people.
- The plan was cancelled in 2004.
Turning point

• On Dec. 17, 2004
 The government decided that the repository sites for LILW and SNF would be separately sought after.

• Involvement of local public was requested by the government

Success with LILW: Through Community Agreement

Gyeongju city (2005 ~ 2015)

• Disposal site for just LILW
• Residents applied for hosting the site
 > Local governments carried out the vote of residents (2nd Nov. 2005)
 > Gyeongju (89.5% agreed), Gunsan (84.4%), Yeongdeok (79.3%), Pohang (67.5%)
• Construction started in 2008
• “Nuclear Safety and Security Commission” issued approval of use on 11 Dec. 2014
• Community Benefit
Still unsolved problems with SNF

- Nov. 2011 ~ Aug. 2012: forum for SNF was formed.

- September, 2012: a law passed for establishing Public Engagement Commission on Spent Nuclear Fuel Management, PECOS

PECOS for Spent Nuclear Fuels

- The public engagement started with the launch of PECOS in 2013
- PECOS consists of 15 members, from human & social science and technical engineering, representatives recommended by NGO and residents in NPP areas.
- The commission plays a role of deciding principles and methods of the public engagement program, and submitting recommendation (national plan on SNF) to government.
- The commission submitted recommendation to the government on June 2015.
Recommendation by PECOS

Recommended the government to seek a repository site for SNF:

- Timeline for constructing:
 - an intermediate storage (for 7 years)
 - an underground Research Lab (for 14 years)
 - a permanent repository (for 10 years)

- Capacity: 707,476 bundles
 - LWR 42,839 bundles, HWR 664,637 bundles

- Establish a “Center for Environment Monitoring” in the region

“Government Basic Plan” for SNF

- Based on the PECOS recommendation, July 2015 ~ April 2016,
 a Task Force Team (in the government) for “Basic Plan for SNF” was worked out.
II. Status of GEN IV in Korea

Status of GEN IV (Pyro-SFR) in Korea

 Pyro + SFR (Gen IV)
 ~ 2025, Pyro for 30 tons
 ~ 2028, SFR for 300 MWe

- On Nov. 2011, Revision of the original plan
 SFR (300MWe → 100MWe),

- On Jan. 2015,
 Necessity of a site for SFR (to be built by 2028)

- On June, 2015, Revision of the Korea-US Agreement
 Use of SNF for a research purpose

- By 2020, Korea-US collaboration research and agreement for feasibility of pyroprocessing (in terms of economy, non-proliferation)
Overview of Prototype SFR Development

- **Goal**
 - Design Certification of prototype SFR by 2020 (1st Phase)
 - Construction of prototype SFR by 2028

- **Work Scope**
 - Reactor system design
 - Code and technology validation
 - Metal fuel development
 - BOP and component design

- **Feature of Prototype SFR**
 - Proliferation resistant core without blankets
 - Metallic fuel
 - Enhanced safety with passive systems
 - TRU fuel irradiation capability

from presentation by Dr. H. K. Joo, KAERI, 2014
III. ADS Research in SKKU

Topics of ADS R&D in SKKU

1. Computational modeling: Tnudy
2. Transmutation of LLFP’s: 99Tc, 129I, ..
3. Accelerator Driven Molten Salt Reactor
4. Neutron Cross Section Measurement
5. Development of Cyclotrons for ADS
1. TNudy
\textbullet A C++ library, powered by ROOT, to read, process and visualize ENDF nuclear data
\textbullet ENDF= Evaluated Nuclear Data Format
 – Nuclear reaction data for $E \leq 20$ MeV, including cross sections and neutron yields
 – Written in ASCII, and can be read most conveniently by FORTRAN (i.e., fixed length records and so on)

An example of ENDF file

\begin{verbatim}
... ...
4.009300+4 9.210840+1 0 0 0 0 4034 3 17 0
-1.537640+7 -1.537640+7 0 0 1 7 4034 3 17 1
7.554330+7 0.000000+0 0.000000+0 0.000000+0 0.000000+0 0.000000+0 4034 3 17 2
1.500000+7 9.111520-2 1.600000+7 3.802450-5 1.900000+7 2.610420-3 4034 3 17 3
2.000000+7 6.148280-1 0.000000+0 0.000000+0 0.000000+0 0.000000+0 4034 3 17 4
4.009300+4 9.210840+1 0 0 0 0 4034 3 22 0
... ...
\end{verbatim}

2. Transmutation of LLFPs

Experiment with a cyclotron in CAL, France

\textbullet} Started a TARC experiment through an international collaboration
\textbullet} Initial verification of the simulation for neutron flux with samples

\begin{itemize}
\item Preliminary Results: Gamma rays from Indium sample & its activity
\end{itemize}
3. Acc. Driven Molten Salt Reactor

Implementation of an LBE spallation target in an accelerator-driven molten salt subcritical reactor

4. Neutron Cross Section Measurement at KIRAMS
- Estimated cross section of $^{209}\text{Bi} \ (n, \ 4n) \ ^{206}\text{Bi}$

![Graph showing data points and lines for cross section vs. incident energy for $^{209}\text{Bi} \ (n, \ 4n) \ ^{206}\text{Bi}$](image1)

- Estimated cross section for $^{89}\text{Y} \ (n, \ 2n) \ ^{88}\text{Y}$

![Graph showing data points and lines for cross section vs. energy for $^{89}\text{Y} \ (n, \ 2n) \ ^{88}\text{Y}$](image2)
5. Accelerator Group in SKKU (Prof. Jong Seo Chai)

![Accelerator Group in SKKU](image)

9 MeV, 100uA

13 MeV, 100uA

Layout of the Cyclotron System for ADS

- 4 Injector cyclotrons
 - 9 MeV, 3 mA

- 4 Intermediate SSC
 - 70 MeV, 3 mA

- 2 Main SSC
 - 700 MeV, 6 mA

- ~700 MeV, 12 mA (~8MW)
III. TORIA
(Thorium Optimized Radionuclide Incineration Arena)

- Anticipated amount of SNF is about 1000 ton per year at 2025 in Korea
 - It contains 1% of TRU, which is about 10 ton
- Pyroprocess separates TRU from SNF
 - Separated TRU goes to SFR
 - Residual waste contains about 10kg of TRU
Residual waste containing TRU is mixed with thorium and used for fuel of TORIA. This system leaves behind only low and intermediate level waste.

Concepts of TORIA

- **TORIA**: Thorium Optimized Radionuclide Incineration Arena

- **Purpose**
 - TORIA is designed for the purpose of managing spent nuclear fuel by burning TRU and long-lived fission product

- **Characteristics**
 1. Accelerator-driven subcritical system
 2. Dedicated burner
 3. Thorium based oxide fuel
 4. LBE as coolant and target material
Design of Critical TORIA 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>30MWth</td>
</tr>
<tr>
<td>Power plant efficiency</td>
<td>35%</td>
</tr>
<tr>
<td>Refueling interval</td>
<td>800 days</td>
</tr>
<tr>
<td>Primary coolant</td>
<td>Lead-bismuth eutectic</td>
</tr>
<tr>
<td>Fuel type (Th-TRU)O2</td>
<td></td>
</tr>
<tr>
<td>Cladding, structure material</td>
<td>HT9</td>
</tr>
<tr>
<td>Pellet nominal density (%TD)</td>
<td>100.0</td>
</tr>
<tr>
<td>Active core height/equivalent diameter</td>
<td><1</td>
</tr>
<tr>
<td>Number of pins per one assembly</td>
<td>64 including 4 skeletal bar</td>
</tr>
<tr>
<td>Average effective multiplication factor</td>
<td>1.01104</td>
</tr>
<tr>
<td>Average core power density</td>
<td>28.856W/cc</td>
</tr>
<tr>
<td>Average linear power density</td>
<td>4.252kW/m</td>
</tr>
</tbody>
</table>

Design of Critical TORIA 2

- Design of marine TORIA is based on the URANUS design
- Thermal power is 50MWth
- Equivalent core diameter is 1.9m and height of active core is 1.8m

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>50 (MWth)</td>
</tr>
<tr>
<td>Number of pins per one assembly</td>
<td>61 including 1 skeletal bar</td>
</tr>
<tr>
<td>Pin pitch-to-diameter ratio</td>
<td>1.35</td>
</tr>
<tr>
<td>Fuel pin pitch</td>
<td>21.33 (mm)</td>
</tr>
<tr>
<td>Fuel pin diameter</td>
<td>14.4 (mm)</td>
</tr>
<tr>
<td>Cladding thickness</td>
<td>0.06cm</td>
</tr>
<tr>
<td>Active core height</td>
<td>1800 (mm)</td>
</tr>
<tr>
<td>Equivalent core diameter</td>
<td>1900 (mm)</td>
</tr>
<tr>
<td>Fission gas plenum height</td>
<td>1300 (mm)</td>
</tr>
<tr>
<td>Lower plenum height</td>
<td>300 (mm)</td>
</tr>
<tr>
<td>Volume fraction</td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td>40.82%</td>
</tr>
<tr>
<td>Coolant</td>
<td>50.03%</td>
</tr>
<tr>
<td>Structure</td>
<td>9.14%</td>
</tr>
</tbody>
</table>
The protons are injected onto a spallation target to produce source neutrons for driving the subcritical core, and proton is generated by accelerator.

Main parameters of preliminary core

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal power</td>
<td>30MW(_{th})</td>
</tr>
<tr>
<td>Power plant efficiency</td>
<td>35%</td>
</tr>
<tr>
<td>Refueling interval</td>
<td>1000 days</td>
</tr>
<tr>
<td>Primary coolant</td>
<td>Lead-bismuth eutectic</td>
</tr>
<tr>
<td>Fuel type</td>
<td>(Th-TRU)O(_2)</td>
</tr>
<tr>
<td>Cladding, structure material</td>
<td>HT9</td>
</tr>
<tr>
<td>Pellet nominal density (%TD)</td>
<td>100.0</td>
</tr>
<tr>
<td>Active core height/equivalent</td>
<td><1</td>
</tr>
<tr>
<td>diameter (H/Deq)</td>
<td></td>
</tr>
<tr>
<td>Number of pins per one assembly</td>
<td>64 including 4 skeletal bar</td>
</tr>
<tr>
<td>Average effective multiplication</td>
<td>0.955</td>
</tr>
<tr>
<td>factor</td>
<td></td>
</tr>
<tr>
<td>Average core power density</td>
<td>28.856W/cc</td>
</tr>
<tr>
<td>Average linear power density</td>
<td>4.252kW/m</td>
</tr>
<tr>
<td>Average discharge burnup</td>
<td>14.127MWd/kgHM</td>
</tr>
</tbody>
</table>

The First topical Meeting on Asian Network for Accelerator-driven Systems and Nuclear Transmutation Technology 37

*H. Aït Abderrahim, et. al., “Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production” ADS white paper 2010
In 2015, Korea signed the GIF-LFR MoU to become a full member of the GIF-LFR provisional System Steering Committee

Summary

• Korea signed the GIF-LFR MoU to become a full member of the GIF-LFR provisional System Steering Committee

• SNU and SKKU are doing fundamental but original researches for transmutation and ADS.

• Close international collaboration with China, Japan and Europe is needed.
Current Status of Subcritical Reactor Technology for ADS in China

Presented by: Yunqing Bai

Contributed by FDS Team
Key Laboratory of Neutronics and Radiation Safety
Institute of Nuclear Energy Safety Technology (INEST)
Chinese Academy of Sciences
www.fds.org.cn

Contents

I. Strategy and plan
II. Design and R&D Progress
III. Summary

China’s Plan on Nuclear Energy
(Plan up to 2020)

- Nuclear power plant in China (by August, 2015)
 - 25 reactors (~ 23.6GWe) in operation
 - 26 reactors (~28.7GWe) under construction

- National plan of developing nuclear energy before 2020
 - 58 GWe in operation
 - 30 GWe under construction

- National plan for nuclear and radiation safety before 2020
 - More R&D are required to enhance nuclear safety, especially in the basic research of nuclear safety
 - ~79.8 billion RMB investment plan (~13.3 billion US dollars)
Key Issues of Nuclear Energy Development

1. Limitation of Fuel Resources: ~60 year available resources for utilization
2. Nuclear accident: TMI, Chernobyl, Fukushima
3. Disposition of Nuclear Waste: long term radioactive toxicity

Advanced and innovative nuclear energy system should be a viable way to solve nuclear energy problems.

Latest Roadmap of Generation IV Reactors

--- GIF organization evaluated in 2014

LFR is expected to be the first Generation-IV nuclear system to achieve industry demonstration and commercial application.
China Lead-based Reactor Development Plan

- Chinese Academy of Sciences (CAS) launched the ADS Project, and plan to construct demonstration ADS transmutation system ~ 2030s through three stages.
- China LEAd-based Reactor (CLEAR) is selected as the reference reactor for ADS project and for Lead cooled Fast Reactor (LFR) technology development.

ADS Demonstration Facility
Accelerator: 0.6-1GeV/~10mA
Reactor: China Lead-based Engineering Demonstration Reactor CLEAR-II (~100MW)

ADS Research Facility
Accelerator: ~250MeV
Reactor: China Lead-based Research Reactor CLEAR-I (~10MW)

ADS Commercial Prototype Facility
Accelerator: 1.5-2GeV/~10mA
Reactor: China Lead-based Commercial Prototype Reactor CLEAR-III (~1000MW)

CLEAR-I Implementation Plan

- **CLEAR-I (Phase A)**: Subcritical operation for ADS integration technology test
- **CLEAR-I (Phase B)**: Critical operation for fast reactor technology test

Components and Integrated Test Facilities
Current Status of CLEAR-I Project

❖ Reactor Design
 • 2011-2014: Conceptual Design
 • 2015-2016: Preliminary Engineering Design

❖ Technical R&D
 • 2011-2013: PbBi Loop Construction and Components Fabrication
 • 2014-2016: Thermal-hydraulic, material, safety and Integrated Test Platform Test

❖ Safety Analysis
 • 2011-2014: Software V&V, Accident and Environmental Impact Analysis
 • 2015-2016: Integrated Simulation of System and Environmental Impact
Key Technologies and Integrated Test Facilities

3 Test Reactors in INEST/FDS

4 Kinds of Key Technologies
I. Coolant materials technology
II. Struct. Materials & Nucl. Fuel
III. Key Components Development
IV. Instrumentation and Control

I. Coolant materials technology
II. Struct. Materials & Nucl. Fuel
III. Key Components Development
IV. Instrumentation and Control

CLEAR-I System Design Status

- The detailed conceptual design has been done (more than 20 Systems)
- Preliminary engineering design is underway

1. Nuclear Design
2. Thermo-hydraulic Design
3. Coolant System
4. Reactor Structure
5. Reactivity Control System
6. Refueling System
7. LBE Process System
8. Fuel Assembly
9. Safety System
10. I&C System
11. Application System
12. Radiation Protection System
13. Auxilary System
14. ...
Design Objective and Principle

- **Design Objectives**
 - ADS and Lead cooled Fast Reactor technology validation platform
 - Neutronics; Thermal hydraulics; Safety characteristics
 - Key components R&D and measurement control technology
 - Fundamental science and neutron irradiation research platform
 - Fuel and material irradiation
 - Isotope production and nuclear technology training

- **Design Principles**
 - Feasible technology
 - Mature material and fuel; Low power; Pool type vessel
 - Reliable safety
 - Natural circulation; Passive decay heat removal system
 - Capability of flexible experiment
 - Dual mode operation; Remote handling refueling system
 - Technical continuity
 - MOX fuel, Minor actinides transmutation fuel...

Main Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td></td>
</tr>
<tr>
<td>Thermal power (MW)</td>
<td>10</td>
</tr>
<tr>
<td>Activity height (m)</td>
<td>0.8</td>
</tr>
<tr>
<td>Activity diameter (m)</td>
<td>1.05</td>
</tr>
<tr>
<td>Fuel (enrichment)</td>
<td>UO₂(19.75%) at first</td>
</tr>
<tr>
<td>Cooling System</td>
<td></td>
</tr>
<tr>
<td>Primary coolant</td>
<td>LBE</td>
</tr>
<tr>
<td>Inlet/Outlet temperature (°C)</td>
<td>~300/385</td>
</tr>
<tr>
<td>Coolant drive type</td>
<td>Forced Circulation</td>
</tr>
<tr>
<td>Heat exchanger</td>
<td>4</td>
</tr>
<tr>
<td>Second coolant</td>
<td>Water</td>
</tr>
<tr>
<td>Heat sink</td>
<td>Air cooler</td>
</tr>
<tr>
<td>Material</td>
<td></td>
</tr>
<tr>
<td>Cladding</td>
<td>15-15Ti/316Ti</td>
</tr>
<tr>
<td>Structure</td>
<td>316L</td>
</tr>
</tbody>
</table>
Key Technologies R&D

PbBi Coolant Loop KYLIN-II

◆ Experimental functions

- **Materials & Components test**
 - Corrosion of structural materials
 - Qualification of prototypical components
- **Thermal-hydraulic behavior test**
 - Natural/Forced/Mixed circulation
 - Fuel Bundle test
 - CFD and System Code validation
- **Reactor Typical/Severe Accident Test**
 - Heat exchanger tube rupture accident

◆ Main parameters

- Temperature: 200°C ~ 1100°C
- Design Pressure: 25 MPa
- Mass flow rate: 50 m³/h
- Total power: ~2000 kW
- Inventory of PbBi: ~20 tons

Series PbBi loops were built to develop the LBE technology and support the design and construction of CLEAR.
Materials, Components and I&C Technologies

- **Coolant Materials**
 - Lead bismuth eutectic
 - Oxygen measurement and control

- **Structural Materials and Fuel**
 - 316L corrosion
 - Fuel assembly simulator

- **Key Components**
 - Mechanical pump
 - Double wall heat exchanger

- **Instrumentation and Control**
 - Fuel handling system
 - Full scope reactor simulator

Lead-based Non-nuclear Reactor CLEAR-S

- **Objectives and Functions**
 - Reactor prototype components validation
 - Pump, HX, DHR…;
 - Refueling machine, Control rod system.
 - Pool thermal-hydraulic integral test
 - Integral circulation test in pool type facility;
 - Code V&V (NTC, RELAP, CFD, etc.).
 - Large scale SGTR (interaction of HLM with water)

- **Main Parameters**
 - Dimensions: **1:1 height, 1:2.5 diameter** to CLEAR-I
 - Temperature: **250°C~550°C**
 - Thermal power: **2.5MW** (7 full scale fuel bundles)
 - Mass flow rate: ~**100m³/h**

Components fabrication completed, the construction is underway.
Lead-based Zero Power Reactor (CLEAR-0)

- Validation of the nuclear analysis method, code and database
- Validation of the nuclear design and control technology
- Provide experimental data to support the licensing of CLEAR-I

<table>
<thead>
<tr>
<th>Type</th>
<th>Zero-Power Reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron source</td>
<td>Accelerator-based neutron source</td>
</tr>
<tr>
<td>Running mode</td>
<td>Critical Subcritical</td>
</tr>
<tr>
<td>Assembly</td>
<td>Hexagonal (Stainless Steel)</td>
</tr>
<tr>
<td>Fuel</td>
<td>UO₂</td>
</tr>
<tr>
<td>Coolant</td>
<td>Solid LBE (room temperature)</td>
</tr>
</tbody>
</table>

Design of CLEAR-0 is completed, the construction is underway.

Lead-based Zero-Power Facility

Fusion neutron generator Driven Subcritical reactor/blanket (FDS-0)
The installation of HINEG-I has been finished and successfully produced a D-T fusion neutron yield of up to 10^{12} n/s.

Software Development and Integrated Simulation
I. Simulation of Fundamental Physical Problems

- SuperMC: Super Monte Carlo Simulation Program for Nuclear and Radiation Process
- NTC: Neutronics-Thermohydraulics Coupled Simulation Program
- MTC: Magnetic-Thermohydraulics Coupled Simulation Program
- TAS: Tritium Analysis Program for Fusion System
- RiskA: Reliability and Probabilistic Safety Assessment Program
- HENDL: Hybrid Evaluated Nuclear Data Library
- RiskBase: Database Management System for Reliability Analysis

II. Interactive Design and Optimization

- RVIS: Virtual Reality-Based Simulation System for Nuclear and Radiation Safety
- MCAM: Multi-Physics Coupling Analysis Modeling Program
- RiskAngel: Risk Monitor for Nuclear Power Plant
- ARTS: Accurate/Advanced Radiotherapy System
- SYSCODE: System Analysis Program for Parameter Optimization & Economical Assessment of Fusion Reactor
- FusionDB: Database Management System for Fusion

III. Multi-process Integrated Comprehensive Simulation

- Virtual4DS: Virtual Nuclear Power Plant in Digital Society
- ITER-V: Lead-based Virtual Reactor
- CLEAR-V: Virtual Integrated Simulation Platform for ITER
- VisualBUS: CAD-Based Multi-Functional 4D Neutronics Simulation System
- CROSS: Informationization Platform for Collaborative Research and Management
- NCloud: Nuclear Cloud Platform
- NBigData: Nuclear Big Data Platform

Support of complex problems & Validated by thousands of benchmarking
Lead-based Virtual Reactor (CLEAR-V)

- Reactor System Design and Optimization
 - Nuclear, Thermal-hydraulic, structure, system design and parameter optimization

- Multi-physics Integrated Simulation
 - Monitor the performance of any part of the reactor at any point in full cycle

- System Analysis and Assessment
 - Safety and accident analysis, environmental impact assessment

- Virtual Reality based Lifelike Simulation
 - Virtual tour, assembly & design validation, Maintenance optimization & training

Contents

I. Strategy and plan
II. Design and R&D Progress
III. Summary
Overview of China Lead-Based Reactor Development

<table>
<thead>
<tr>
<th>Initial R&D</th>
<th>Selection & Implementation</th>
<th>Final Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-critical Application

- **Critical Application**
- **Extension Application**

Supporting R&D and Integrated Test

- **Material and Component Technology**
- **Out-of-pile Engineering Test Platform**
- **In-pile Nuclear Technology Test Platform**
- **Advanced Software & Simulation**

Summary

1. Lead-based reactor has **many attractive features** and may play an **important role** in the future energy supply, including a **bridge role** in the transition period from fission energy to fusion energy.

2. China has launched the **ADS engineering construction project** in 2011. The engineering design and related R&D activities for China lead-based reactors CLEAR are going on in order to finish the construction of the first engineering test system around 2020s.

3. Study on application concepts showed good prospects of lead-based reactor.

4. Chinese government is encouraging wider and deeper international collaboration on S&T research projects, including lead-based reactor program.
Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences (INESST, CAS)

- **Jointly sponsored by:**
 - Hefei Institutes of Physical Science, CAS (CASHIPS)
 - University of Science and Technology of China (USTC)

- **Key programs:**
 - Advanced Fission Reactor Design and R&D (ADS - CLEAR)
 - Fusion/Hybrid Reactor Design and R&D (ITER/FDS)
 - Nuclear Safety Innovation Project for Scientific and Technological Development

- **Major Research Areas:**
 1. **Nuclear reactor safety**
 (reactor design, nuclear detect & experiments, safety analysis methodology, ...)
 2. **Radiation safety and environmental impact**
 (radiation protection & shielding, chemistry safety of nuclear energy, ...)
 3. **Nuclear emergency and public safety**
 (nuclear safety culture, nuclear accident emergency, nuclear power economics, ...)

The major professional/fundamental research basis for nuclear energy safety technology in China to promote the efficient and safe application of nuclear energy.

~400 members

10 Divisions, 400~500 Staff + 200~300 Students

- **10 Divisions**
- **400~500 Staff**
- **200~300 Students**

Website: www.fds.org.cn

E-mail: contact@fds.org.cn

Thanks for Your Attention!
Current Status on Accelerator-Driven System (ADS) Experiments at Kyoto University Critical Assembly (KUCA)

Cheolho Pyeon
Research Reactor Institute, Kyoto University, Japan
pyeon@rri.kyoto-u.ac.jp

Contents

- Background and Purpose

- Composition of ADS in Kyoto Univ.
 - Kyoto University Critical Assembly (KUCA)
 - Fixed-Field Alternating Gradient (FFAG) accelerator

- 235U-loaded ADS experiments with 100 MeV protons

- Neutron characteristics on solid targets (W, W-Be and Pb-Bi)
 - Static analyses: Reaction rate (k-source)
 - Kinetic analyses: Subcriticality ρ (λ)
 Prompt neutron decay constant α (1/s)

- Summary
Background and Purpose

Background
- An original concept of ADS for producing energy and transmuting MA and LLFP
- Neutron characteristics on solid targets (W, W-Be and Pb-Bi) in ADS
- Influences of solid target on 235U-loaded ADS experiments with 100 MeV protons
 - Neutron yield (Number of neutrons / one proton)
 - Reaction rate distribution (k-source)
 - Subcriticality and prompt neutron decay constant

Purpose
- Investigate neutron characteristics of solid targets through static and kinetic analyses of experiments and calculations (MCNP)

ADS with 100 MeV protons at KUCA

- KUCA core
 - A solid-moderated and –reflected core
 - Fuel: HEU, Th, NU
 - Moderator: Poly., Gr, Be
 - Reflector: Al, Fe, Pb, Pb-Bi

- FFAG accelerator
 - 100 MeV energy
 - 1 nA intensity
 - 20 Hz repetition, 100 ns width
Fig. Top view of core configuration of 235U-ADS with 100 MeV protons

235U-ADS in KUCA: Experimental analyses

Experiment
- Neutron yield
 - Protons: 27Al(p, n+3p)24Na
 - Spallation Neutrons: 115In(n, n')115mIn
- Reaction rates (M and k-source)
 - Profiles: 115In(n, γ)116mIn
- Subcriticality
 - PNS and Noise methods

Calculation
- MCNP6
- Nuclear data libraries
 - JENDL/HE-2007: Protons and spallation neutrons
 - JENDL-4.0: Transport
 - JENDL/D-99: Reaction rates

Definition of parameters
- Neutron yield = Spallation neutrons / Protons
 - Spallation neutrons: 115In(n, n')115mIn
 - Protons: 27Al(p, n+3p)24Na
- (Normalized) Reaction rates = Profiles / Spallation neutrons
 - Profiles: 115mIn(n, γ)116mIn (thermal) or 115In(n, n')115mIn (fast)
 - Spallation neutrons: 115In(n, n')115mIn
Static: Neutron yield

Table Dimension of target

<table>
<thead>
<tr>
<th>Target</th>
<th>Diameter [mm]</th>
<th>Thickness [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>50.0</td>
<td>12.0</td>
</tr>
<tr>
<td>W-Be</td>
<td>50.0</td>
<td>W: 12.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Be: 10.0</td>
</tr>
<tr>
<td>Pb-Bi</td>
<td>50.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Table Comparison between measured and calculated neutron yield

<table>
<thead>
<tr>
<th>Target</th>
<th>Calculation</th>
<th>Experiment</th>
<th>C/E value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.57 ± 0.01</td>
<td>0.21 ± 0.01</td>
<td>2.66 ± 0.01</td>
</tr>
<tr>
<td>W-Be</td>
<td>0.32 ± 0.01</td>
<td>0.15 ± 0.01</td>
<td>2.13 ± 0.04</td>
</tr>
<tr>
<td>Pb-Bi</td>
<td>0.38 ± 0.01</td>
<td>0.17 ± 0.01</td>
<td>2.27 ± 0.04</td>
</tr>
</tbody>
</table>

235U-ADS: Source spectrum of target

- Very unique peak ranging between 85 and 100 MeV neutrons (for 100 MeV proton injection)

- How about influences on neutron characteristics in the core?

Fig. Neutron spectrum of injection of 100 MeV protons into heavy metal target

- Spectrum of spallation neutrons (100 MeV proton injection)
 - W, W-Be and Pb-Bi targets
 - Almost same

Static: Neutron multiplication

Fig. Core configuration of 235U-PE core (100 MeV protons)

Kinetic: Subcriticality (pcm)

Fig. Measured neutron behavior on time evolution (α and β_{eff} study)

Table Measured subcriticality (dollar units) by the PNS (area ratio method) method (Ref.: 4,902 pcm)

<table>
<thead>
<tr>
<th>Target</th>
<th>BF_3 #1 in (10, U)</th>
<th>BF_3 #2 in (15, X)</th>
<th>Optical fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>4944 ± 78</td>
<td>6386 ± 101</td>
<td>6228 ± 99</td>
</tr>
<tr>
<td>W-Be</td>
<td>5004 ± 83</td>
<td>7050 ± 114</td>
<td>4929 ± 77</td>
</tr>
<tr>
<td>Pb-Bi</td>
<td>4903 ± 77</td>
<td>6356 ± 92</td>
<td>4912 ± 74</td>
</tr>
</tbody>
</table>

Table Target study on W, W-Be and Pb-Bi

<table>
<thead>
<tr>
<th>k\text{eff}</th>
<th>Reaction rate (In wire) for k-source</th>
<th>Subcriticality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PNS method</td>
</tr>
<tr>
<td>0.987</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.980</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.973</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.950</td>
<td>Available</td>
<td>Available</td>
</tr>
</tbody>
</table>

235U & Pb-Bi-zoned core with Pb-Bi target

Fig. Core configuration of 235U and Pb-Bi zoned core

Fig. Fuel assembly of 235U-PE and Pb-Bi

Fig. Neutron spectrum of core center in F' at 100 MeV proton injection onto Pb-Bi target
Subcriticality benchmarks

Table Subcriticality in ^{235}U & Pb-Bi-zoned core with Pb-Bi target

<table>
<thead>
<tr>
<th>k_{eff}</th>
<th>PNS method</th>
<th>Noise method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.980</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.950</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.920</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.900</td>
<td>Available</td>
<td>Available</td>
</tr>
</tbody>
</table>

Reaction rates (Neutron spectrum) analyses

ADS experiments with 100 MeV protons

- ^{235}U & Pb-Bi-zoned core with Pb-Bi target
 - Indium reaction rate distribution: Analyses of k-source by $^{115}\text{In}(n, \gamma)^{116m}\text{In}$
 - Spectrum index: $^{115}\text{In}(n, \gamma)^{116m}\text{In} / ^{115}\text{In}(n, n')^{115m}\text{In}$
 - Neutron spectrum: Activation foils; Al, Fe, In, Au and Ni (MeV threshold)
 - Subcriticality ranging between 0.98 and 0.90

Table Reaction rates in ^{235}U & Pb-Bi-zoned core with Pb-Bi target

<table>
<thead>
<tr>
<th>k_{eff}</th>
<th>Reaction rate (in wire) for M and k-source</th>
<th>Activation foils for Spectrum (Al, Fe, In, Au, Ni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.980</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.950</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.920</td>
<td>Available</td>
<td>Available</td>
</tr>
<tr>
<td>0.900</td>
<td>Available</td>
<td>Available</td>
</tr>
</tbody>
</table>
IAEA ADS Exp. Benchmarks in KUCA

- **235U-ADS with 14 MeV neutrons**

- **232Th-ADS with 14 MeV neutrons or 100 MeV protons (W target)**
 (KURRI-TR(CD)-48, 2015: IAEA ADS CW 2013)

- **235U & Pb-Bi-zoned-ADS with 100 MeV protons & Pb-Bi target**
 (Being in IAEA ADS CRP 2016)
 Contact me directly (sharing with JAEA of Japan, INEST; IMP of China and others)
 - Pb-Bi target study
 - Pb-Bi-zoned core study
 - Global results of static and kinetic studies
 (subcriticality ranging between 0.98 and 0.90)

Summary

- **Solid Pb-Bi target study of ADS with 100 MeV protons**
 - Reaction rate distribution: $^{115}\text{In}(n, \gamma)^{116m}\text{In}$
 - Kinetic parameters by the PNS and the Noise methods
 - Subcriticality ranging between 0.99 and 0.95

- **Neutronics on 235U and Pb-Bi-zoned core**
 - Kinetic parameters by the PNS and the Noise methods
 - Subcriticality ranging between 0.98 and 0.90

- **Reaction rate analyses**
 - Reaction rate distributions: $^{115}\text{In}(n, \gamma)^{116m}\text{In}$ (thermal)
 $^{115}\text{In} (n, n')^{115}\text{mIn}$ (fast)
 - Activation foils: Al, Fe, In, Au and Ni (MeV threshold)

- **Future works (ADS with 100 MeV protons; Pb-Bi target)**
 - Neutronics (Global results) on 235U and Pb zoned (Fast-like spectrum) core
 - ^{237}Np (capture and fission) and ^{241}Am (fission) irradiation
Round discussion on ADS-NTT2016

Cheolho Pyeon
Research Reactor Institute, Kyoto University, Japan
pyeon@rri.kyoto-u.ac.jp

Discussion issues

- **Dr. Sasa of JAEA, Japan**
 - Nuclear energy situation in Japan
 - Future ADS design: TEF R&D and current status
 - MA and Pb-Bi related technologies

- **Prof. Hong of SSKU, Korea**
 - Status on spent fuel management in Korea
 - Status on GEN-IV (Pyro-SFR) in Korea
 - ADS research in SSKU

- **Dr. Bai of INEST, China**
 - Strategy and plan of ADS (until 2020)
 - CLEAR-0, I, II and III
 - Software development for actual experimental facilities

- **Prof. Pyeon of KU, Japan**
 - Characteristics on Pb-Bi target and Pb-Bi-zoned core
 - IAEA ADS benchmarks of KUCA
 - Future ADS experiment plan

IAEA ADS Exp. Benchmarks in KUCA

- **235U-ADS with 14 MeV neutrons**

- **232Th-ADS with 14 MeV neutrons or 100 MeV protons (W target)**
 (KURRI-TR(CD)-48, 2015: IAEA ADS CW 2013)

- **235U & Pb-Bi-zoned-ADS with 100 MeV protons & Pb-Bi target**
 (Being in IAEA ADS CRP 2016)
 Contact me directly (sharing with JAEA of Japan, INEST; IMP of China and others)
 - Pb-Bi target study
 - Pb-Bi-zoned core study
 - Global results of static and kinetic studies
 (subcriticality ranging between 0.98 and 0.90)

10 Participant countries (13 institutions) in IAEA ADS CRP 2016:
Argentina, Belarus, China (INESS and IMP), Germany (KIT), Hungary, India (BARC),
Italy (Polito Torino and ENEA), Korea (SNU), US (ANL) and Japan (JAEA and Kyoto Univ.)

M&C 2017 in Jeju, Korea on 16-20, Apr. 2017

- **Subcriticality system analysis methods (Track 4)**
 - 4-1 Subcriticality Measurement and Online Monitoring Techniques
 - 4-2 Spent Fuel Cask/Storage Analyses
 - 4-3 Deterministic and Monte Carlo Analysis of ADS
 - 4-4 Energy and Spatial Correction Factors for Subcriticality Measurements
 - 4-5 Uncertainty of the Methodologies for Subcriticality Determination
 - 4-6 Integral Parameters and their Experimental Determination
 - 4-7 Others

- **Special session (Chair: Prof. T. Endo, Nagoya Univ., Japan)**
Title: ADS Benchmarks at KUCA
 - Energy and spatial correction factors for kinetic parameters
 - Deterministic and stochastic analysis methods
 - On-line monitoring techniques of subcriticality
 - Uncertainty of methodology for subcriticality
 - Higher-harmonics analyses for kinetic parameters
 - Development of reactor analysis codes

Next meeting (Topical meeting) in 2017

- New meeting schedule fixed since 2015:
 - General meeting by rotation (Japan, Korea and China) in every two years (even)
 - Topical meeting (any country) in every two years (odd)

5th Rotation schedule

- 13th, 2015 (Japan): Topical meeting at JAEA (Pb-Bi techniques)
- 14th, 2016 (Japan): General meeting

- **15th, 2017 (???)**: Topical meeting: Topic and Venue -> Any suggestion?

- 16th, 2018 (Korea): General meeting
- 17th, 2019 (???): Topical meeting
- 18th, 2020 (China): General meeting