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Preface

With the ever-growing demand for higher data rates in wireless communication ser-

vices, various techniques have been proposed to increase system capacity. Among these

techniques, multiple-input multiple-output (MIMO) transmission, as a method of multi-

plying the capacity of a radio link using multiple transmit and receive antennas to exploit

multipath propagation, has attracted considerable attention. In practice, however, phys-

ical constraints limit the number of antennas that can be embedded on a user terminal

and may prevent the realization of MIMO transmission. Considering this limitation,

three approaches can be taken, and are investigated throughout this thesis.

First, the user can be forced to handle multiple streams transmission from multi-

ple transmit antennas even when the number of receive antennas is smaller than that of

transmit antennas. In wireless communications, this scenario is called overloaded MIMO.

Although signal detection in such scenario is possible, significant performance degrada-

tion cannot be avoided. In a system with channel coding, in particular, this circumstance

leads to a quality degradation on the soft input of the decoder. To counter this prob-

lem, a joint decoding technique is proposed and is presented in the second chapter of

this thesis. In this technique, instead of conducting the decoding process separately for

each stream, the decoding process is conducted jointly between streams. Observation

via computer simulation for MIMO systems with turbo codes shows that the proposed

technique significantly improves the throughput and bit error rate (BER) performance

of the systems.

Second, multi-user MIMO (MU-MIMO) with user collaboration approach so called

collaborative interference cancellation (CIC) can also be used. In this approach, neigh-

boring users share their received signals and equivalently increase the number of their

receive antennas. The interference suppression capability of each user, therefore, can be

increased. After sharing their received signals, each of the users in this approach will

conduct signal detection by using conventional detection techniques such as zero forcing

(ZF), minimum mean square error (MMSE), maximum likelihood detection (MLD), or

QR decomposition-based MLD with M-algorithm (QRM-MLD).

To reduce the requirement of signal exchanges required by this approach, user selec-

tion scheme can be employed to select several collaborating users out of a larger number

of available users. The user selection technique, however, should be tailored based on
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the purpose and the detection technique used by the users. In this thesis, a user selec-

tion technique suitable to maximize the BER performance of a QRM-MLD algorithm is

proposed.

In addition to the user selection technique, field experiments are also conducted to

verify the effectiveness of MU-MIMO with CIC in actual environments. This is impor-

tant, in particular, by the fact that in the actual environment, unideal conditions such

as channel correlation and frequency offset occur. Due to the time constraint, however,

the field experiments do not consider user selection in the collaboration process. Both

of the user selection techniques for QRM-MLD and the field experiment results of the

MU-MIMO with CIC are discussed in Chapter 3.

The last approach that can be taken in MIMO transmission with a limited number of

antennas is MU-MIMO with precoding. In this approach, the interference cancellation

process is initiated from the BS side, i.e. the precoding process. Using ZF precoder, for

example, the BS determines the precoder matrix in such a way that it can cancel out

the interuser interference on the upcoming transmission. It should be noted, however,

this approach requires accurate channel state information (CSI) at the transmitter. This

circumstance is hard to be obtained, especially when the user is moving in a multipath

environment and experiencing Doppler spread. Having Doppler spread, the channel will

fluctuate and causes a phenomenon so called channel aging. In this condition, a mismatch

between the precoder and the actual channel matrix occurs. This mismatch causes the

signal to be phase-shifted and interuser interference arises at each user.

To counter this problem, channel prediction can be exploited as a virtual CSI to

update the precoder matrix. It should be noted, however, frequently updating the pre-

coder matrix results in a drastic increase in the computational complexity. In this thesis,

therefore, another method to exploit the channel prediction is proposed to improve the

performance of MU-MIMO under time-varying channel. In particular, the predicted

channel is exploited as an information source to conduct power allocation. The goal of

this power allocation is to minimize the interuser interference at the receiver. Computer

simulations show that the proposed technique could improve the BER performance of

the users which have large Doppler spread while maintaining the performance of the

users with small Doppler spread.

Besides of its stand alone implementation, all of those approaches can be used com-
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plementary to exploit their optimum potential for future wireless communications. The

transmitters, for example, could collect the information of the user environment to decide

which users will be served either by the first, second, and third approach. A method

to intelligently conduct such service, however, will not be investigated in this thesis and

will be left as an interesting topic for future research.
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Chapter 1

Introduction

Wireless communication has been experiencing a drastic growth in these last two decades.

Having only tenths of kilobit per second of data rate around twenty years ago, we are

currently able to have more than tenths mega bit per second (Mbps) of data rate with

various services and applications. In fact, researchers from both academia and industry

are now at the final stage in preparing for the fifth generation (5G) wireless communica-

tions. In this new generation, it is expected that more than 100 Mbps of minimum data

rate can be obtained even for users with high mobility.

Among several major breakthroughs in wireless communication technologies, multiple-

input multiple-output (MIMO) has been playing a significant role in current wireless

communication technologies. Exploiting multiple transmit and receive antennas, MIMO

systems can yield a significant improvement in spectral efficiency [1–3]. Owing to this ca-

pability, MIMO systems have been adopted by the third-generation partnership project

(3GPP) for use in the long-term evolution (LTE) standard. Furthermore, its enhanced

variant so called massive MIMO is currently considered as one of the promising tech-

nique to realize high-speed and reliable data transmission for the 5G communications.

Typically, a MIMO system requires the number of receive antennas to be greater than

or equal to that of transmit antennas. However, despite the trend of increasing num-

ber of antennas in both transmitters and receivers, some user terminals might not be

1



Chapter 1. Introduction

able to meet this condition owing to limitations in their form factor. In regards of this

limitations, three approaches can be considered.

First, the user can be forced to handle multiple streams transmission from multi-

ple transmit antennas even when the number of receive antennas is smaller than that of

transmit antennas. In wireless communications, this scenario is called overloaded MIMO.

Second, multi-user MIMO (MU-MIMO) with user collaboration approach so called col-

laborative interference cancellation (CIC) can also be used. In this approach, neighboring

users share their received signals and equivalently increase the number of their receive

antennas. Last, MU-MIMO transmission with precoding might also be employed. Differ

with previous two approaches, the interference cancellation process in this approach is

initiated from the BS side, i.e. the precoding process.

Besides for its stand alone implementations, these three approaches might also be

used complementary in the future wireless communication system. Considering a multi-

cell system, for example, MU-MIMO with precoding can be used in each cell to serve

multiple users which uniformly distributed across the cell. When several users in a cell

are closely located, those users can conduct CIC to improve their detection capabilities,

while the other users remain to use precoding technique. Using this joint approaches, the

diversity of the users which are served by the MU-MIMO with precoding could also be

improved. Last, for the user located in the cell-edge, multiple transmission from different

BS can be applied. This scenario is, in general, equal to an overloaded MIMO scenario.

Using an appropriate detection and decoding technique, transmission from multiple BS

using a lower-order modulation technique has a better performance compared to that of

single BS transmission with higher-order modulation. By properly utilizing these three

approaches, therefore, a significant improvement on the overall system throughput can

be obtained.
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Fig. 1.1. Single user MIMO.

1.1 Approaches on MIMO Systems Under Limited Num-
ber of Receive Antennas

1.1.1 Overloaded MIMO

A point-to-point or single user (SU) MIMO, is a MIMO system, in which a transmitter

equipped with more than one antenna communicates with a user which is also equipped

with more than one antenna. Using this technique, the capacity of transmission to the

designated user can be increased through spatial multiplexing. Figure 1.1 shows a simple

block diagram of an SU-MIMO system. As can be seen in the figure, the modulated

symbols from the transmitter, s, are transmitted through Nt transmit antennas. In the

figure, H is a Nr×Nt matrix of a wireless channel. Passing through this wireless channel,

the signals are then received by a user equipped with Nr receive antennas and can be

written as

y = Hs + n, (1.1)

where y is an Nr × 1 vector of received signals, s is an Nt × 1 vector of transmitted

symbols, and n is an Nr × 1 vector of noise.
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In a conventional SU-MIMO, the number of receive antennas, Nr, is larger than or

equal to that of transmit antennas, Nt. This, in particular, holds due to the fact that

a significant performance degradation occurs in the detection process for the case of

Nr < Nt. This performance degradation applies even if maximum likelihood detection

(MLD) is used. In addition, low complexity decoding techniques such as zero forcing

(ZF) and minimum mean square error (MMSE) algorithm only can be implemented

when Nr ≥ Nt.

Owing to the form factor limitations, however, the number of antennas that can be

implemented at a user is very limited. This circumstance leads to a scenario where the

number of transmit antennas is larger than that of receive antennas, i.e. an overloaded

MIMO system. In addition to the scenario where Nr < Nt, overloaded MIMO can also be

defined as the condition when the rank of matrix H is less than Nt. This circumstance

could occur, for example, due to channel correlation between the receive antennas.

1.1.2 Multi-user MIMO with Collaborative Interference Cancellation

In wireless communication, MU-MIMO is an advanced MIMO technology [4] where sev-

eral transmit antennas at a base station (BS) serves independent radio terminals each

having one or multiple antennas. This architecture is in contrast with SU-MIMO which

considers a single multi-antenna transmitter communicating with a single multi-antenna

receiver. To enhance the communication capabilities of all terminals, MU-MIMO applies

an extended version of space-division multiple access to allow multiple transmitters to

send separate signals and multiple receivers to receive separate signals simultaneously in

the same band.

In MU-MIMO, one of the techniques that can be taken to conduct the interference

mitigation is by using CIC [5–8]. The technique can be clearly seen in Fig. 1.2. In this

thesis, a downlink MU-MIMO communications where a BS equipped with Nt transmit
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Fig. 1.2. MU-MIMO with collaborative interference cancellation.

antennas serves Kact users out of Kcol users is considered. For simplicity, each user

is assumed to have one receive antenna. In MU-MIMO with CIC, neighboring users

share their received signals without decoding and equivalently increase the number of

their receive antennas. Thus, the interference suppression capability of the users can be

increased.

To conduct CIC, the Kcol collaborating users form a cluster and exchange their CSI

and their received signals. This signal-exchange can be conducted using either in-band or

out-band channels. In the future wireless communication systems, however, the mobile

terminals will be most likely equipped with an additional transceiver unit, namely for

a small cell implementation. Therefore, the CIC process with a dedicated channel is

assumed in this thesis. Thus, there is no interference between the transmitted signals

from the BS to the users with the inter-user signals for CIC.

Let y = [y1, y2, . . . , yKcol
]T, where yk is the received signal for kth user. The received

signals for Kcol collaborating users can be written in resemblant with SU-MIMO scenario
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as

y = Hs + n, (1.2)

where H is a Kcol×Nt matrix of a wireless channel, s is an Nt×1 vector of transmitted

symbols, and n is an Kcol × 1 vector of noise. To demodulate the transmitted symbols,

users of MU-MIMO with CIC systems can conduct a similar detection technique such

in SU-MIMO. By using MLD technique, for example, the vector of transmitted symbols

can be recovered by

ŝ = argmin
s∈SNt

‖y −Hs‖2F, (1.3)

where SNt is the set of all possible vectors of transmitted symbols and ‖(.)‖2F is the

Frobenius norm of (.). For the case of MMSE, ŝ can be obtained by exploiting the

correlation of the received signals as

ŝ = HHR−1
yy y, (1.4)

where (.)H is the Hermitian transpose of (.) and Ryy is the correlation matrix of the

received signal vector.

1.1.3 Multi-user MIMO with Precoding

Another approach in conducting the MU-MIMO is by using the precoding technique

[9–12]. Differ with the MU-MIMO with CIC, interference cancellation in MU-MIMO

with precoding is initiated from the BS. In Fig. 1.3, a simple block diagram of MU-

MIMO with precoding is shown. In the figure, K is the number of users served by the

BS. As can be seen in the figure, the modulated symbols are firstly precoded using a

precoder matrix, W , to obtain a vector of precoded symbols, x. Mathematically, this

process can be written as

x = Ws. (1.5)
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Fig. 1.3. MU-MIMO with precoding.

In this thesis, ZF precoding is used as the precoding technique. ZF precoding is

a spatial signal processing by which the multiple transmit antennas can null inter-user

interference signals. Using ZF precoding, the precoder matrix is calculated as

W = H† = HH
(
HHH

)−1
, (1.6)

where (·)† represents the pseudo-inverse of (·). Passing through a wireless channel matrix,

H, the vector of the received symbols of all K users can be written as

ŝ = Hx + n, (1.7)

where n is the K × 1 vector of noise. Eq. (1.7) can also be written as

ŝ = Gs + n, (1.8)

where G = HW denotes the K × K channel-equivalent matrix. Using ZF precoder,

and assuming the channel matrix is static in one precoder-updating period, the channel-

equivalent matrix is equal to an identity matrix with the size of K ×K. Eq. (1.8) then

7



Chapter 1. Introduction

can be written as

ŝ = s + n. (1.9)

As pointed out in above equation, ZF precoding process cancels the channel matrix and

thus, no interference occurs at each user. Each user, therefore, can conduct a simple

demodulation process.

1.2 Key Challenges

1.2.1 Challenges in Overloaded MIMO Systems

In a point-to-point communications, transmission through multiple antennas, i.e. SU-

MIMO, has a significant advantage over a single-antenna transmission with higher-order

modulation in terms of better spatial diversity. Transmission through multiple antennas

also provides more randomness, which is an important factor for transmission with chan-

nel coding. However, a multiple-antenna transmission has a remaining difficulty in the

signal detection process, in particular, when the number of receive antennas is smaller

than that of transmit antennas [13]. In a transmission with channel coding, this difficulty

directly affects the quality of the log-likelihood ratio (LLR) as a decoder input.

In Fig. 1.4, transmission of two signal streams with binary phase shift keying (BPSK)

modulation is shown. The first and second signal streams are assumed to undergo channel

fading with the same phase response. The second signal stream, however, has a channel

response with a slightly lower amplitude. The LLR values for the first and second streams

are calculated and plotted by assuming that the received signals spread throughout the

real axis. In the figure, the LLR 1 values are obtained by calculating the log value of the

ratio between the likelihood of the first stream transmits bit “1” and the likelihood of the

first stream transmits bit “0”. Meanwhile, the LLR 2 values are obtained by calculating

the log value of the ratio between the likelihood of the second stream transmits bit “1”
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Fig. 1.4. Example of LLR values for two streams transmission using BPSK.

and the likelihood of the second stream transmits bit bit “0”, respectively. In Fig. 1.4,

the cross mark labeled y represents the received signal after noise contamination when

the first stream transmits one bit of “1” and the second stream transmits one bit of “0”.

From the figure, it can be observed that the received signal has a negative LLR value

for the first stream and a positive value for the second stream. These values indicate that

the first stream has a higher probability of being decoded as 0 while the second stream

has a higher probability of being decoded as 1. By exploiting its channel coding gain, the

decoding process is expected to be able to flip the bits to the correct bits. Considering

the shorter distance, flipping back to 10 should have a higher probability than either 00

or 11.

This expectation, however, cannot be fulfilled by the conventional decoding scheme

as the decoding processes for the first and second streams in the conventional decoding

scheme are conducted separately. Therefore, it is more probable that the decoding process

flips the bits to 00 or 11. This is because flipping the bit to 10 requires both LLR values

to be reversed while flipping the bit to 00 or 11 only requires one LLR to be reversed.

Due to this reason, a novel method to improve the performance of decoding process for
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the overloaded MIMO scenario needs to be addressed.

1.2.2 Challenges in MU-MIMO with CIC

In MU-MIMO with CIC, detection capability of users is improved by sharing their re-

ceived signal with the neighboring users. A larger number of collaborating users will,

in general, provide better user collaboration gain. It should be noted, however, while it

provides a larger diversity, a larger number of collaborating user also requires a larger

number of signal exchanges between users. In such cases, a user selection is required

to capture the most advantages of MIMO systems [14–16]. It should be pointed out,

however, user selection should be designed based on the detection algorithms that will

be used in the detection process. For the case of basic MIMO detection algorithms such

as ZF, MLD, and MMSE, suitable user selection techniques can be found in [17–21].

Recent development in the detection algorithm, however, establishes several detec-

tion algorithms which have a notable potential. A detection algorithm so called QR-

decomposition based MLD with M-algorithm (QRM-MLD), for example, capable to ob-

tain a near optimum MLD performance with a significant reduction in complexity. This

reduction can be benefited as rather than calculating all possible transmitted symbols,

QRM-MLD only calculates several candidates on its calculation. Despite its similarity

with MLD (where the detection is based on the Euclidean distance), QRM-MLD has

a significant difference with the conventional MLD, that is, the detection process in

QRM-MLD is conducted in a recursive manner. The user selection technique suitable

for MLD, therefore, will not also be suitable for QRM-MLD. In this regards, a novel user

selection technique, which accommodates the recursive manner of QRM-MLD, should

be addressed.

In addition to the above problem, MU-MIMO with CIC also has an issue with the lack

of performance evaluation in the real environment presented in the previous literature.
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Performance evaluation of MU-MIMO with CIC is important as unlike the theoretical

scenario which commonly considers identically independent distribution (i.i.d.) Rayleigh

fading, actual environments experiencing channel shadowing and channel correlation

between users. In the signal processing at the users, the differences at the user sampling

time, frequency offset, and signal to noise ratio might also affect the CIC performance.

In addition, the reliability of the interuser links in a mobile environment also needs to

be confirmed. Field experiments to verify the effectiveness of MU-MIMO with CIC,

therefore, needs to be conducted.

1.2.3 Challenges in MU-MIMO with Precoding

Differ with the other two approaches, MU-MIMO with precoding starts its interference

cancellation processes at the BS. In each user, the detection process is held by using a

simple detection algorithm. MU-MIMO with precoding, however, relies heavily on the

accuracy of channel state information (CSI) owned by the BS. Meanwhile, the accurate

CSI is hard to be obtained especially when the users are moving and experiencing channel

fluctuation. Implementation of this technique, therefore, generally considered a low

mobility scenario [22–25]. Future wireless communications, on the other hand, should be

able to handle communications for the high-mobility users. In such users, the channel will

fluctuate, causing a mismatch between the precoder and the actual downlink channel.

Unfortunately, this issue will be even more severe in the near future. As the sub

3 GHz bands which are commonly used in current mobile communications has been

immensely crowded, higher-frequency bands will most likely be utilized in the future

wireless communications. The Doppler spread as the source of the channel aging effect, on

the other hand, has its value proportional to the carrier frequency. Using frequency bands

at around 6 GHz suggested for early step of 5G presented in [26] (this carrier frequency

will also be used as a simulation parameter in Chapter 4), for example, already tripled
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the maximum Doppler frequency compared to that of current wireless communication

systems. In other words, the channel will fluctuate faster, resulting in a more severe

mismatch between the precoder and the actual channel.

One straight forward approach to diminish the mismatch between the precoder and

the actual channel is by frequently updating the precoder matrix. To reduce the require-

ment of uplink transmission, channel prediction technique can be used. It should be

noted, however, frequently update the precoder matrix drastically increases in compu-

tational complexity, especially when the number of transmit antennas and the number

of served users is considerably large. A novel technique to intelligently exploit channel

prediction, therefore, should be investigated.

1.3 Thesis Outline and Contributions

As described in the above explanation, all of the overloaded MIMO, MU-MIMO with

CIC, and MU-MIMO with precoding approaches have issues that need to be tackled.

In this thesis, those issues are addressed and possible solutions are proposed for each

approach. Specifically, contributions of this thesis can be written as follow.

• In Chapter 2, the potential problem occurred in the implementation of overloaded

MIMO is addressed. A novel decoding technique so called joint turbo decoding is

then proposed. Using the proposed technique, the decoding performance of over-

loaded MIMO systems for the case of turbo code is used as the channel code could

be significantly improved. For a better analysis, the extrinsic information transfer

(EXIT) function for the proposed technique is also derived, and the comparison

of the BER performance, throughput, and computational complexity between the

conventional turbo decoding and the joint turbo decoding is provided.
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• In Chapter 3, MU-MIMO with CIC is discussed and its potential problems are

investigated. Specifically, a user selection technique which is suitable when QRM-

MLD is used as detection algorithm is proposed. In addition, field experiments

to verify the effectiveness of MU-MIMO with CIC in the actual environments are

also conducted. It is worth to note, however, due to the time constraint, the field

experiment did not consider the proposed user selection techniques.

• In Chapter 4, the problem in MU-MIMO with precoding under a time-varying

channel is shown. Next, a technique to exploit Doppler shift information to create

a predicted channel matrix is given. Based on the predicted channel matrix, a

novel power allocation technique which could significantly reduce the interuser

interference in a time-varying MU-MIMO is then presented in this chapter.
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Chapter 2

Improving Decoding Capabilities
on Overloaded MIMO: Joint
Decoding Technique

2.1 Introduction

The problem in the implementation of overloaded MIMO lies with the significant perfor-

mance degradation that occurs in the detection process [13]. In a system with channel

codes, this degradation leads to a significant reduction in the quality of the decoder

input. This issue can be optimally tackled by employing joint maximum a posteriori

(joint-MAP) detection-decoding technique. This technique, however, has very high com-

putational complexity. Thus, a more feasible decoding technique for the overloaded

MIMO system is required.

In this thesis, an overloaded MIMO system which uses turbo codes as its forward

error correction (FEC) technique is investigated. Turbo codes are selected to be used

in this thesis due to their ability to achieve a performance close to the Shannon limit

[27,28]. Thus, a combination of turbo codes and MIMO systems has excellent potential

for high-data-rate communications with low power consumption [29, 30]. This thesis,

in particular, investigates the turbo codes which have been used in LTE standard [31],

under an orthogonal frequency division multiplexing (OFDM) scenario.
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The simplest approach to conduct turbo-MIMO decoding is by using separate pro-

cesses for detection and decoding. In this approach, soft information from the MIMO

detection block is sent to the decoding blocks. In each decoding block, turbo decod-

ing is conducted independently to each transmitted stream [32, 33]. In this thesis, this

technique is labeled as conventional turbo decoding. Using conventional turbo decoding,

however, significant performance degradation due to the quality degradation of soft in-

formation occurs. Unfortunately, this degradation cannot be avoided by increasing the

number of iterations in turbo decoding. As can be seen in [27], the relative performance

enhancement of turbo decoding after a certain number of iterations is negligible.

To improve the decoding performance, information exchanges between detection

blocks and the decoding blocks can be implemented. In [34], hard information is used as

the decoding feedback. To increase the decoding quality even further, iterative detection

and decoding (IDD) techniques, which employ soft information exchanges between those

blocks can be implemented [35–47]. In these techniques, however, repetitive detection

processes are required to generate updated soft information. Therefore, a low complexity

detection algorithm should be used in these techniques. In [38–40], MAP-based detec-

tion algorithms with complexity reduction are employed. These algorithms, however, can

only be implemented in the typical MIMO system where the number of receive antennas

is not less than that of transmit antennas. In [42,43], the IDD technique is employed for

a multiuser detection. The technique in [42,43] uses parallel minimum mean square error

(MMSE) cancellers to reduce the complexity in the multiuser detector blocks. Similar

methods can also be seen in [45–47]. It should be noted, however, these techniques still

require the detection block to update its weighting vector in each iteration process to

generate extrinsic information. In addition, the multiplications of these vectors with soft

information from the decoding blocks are also needed. As these processes are conducted

16



Chapter 2. Improving Decoding Capabilities on Overloaded MIMO: Joint Decoding Technique

in a sequential manner, the IDD techniques could have a significant signal processing

delay.

In this thesis, a novel technique to improve the decoding performance of overloaded

MIMO systems is presented. Similar to the conventional turbo decoding technique, the

proposed technique conducts the detection process only once and removes the potential

of the detection stage to become a bottleneck in the whole detection-decoding process.

However, instead of conducting separate turbo decoding for each signal stream, the

proposed technique conducts the decoding process jointly between all signal streams. In

this thesis, the proposed technique is called joint turbo decoding.

2.2 Overloaded MIMO-OFDM with Turbo Codes

Figure 2.1 shows a block diagram of a MIMO-OFDM system with turbo codes using Nt

transmit antennas and Nr receive antennas. Herein, as in the overloaded case, Nt > Nr.

2.2.1 Turbo Encoding

The turbo codes used in the LTE system are systematic parallel concatenated convolu-

tional codes with two 8-state encoders and one internal interleaver [31]. In this thesis,

a scenario with the interleaver size in each stream is equal is considered. The trellis

diagram of each encoder can be seen in Fig. 2.2.

For an input block size of L bits, the outputs of the turbo encoder consist of three

length-L streams d
(0)
l , d

(1)
l , and d

(2)
l , which are referred to as the “Systematic”, “Parity

1”, and “Parity 2” streams, respectively, as well as 12 tail bits due to trellis termination.

In LTE, the tail bits are multiplexed to the ends of the three output streams, whose

length thus increases to L+ 4 bits each [31].

To support higher data rates, LTE provides a rate matching (RM) function. In

the RM, each of the three output streams is rearranged with sub-block interleavers.
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(a) Transmitter.

(b) Receiver.

Fig. 2.1. MIMO-OFDM system with turbo codes.

Then, a single output buffer is formed by placing the rearranged systematic bits at the

beginning, followed by bit by bit interlacing of the two rearranged parity bits with a total

length of 3L+ 12 bits. The outputs are then passed to a circular buffer for bit selection

and puncturing. The output bits of the RM function are defined as b0, b1, . . . , bJ−1,

where J is the total number of transmitted bits, and the value depends on the desired

code rate [31]. Afterward, the RM outputs are modulated using quadrature amplitude

modulation (QAM) modulation with each QAM symbol on the ntth transmit antenna,

snt , consisting of Q bits of bnt
j .
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Fig. 2.2. Trellis diagram of turbo codes in LTE.

2.2.2 OFDM Transmission and Reception

The QAM symbols are then arranged from serial into parallel and assigned to F data

subcarriers [48]. The OFDM symbol is then created by conducting inverse discrete

Fourier transform (IDFT) to the OFDM subcarriers. A guard interval (GI) is then added

by replicating the last part of the OFDM symbol. For the case of LTE, the standard of

the GI length is described in [48].

Passing through a wireless channel, the transmitted signals are then received by

Nr receive antennas. In each receive antennas, the GI is then removed and discrete

Fourier transform (DFT) is conducted to demodulate the OFDM symbols. Denotes

y[f ] = [y1[f ], y2[f ], . . . , yNr [f ]]T as the vector of received signals at fth subcarrier, s[f ] =

[s1[f ], s2[f ], . . . , sNf
[l]]T as the vector of transmitted signals at fth subcarrier, and n[f ] =

[n1[f ], n2[f ], . . . , nNr [f ]]T as the noise vector of fth subcarrier, respectively. In a matrix

form, the vector of received signals for f subcarrier can be obtained by

y[l] = H[f ]s[f ] + n[f ], (2.1)
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where

H[f ] =


h1,1[f ] h1,2[f ] · · · h1,Nt [f ]

h1,1[f ] h1,2[f ] · · · h1,Nt [f ]

...
...

...
...

hNr,1[f ] hNr,2[f ] · · · hNr,t [f ]

 . (2.2)

In each receive antenna, the output of the DFT for all data subcarriers is then sent to

the detection block to calculate a priori values.

2.2.3 Turbo decoding

The first step in the turbo decoding process is to obtain the a priori LLR value for each

bit from the signal detection block. For MIMO-OFDM systems, the a priori LLR value

for the fth subcarrier in the ntth signal stream can be obtained by

La(bnt
q |y[f ]) = log

(∑
s[f ]:b

nt
q =1 exp(− 1

σ2 ‖y[f ]−H[f ]s[f ]‖2)∑
s[f ]:b

nt
q =0 exp(− 1

σ2 ‖y[f ]−H[f ]s[f ]‖2)

)
, (2.3)

where bnt
q denotes the qth bit of symbol snt [f ] and σ2 denotes the noise variance. In each

stream, J a priori LLR values for bnt
0 , b

nt
1 , . . . , b

nt
J−1 are obtained from y[f ]. For bits that

are not transmitted due to puncturing, the a priori LLR values are set to 0 in the rate

recovery process, giving a total of 3L+ 12 a priori LLR values.

After the rate recovery process, these a priori LLR values are rearranged back into

three length-L+4 streams of soft input for the decoder that are denoted as La(d
(0)
l ),

La(d
(1)
l ), and La(d

(2)
l ) which correspond to the a priori LLR values of the “Systematic”,

“Parity 1”, and “Parity 2”, respectively. Afterward, the turbo decoder uses these values

to calculate the probabilities of the received bit, γl, the forward recursion, αl, and the

backward recursion, βl, for the lth bit, which are required to obtain the extrinsic LLR

values, Le.

Using the log-BCJR algorithm [49], the value of γn from state ρ′ to state ρ at step l

in the first decoder can be obtained by
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γl(ρ
′, ρ) = La(d

(0)
l (ρ′, ρ)) + La(d

(1)
l (ρ′, ρ)), (2.4)

where La(d
(0)
l (ρ′, ρ)) = La(d

(0)
l ) if the bit associated with the transition from state ρ′ to

state ρ is 1, while La(d
(0)
l (ρ′, ρ)) = 0 if the bit associated with the transition from state

ρ′ to state ρ is 0. This condition also applies for La(d
(1)
l (ρ′, ρ)) or La(d

(2)
l (ρ′, ρ)) in the

other decoder.

Afterward, the value of αl+1 for state ρ at step l + 1 can be defined by

αl+1(ρ) =
∗

max
ρ′∈{P ′}

(γl(ρ
′, ρ) + αl(ρ

′)), (2.5)

where {P ′} is the aggregate of all the states ρ′ in step l that end at state ρ in step l+ 1,

while max∗ denotes the Jacobian logarithm function. Furthermore, the value of βl for

state ρ′ at step l can be obtained from

βl(ρ
′) =

∗
max
ρ∈{P}

(γl(ρ
′, ρ) + βl+1(ρ)), (2.6)

where {P} is the aggregate of all the states ρ in step l+ 1 which are from state ρ′ in step

l.

After the values of γl, αl, and βl are obtained, the extrinsic LLR values can be

calculated by

Le(d
(0)
l ) =

∗
max

(ρ′,ρ)∈{τ1l }
(αl(ρ

′) + γl(ρ
′, ρ) + βl+1(ρ))

− ∗
max

(ρ′,ρ)∈{τ0l }
(αl(ρ

′) + γl(ρ
′, ρ) + βl+1(ρ)), (2.7)

where {τ0
l } and {τ1

l } are the aggregates of all the transitions from state ρ′ to state ρ at

step l when the input bit is 0 and 1, respectively. The extrinsic LLR values are then used

as the soft inputs of the other decoder or for the hard outputs after the desired number

of iterations.
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Fig. 2.3. Block diagram of joint turbo decoding.

2.3 Joint Turbo Decoding

2.3.1 Decoding Process

In the conventional technique, the MIMO detection block provides Nt soft information

of each bit from all Nt transmitted streams. Each of this Nt soft information is then

delivered to Nt separate turbo decoders. Joint turbo decoding, on the other hand, assigns

the MIMO detection block to provide soft information for each combination of bits from

all streams. Through this process, the reliability of soft information of the decoder input

can be improved. This soft information is then processed by one joint-decoder instead

of Nt separate decoders. As this one joint-decoder has to process soft information of 2Nt

combinations of bits, the trellis diagrams of the encoders from all streams should also be

combined. For this purpose, a super-trellis diagram [50] is employed. The super-trellis

diagram uses SNt states, where S is the number of states in each encoder.

Figure 2.3 shows a block diagram of the proposed joint decoding technique. As can be

seen in the figure, joint turbo decoding uses 2Nt soft information values as the decoder

inputs, which represent the total number of possible bit combinations. The vector of

each bit combination is denoted as b. To calculate a priori LLR values, a certain bit
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combination can be used as a reference point and denoted as b̃. For each bit combination,

the a priori LLR value for each corresponding subcarrier f can be defined as

La(bq|y[f ]) = log

(∑
s[f ]:bq=b exp(− 1

σ2 ‖y[f ]−H[f ]s[l]‖2)∑
s[f ]:bq=b̃ exp(− 1

σ2 ‖y[f ]−H[f ]s[f ]‖2)

)
, (2.8)

where bq = [b1q , b
2
q , . . . , b

Nt
q ]T is a combination of the qth bit of s[f ].

For each bit combination, J a priori LLR values of b0, b1, . . . , bJ−1 are obtained from

{y[f ]}. Similarly to the conventional technique, the a priori LLR values are set to 0 for

bits that are not transmitted due to puncturing, giving a total of 3L+ 12 a priori LLR

values. After the rate recovery process, every 3L + 12 a priori LLR values of each bit

combination of bj are rearranged back into three length-L+4 streams of soft input for

the decoder that are denoted as La(d
(0)
l ), La(d

(1)
l ), and La(d

(2)
l ), which correspond to

the a priori LLR values of “Systematic”, “Parity 1”, and “Parity 2”, respectively. These

inputs are used to calculate the values of γl, αl, and βl for obtaining the extrinsic LLR

values, Le.

In joint turbo decoding, the super-trellis diagram is implemented to combine the

trellis diagrams from all streams in a MIMO system. The basic idea of this super-trellis

implementation is similar with [50] which implements the super-trellis diagrams to trellis

coded modulation for co-channel interference canceller. For the case of two transmit

antennas, the super-trellis diagram in joint turbo decoding can be seen in Fig. 2.4. As

can be seen in the figure, a super-trellis diagram which is constructed from two transmit

antennas contains 82 states and 22 input combinations.

Defining φ as the state in the super-trellis diagram, the value of γl from state φ′ to

state φ in the first decoder is calculated as

γl(φ
′, φ) = La(d

(0)
l (φ′, φ)) + La(d

(1)
l (φ′, φ)), (2.9)
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Fig. 2.4. Super-trellis diagram.

where d
(0)
l (φ′, φ) and d

(1)
l (φ′, φ) are the combinations of the encoder input bits and the

combinations of the encoder output bits associated with the transition from state φ′ to

state φ, respectively.

Afterward, in the forward recursion, the values of αl+1 can be defined by

αl+1(φ) =
∗

max
φ′∈{Φ′}

(γl(φ
′, φ) + αl(φ

′)), (2.10)

where {Φ′} is the aggregate of all the states φ′ in step l which end at state φ in step l+1.
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Meanwhile, the values of βl in the backward recursion can be obtained from

βl(φ
′) =

∗
max
φ∈{Φ}

(γl(φ
′, φ) + βl+1(φ)), (2.11)

where {Φ} is the aggregate of all the states φ in step l + 1 which are from state φ′ in

step l.

After the values of γl, αl, and βl have been obtained, the extrinsic LLR values for

the systematic bit combination d
(0)
l can be obtained by

Le(d
(0)
l ) =

∗
max

(φ′,φ)∈{T
d
(0)
l

l }

(αl(φ
′) + γl(φ

′, φ) + βl+1(φ))

− ∗
max

(φ′,φ)∈{T
d̃
(0)
l

l }

(αl(φ
′) + γl(φ

′, φ) + βl+1(φ)), (2.12)

where d̃
(0)
l is the systematic bit combination chosen as the reference, while {Td

(0)
l

l } and

{T d̃
(0)
l

l } are the aggregates of all transitions from state φ′ to state φ in step l when the

input bit combinations are d
(0)
l and d̃

(0)
l , respectively. Similarly to in the conventional

turbo decoding technique, the extrinsic LLR values can be used as the soft inputs for

the next decoding process or used for the hard output decision. In joint turbo decoding,

the bit combination with the highest extrinsic LLR value is selected as the output bits

of the decoder.

2.3.2 EXIT charts

To obtain the characteristic of an iterative process in a decoder, an extrinsic information

transfer (EXIT) chart can be drawn to show the exchange of mutual information (MI)

between decoders [51], [52]. In joint turbo decoding, the maximum value of the average

MI is equal to Nt as a result of cooperative decoding between Nt transmitted streams.

Let Pr(bl) denotes the probability of bit combination b in slot l. Then the MI can be

obtained as
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I = Nt +
1

L

L∑
l=1

∑
bl∈B

Pr(bl) log2 (Pr(bl)), (2.13)

where B denotes all possible bit combinations.

To plot the EXIT chart, random Gaussian variables are required to approximate the

LLR distribution of a priori information. For a MIMO system, the mean and variance

of a priori information depend on the channel realization [53], [54]. Denoting hnt as

the channel response of the ntth transmit antenna, the a priori LLR value, La, can be

expressed as

La =
2

σ2

(
‖hnt‖2u+ ‖hnt‖n

)
, (2.14)

where u ∈ {+1,−1} is the modulated output bit of the turbo codes.

For the case of joint turbo decoding, a priori LLR values exist for each bit combina-

tion. Therefore, each bit combination has its own instantaneous values of the a priori

LLR mean and variance. These a priori LLR values depend not only on the channel

realization but also on the error vectors between the transmitted bit combination with

each bit combination. Denoting bnt as the ntth element of bit combination b, and b̂nt as

the ntth element of the transmitted bit combination b̂, the a priori LLR values in joint

turbo decoding can be expressed as

La(b) =
2

σ2

Nt∑
nt=1

(
‖hnt‖2 + ‖hnt‖n

)(
bnt − b̂nt

)
. (2.15)

2.3.3 Computational complexity

The implementation of the super-trellis diagram in joint turbo decoding results in greater

computational complexity and a larger number of required memories. While the compu-

tational complexity of conventional turbo decoding increases linearly, that of joint turbo

decoding increases exponentially with the number of transmit antennas. In terms of
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Table 2.1. Comparison of computational complexity between conventional turbo decod-
ing and joint turbo decoding

technique Add Compare & Select

Conventional turbo decoding 5NtS + 1 6NtS

Joint turbo decoding (4× 2Nt − 3)SNt + 1 3× 2NtSNt

the required memory, the joint turbo decoding technique requires a number of memories

1
Nt

2Nt−1SNt−1 times larger than that the conventional turbo decoding technique. Con-

sidering the exponential nature of its computational complexity, the maximum potential

of the proposed technique can be obtained when the number of transmit antennas is

relatively small (e.g. 1 < Nt ≤ 4). An example of this scenario is when an MS located at

the edge of the cell is jointly served by more than one BS. In this scenario, the proposed

technique enables the multi-BS services through its superior performance enhancement.

On the other hand, as the number of the serving BS is not significantly large, the addition

in the computational complexity will not increase drastically.

Note, however, unlike in the IDD technique, the increase in the computational com-

plexity in joint turbo decoding only occurs in the decoding block, which performs rela-

tively simple add-compare-select operations. In addition, the calculation process for each

step l in each iteration can be conducted in a parallel manner. Therefore, the advan-

tage of joint turbo decoding can be preserved, especially for the case of an overloaded

MIMO system. Furthermore, as shown later in the simulation results, joint turbo de-

coding requires only a small number of iterations to get beyond the waterfall area. In

this regard, the processing time can be shorter than that of conventional turbo decoding,

which requires many iterations.
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Table 2.2. Simulation parameters

Channel code Turbo Codes, Rates: 1/3, 1/2

Interleaver Size 4800, 2432, 1600, 1216

Modulation QPSK, 16QAM, 64QAM, 256QAM

Multiplexing OFDM

Channel Bandwidth 2.5 MHz

Subcarrier Spacing 15 kHz

DFT Size 256

Occupied Subcarriers 151

Sampling Frequency 3.84 MHz

Cyclic Prefix 5.21 µs (first symbol)

4.69 µs (six following symbols)

Transmit Antennas 2 3 4

Number of Iterations

Conventional technique 64 171 8192

Proposed technique 8 8 8

Receive Antennas 2

Channel Model 6-tap typical urban

18-tap Rayleigh fading

2.4 Numerical Results

2.4.1 Simulation Parameters

In this simulations, 8-state memory turbo codes with interleaver sizes of 4800, 2432, 1600,

and 1216 are employed [31]. The code rates of 1/3 and 1/2 are used with the RM function

following the description in [31]. The coded symbols outputs by the turbo encoder are

modulated using quadrature phase shift keying (QPSK) modulation and multiplexed by

OFDM with a channel bandwidth of 2.5 MHz and a subcarrier spacing of 15 kHz. The

DFT size in OFDM is 256 with 151 subcarriers are occupied for data transmissions. For
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every seven OFDM symbols, the guard interval is set to 5.21 µs for the first symbol and

4.69 µs for the six following symbols [48].

The channel models for these simulations are 18-tap Rayleigh fading and 6-tap typical

urban (TU) channels, both with perfect channel estimation. The TU channel charac-

teristic follows the description in [55]. In addition, two receive antennas are used in the

simulation with the number of transmit antennas varied from 2 to 4. To obtain equal

complexity for each technique, the number of iterations for the conventional technique

is set to 1
Nt

2Nt−18Nt−1 times larger than the number of iterations for the joint turbo

decoding technique. Furthermore, transmission using a single transmit antenna with

higher-order modulation is also simulated for comparison.

2.4.2 BER performance

2.4.2.1 BER in a channel with low correlation

Fig. 2.5 shows the BER of an OFDM system with turbo codes in the 18-tap Rayleigh

fading channel using code rates of 1/3 and 1/2 for both conventional turbo decoding

and joint turbo decoding. The BER of the single-transmit-antenna technique using

higher-order modulation is also plotted for comparison. From Fig. 2.5(a), it can be

observed that the transmission using multiple antennas gives better performance than the

single-antenna transmission. For the case of two transmit antennas, the multiple-antenna

transmission with the conventional turbo decoding technique gives 0.8 dB performance

gain compared with the single-antenna transmission with 16QAM. This performance can

be further enhanced using the turbo joint decoding technique, which gives 0.4 dB better

performance than the conventional turbo decoding technique.

Furthermore, the performance gain is even higher when the number of transmit an-

tennas increases. For the case of four transmit antennas, the performance of joint turbo
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(a) Code rate of 1/3.

(b) Code rate of 1/2.

Fig. 2.5. BER performance of joint turbo decoding in the 18-tap Rayleigh fading channel
(0018-9545 c© 2016 IEEE).

decoding exceeds those of MIMO systems with the conventional turbo decoding tech-

nique and the single-transmit-antenna technique with 256QAM by about 1.5 dB and 3.4

dB, respectively.
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Fig. 2.6. BER performance of joint turbo decoding in the 6-tap TU channel with the
code rate of 1/2 (0018-9545 c© 2016 IEEE).

Transmission using multiple antennas has a greater advantage at a higher code rate.

From Fig. 2.5(b), it can be seen that the performance of MIMO systems with two trans-

mit antennas using the conventional turbo decoding technique exceeds the performance

of the single-transmit-antenna technique with 16QAM by about 1.2 dB. Using four trans-

mit antennas with the conventional turbo decoding technique, a 2.9 dB performance gain

can be obtained as compared with the single-transmit-antenna technique with 256QAM.

Using the turbo joint decoding technique, this performance gain can be further en-

hanced. For the case of two transmit antennas, the performance can be increased by

1.6 dB, while the increase is about 4.4 dB for the case of four transmit antennas. In

addition, it can be observed from both figures that the performance gain of the joint

turbo decoding technique can be maintained regardless the code rate used by the turbo

codes.
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2.4.2.2 BER in a channel with high Correlation

One of the factors that could degrade the performance of an OFDM system is the chan-

nel correlation between subcarriers. A channel with higher correlation will have worse

performance than a channel with lower correlation. Fig. 2.6 shows the performance of

the MIMO-OFDM system using turbo codes with the code rate of 1/2 in a 6-tap TU

channel. The performance curves of the joint turbo decoding technique and the conven-

tional technique are plotted. For reference, the performance is also compared with that

of a single-transmit-antenna technique with higher-order modulation.

From the figure, it can be seen that for all the techniques, performance degradation

occurs compared with the case of a low correlation. However, it can also be observed

that in the channel with the higher correlation, the proposed technique provides a larger

performance gain. Compared with the conventional turbo decoding technique, the pro-

posed technique has a superior performance by about 0.6 dB for the case of two transmit

antennas and by about 2.0 dB for the case of four transmit antennas. Moreover, using

four transmit antennas, the performance gain of the proposed technique compared with

the single-antenna transmission technique with 256QAM increases from 4.4 dB for a

low-correlation channel to 5.1 dB for a high correlation channel.

2.4.2.3 BER in the case of equal total number of information bits

In the previous simulation, an equal interleaver size was used for both single-antenna

transmission and multiple-antenna transmission. In Fig. 2.7, the numerical results ob-

tained through computer simulation are shown for the case of an equal total number of

information bits. The turbo code with the code rate of 1/3 is used for the simulation in

the 18-tap Rayleigh fading channel. In the figure, the single-antenna transmission with

higher-order modulation uses an interleaver with a size of 4800 while the multiple-antenna

transmission uses an interleaver with a size of ≈ 4800/Nt.
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Fig. 2.7. BER performance of joint turbo decoding in the 18-tap Rayleigh fading channel
with equal total number of information bits (0018-9545 c© 2016 IEEE).

Comparing Fig. 2.5(a) and Fig. 2.7, it can be observed that the performance gain

of the proposed technique compared with the single-antenna transmission with higher-

order modulation is decreased due to the smaller interleaver size. For the case of two

transmit antennas, the performance gain decreases from 1.2 dB to 1.0 dB while for the

case of four transmit antennas, the performance gain decreases from 3.4 dB to 3.0 dB.

However, compared with the results obtained for conventional turbo decoding, a larger

performance gain can be observed when a smaller interleaver size is used. For the case

of four transmit antennas, for example, the performance gain increases from 1.5 dB to

1.9 dB.

2.4.3 EXIT charts

Fig. 2.8 shows the EXIT charts of the joint turbo decoding technique with two transmit

antennas and two receive antennas in an 18-tap Rayleigh fading channel. The turbo code

with a coding rate of 1/3 is used. The EXIT charts are plotted together with the decoding
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Fig. 2.8. EXIT chart of joint turbo decoding (0018-9545 c© 2016 IEEE).

trajectories for Eb/N0 values of 2.1 dB and 2.4 dB. The values of a priori MI, IA, and

the values of extrinsic MI, IE, are normalized to 1. From the figure, it can be observed

that the EXIT charts are relatively consistent with the decoding trajectories. Therefore,

the approximation of a priori LLR values in Eq. (2.15) is suitable for representing the

actual LLR distribution in joint turbo decoding.

When Eb/N0 is 2.1 dB, the EXIT chart starts to converge. This Eb/N0 value

corresponds to the waterfall region in Fig. 2.5(a). In addition, the ‘gate’ of the EXIT

chart in joint turbo decoding is located at the value of MI is equal to 0.13. In other

words, the critical point of joint turbo decoding appears at a relatively small value of

MI. Using this characteristic, unreliable data transmissions can be easily detected after

a small number of iterations in the decoding process. Furthermore, when the value of

MI is sufficiently large, the decoding trajectories for this Eb/N0 value are smaller than

those in the EXIT chart. This is due to the fact that the limited size of the interleaver

has the greatest effect in the waterfall region. When Eb/N0 is 2.4 dB, both the decoding
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(a) 18-tap Rayleigh fading channel. (b) 6-tap TU channel.

Fig. 2.9. Throughput improvement of joint turbo decoding (0018-9545 c© 2016 IEEE).

trajectory and the EXIT chart easily converge. In the BER chart, this Eb/N0 value

corresponds to the error-floor region.

2.4.4 Throughput improvement

A comparison of the throughput between the conventional and proposed techniques is

shown in Fig. 2.9. For both figures, the turbo code with a code rate of 1/2 is used.

For the MIMO systems, QPSK modulation is employed. As QPSK contains two bits

in each symbol, each transmit antenna will have a throughput of 1 bit/s/Hz when the

BER threshold is fulfilled. In this figure, the BER threshold is set to 10−5, which

is generally acceptable for data transmissions. The value of SNR/stream required by

the conventional and proposed technique to achieve this threshold is represented by the

horizontal axis. For comparison, the throughput of the single-transmit-antenna technique

with higher-order modulation is also plotted, where the horizontal axis represents the

required SNR/2bits. In addition, the dashed lines are the Shannon limit curves for 1×2,
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2×2, 3×2, and 4×2 MIMO systems. The MIMO capacities are then drawn by connecting

the capacity limits for the corresponding values of the required SNR/stream using bold

dashed lines.

From the figure, it can be seen that the proposed technique has a larger throughput

than the conventional turbo decoding technique. In the 18-tap Rayleigh fading channel, it

can be observed from Fig. 2.9(a) that the conventional technique supports a throughput

of 3.34 bit/s/Hz at an SNR/stream of 6.4 dB. For the same SNR/stream, the proposed

technique is able to support a throughput of 4 bit/s/Hz, which is an improvement of

20%. In addition, this throughput is also larger than that of the single-transmit-antenna

transmission technique with higher-order modulation, which only provides 2.56 bit/s/Hz.

In the channel with a higher correlation between the subcarriers, the throughput

enhancement of the proposed technique is greater. It can be observed from Fig. 2.9(b)

that in the 6-tap TU channel, the conventional technique only achieves a throughput

of 3.15 bit/s/Hz at an SNR/stream of 6.6 dB. For the same SNR/stream, the proposed

technique is able to support a throughput of 4 bit/s/Hz, which is an improvement of 27%.

Compared with the single-transmit-antenna transmission technique, this throughput is

equal to an improvement of 71%.

Furthermore, it can be observed from the figure that the proposed technique has a

throughput/(SNR/stream) ratio close to that of the theoretical MIMO capacity. There-

fore, adding more transmit antennas will not significantly increase the gap between the

achievable throughput and the maximum capacity.

2.5 Summary

In this thesis, a joint decoding technique for turbo codes, so-called joint turbo decoding,

has been proposed. In joint turbo decoding, calculations of soft information are con-

ducted for each combination of bits from all streams instead of separately between each
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stream. In addition, the trellis diagrams of the encoders from all streams are combined

using a super-trellis diagram.

The numerical results obtained through computer simulation show that the perfor-

mance of the proposed technique surpasses that of the conventional technique especially

for the case of an overloaded MIMO system. For the case of four transmit and two receive

antennas, for example, the performance of the proposed technique using an interleaver

size of 4800 in the 18-tap Rayleigh fading channel exceeds that of the conventional tech-

nique by about 1.5 dB at a BER of 10−5. The performance gain increases in a highly

correlated channel. In the 6-tap TU channel, the performance of the proposed technique

exceeds the performance of the conventional technique by about 2.0 dB. The performance

gain also increases for a smaller interleaver size. When the interleaver size is decreased

from 4800 to 1216, the performance gain increases from 1.5 dB to 1.9 dB.

Furthermore, it has been shown that joint turbo decoding can increase the throughput

of MIMO systems as compared with that of conventional turbo decoding. In the 18-tap

Rayleigh fading channel, the throughput increases by about 23% compared with that of

conventional turbo decoding and by about 57% compared with that of single-transmit-

antenna transmission. In the channel with higher correlation, the throughput increases

by about 30% compared with that of conventional turbo decoding and by about 70%

compared with that of single-transmit-antenna transmission.
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Chapter 3

MU-MIMO with Collaborative
Interference Cancellation: User
Selection Techniques and Field
Experiments

3.1 Introduction

In MU-MIMO, the advantages of MIMO systems can be preserved even when the number

of receive antennas in each user is limited. Considering this potential, therefore, MU-

MIMO has been attracted many researchers in wireless communication areas [56, 57].

Owing to the distance between the MSs, MU-MIMO ensures that the channel correlation

is relatively low and preserves the spatial multiplexing gain [58,59].

In MU-MIMO scenario, one of the possible approaches to conduct interference can-

cellation is by CIC [5–8]. In this technique, the users share their received signals with

other users to virtually increase the number of receive antennas. This technique does

not require accurate CSI at the transmitter and thus, is suitable for high user density

and high mobility environments such as when the users are on trains and buses. In addi-

tion, users in this scenario move together and their positional relationships are relatively

constant. Therefore, it is not difficult to establish the cooperation between users and

conduct CIC.

39



Chapter 3. MU-MIMO with Collaborative Interference Cancellation: User Selection Techniques
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In CIC, the number of available users is most likely larger than the number of transmit

antennas. To capture its most advantages, therefore, a user selection can be implemented

to select Kcol collaborating users out of Kava available users [14–16]. By employing user

selection, the wireless traffic and power consumption for CIC can be minimized, while its

diversity can be maintained to be equal to the number of available users [14]. It should

be noted, however, user selection process should be tailored based on its purposes and

the receiver design. In [60–64], for example, the user selection is designed to maximize

the channel capacity. On the other hand, [17–21] propose user selection techniques by

considering the error rates performance. Research in [17–21], however, only consider the

basic receiver design scenarios such as MLD, ZF, and MMSE detection algorithms. In

this thesis, therefore, a user selection technique which maximizes the BER performance

for the case of QRM-MLD [65–67] is used a the detection algorithm is proposed.

Except to the number of signal exchanges, the issue on the MU-MIMO with CIC

lies on its applicability. This issue is important as the performance of CIC in an actual

environment depends heavily on several factors. Unlike the theoretical scenario which

commonly considers i.i.d. Rayleigh fading, actual environments experiencing channel

shadowing and channel correlation between users. In the signal processing at the users,

the differences at the user sampling time, frequency offset, and signal to noise ratio might

also affect the CIC performance. In addition, the reliability of the interuser links in a

mobile environment, also needs to be confirmed.

In this regards, therefore, field experiment is conducted to confirm the effectiveness of

MU-MIMO with CIC in an actual environment. In this field experiment, a BS equipped

with multiple transmit antennas is employed to serve several active users. These active

users are located in a car that moves at a certain speed. In addition to these active users,

other users are also available in the car and can be used in CIC. Therefore, the number of

collaborating users is larger than or equal to that of the active users. These collaborating
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users then conduct CIC by sharing their received signals through short range wireless

communication links. Afterward, MLD and MMSE are used as the detection algorithms

for obtaining the estimated transmitted data. Due to the time constraint, however, the

field experiments did not consider any user selection technique yet.

3.2 System Model

3.2.1 MU-MIMO with CIC

In this thesis, an MU-MIMO where Nt transmit antennas serves Kact active users out of

Kava available users is considered. For simplicity, it is assumed that Nt = Kact. First,

Nt transmit antennas in the BS transmit Nt independent streams. On the receiver side,

Kcol users conduct CIC by sharing their received signals and equivalently increase the

number of their receive antennas. It is worth to note that Kact ≤ Kcol ≤ Kava. Let

y = [y1, y2, . . . yKcol
]T, where yk is the received signal for kth user. The received signals

for Kcol collaborating users can be written as

y = Hs + n, (3.1)

where H ∈ CKcol×Nt is an Kcol ×Nt matrix of a wireless channel, s is an Nt × 1 vector

of transmitted symbols, and n is an Kcol × 1 vector of noise.

The signal-exchange process in CIC can be seen in Fig. 3.1. As can be seen in the

figure, two steps are conducted on the receiver side, namely user selection, and signal

detection. In this figure, KQRM is a variable in QRM-MLD and will be introduced in

Chapter 3.2.2. On the other hand, GS is a variable in the proposed technique and will

be described in Sect. 3.3. The optimum value of GS depends on KQRM.

In the first step of CIC, Kava − 1 users transmit their CSI to one of the active users

that acts as a master user. Based on this CSI, the master user selects the best Kcol

users that will be used to conduct the detection process. In this thesis, a user selection
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Fig. 3.1. Signal-exchange in CIC.

technique to optimize the BER performance when QRM-MLD [65–67] is used as the

detection algorithm is proposed.

In the user selection process, the master user should consider

(
Kava

Kcol

)
possible user

subsets. After conducting user selection, the master user transmits signal-requests to

those Kcol selected-users. In the second step of CIC, the detection process is conducted.

In this step, the Kcol selected-users broadcast their received signals after receiving the

signal-request. In CIC, two scenarios can be employed to conduct the signal detection

process. In the first scenario, the broadcasted received signals from Kcol selected users are

received by Kact active users. Then, each of these active users conducts signal detection

independently. Therefore, there will be Kact detection processes in the cluster. In this

scenario, however, no user is required to broadcast the detection results. Therefore, this

scenario is effective when a linear detection algorithm is applied with a relatively large
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value of Kcol.

In the second scenario, the broadcasted received signals from Kcol selected users are

received by one of Kact active users. Afterward, only this user conducts a signal detection.

In this scenario, additional inter-user signal transmissions are required to distribute the

results of the signal detection to the other Kact− 1 active users. Therefore, this scenario

is effective when a nonlinear detection algorithm is implemented with a relatively small

value of Kcol. As QRM-MLD is used as the detection algorithm in this thesis, the second

scenario is employed.

3.2.2 QRM-MLD

QRM-MLD is well known as a detection algorithm which is able to achieve a BER

performance near equal to MLD with a significant reduction in complexity [65–67]. Let

Û be the user subset which is selected to conduct the CIC process. The received signals

from this user subset can be denoted as

yÛ = HÛs + nÛ , (3.2)

where HÛ is the Kcol × Nt sub-matrix of H which corresponds to the user subset Û ,

while nÛ is the Kcol × 1 sub-vector of n which corresponds to the user subset Û . In

QRM-MLD, the first step of the detection process is to decompose HÛ into a unitary

matrix, QÛ , and an upper triangular matrix, RÛ . Therefore, Eq. (3.2) can be written

as

yÛ = QÛRÛs + nÛ . (3.3)

Multiplying both sides with QH
Û

, Eq. (3.3) can be modified as

ỹÛ = RÛs + ñÛ , (3.4)
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where ỹÛ = QH
Û
yÛ and ñÛ = QH

Û
nÛ .

To obtain the vector of the transmitted symbols, the ML criterion is given by

ŝ = argmin
s∈SNt

‖ỹÛ −RÛs‖
2
F

= argmin
s∈SNt

 Nt∑
j=1

∣∣∣∣ ỹÛj − Nt∑
i=j

rÛj,isi

∣∣∣∣2
, (3.5)

where SNt is the set of all possible vectors of Nt × 1 transmitted symbols, ỹÛj is the jth

element of the vector ỹÛ , and rÛj,i is the j, ith element of matrix RÛ .

In QRM-MLD, the detection process is conducted in a recursive manner [65]. Denotes

S as the set of all possible symbols from one transmit antenna. At the first stage of

QRM-MLD, the branch metric values are calculated for all values of S. Afterward,

KQRM candidates with the smallest values of branch metric are selected as the surviving

nodes while the nodes from the other candidates are discarded. In the nQRMth (1 <

nQRM < Nt) stage, the branch metric values of KQRM |S| nodes are calculated. Again,

KQRM candidates with the smallest values of branch metric are selected as the surviving

nodes and the nodes from the other candidates are discarded. Finally, in the Ntth stage,

the node with the minimum accumulated branch metric is selected as the result of the

QRM-MLD algorithm together with its ancestor nodes.

In a recursive-based detection algorithm such as QRM-MLD, channel ordering holds

a significant role in optimizing the BER performance. Employing channel ordering, the

probability of the signal with a high signal-to-noise ratio (SNR) is detected at the early

stage of detection can be increased and minimizes the error propagation [68,69]. In this

thesis, a simple channel ordering technique based on the sum of Frobenius norm values

of all elements in each column is used.
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3.2.3 Conventional User Selection Technique

To achieve its optimum potential, the user selection should be tailored based on the

purpose of the user selection. The user selection, for example, can be used to maximize

the capacity or to optimize the BER performance. In addition, user selection should also

consider the detection algorithm used in the receiver. User selection technique for MLD,

for example, should be different with the user selection for ZF and MMSE.

3.2.3.1 User Selection for Capacity Maximization

Let U denotes the user subset where U ∈ U and |U| =

(
Kava

Kcol

)
. The channel sub-matrix

which corresponds to the user subset U is then denoted as HU . Using the capacity

maximization (CM) technique, the selected user subset can be obtained by

Û = argmax
U∈U

R∏
r=1

λUr , (3.6)

where R is the rank of HU and λUr is the rth singular value of HU . For the case of

R = Nt, the value of the product of λUr in Eq. (3.6) can be equally obtained by

Û = argmax
U∈U

Nt∏
nt=1

∣∣rUnt,nt

∣∣, (3.7)

where rUnt,nt
is the ntth diagonal element of matrix RU which is obtained from the QR

decomposition of channel submatrix HU .

3.2.3.2 User Selection for BER Optimization

User selection for ZF detecion In the linear detection, an equalizer matrix is applied

to the vector of received signals, y, to obtain the estimate of the transmitted symbols,

ŝ. For the case of ZF precoder, the equalizer matrix is equal to the pseudo inverse

of the channel matrix. This equalizer will affect the noise and causes the noise power

to vary according to the function of the channel. In the ZF detection, therefore, the
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post-processing SNR becomes the key parameter in the user selection. For each user

subset, U , the post processing SNR value for the ntth transmitted stream, SNR′nt
, can

be obtained by

SNR′Unt
=

Es

Ntσ2[HH
UHU ]−1

nt,nt

. (3.8)

The selected user subset, Û , then can be obtained by

Û = argmax
U∈U

min
nt

SNR′Unt
. (3.9)

User selection for MLD In a receiver implementing MLD algorithm, the probability

of symbol errors can be upper-bounded by the minimum Euclidean distance between all

possible transmitted symbols as

Pe <
(∣∣SNt

∣∣− 1
)

Q

(√
Es

2σ2
d2

min

)
, (3.10)

where Q(.) is the Q function, Es is the average energy of the transmitted signals and

d2
min is the minimum Euclidean distance of all possible transmitted symbols [70]. In each

signal subset, the value of d2
min can be obtained by

d2
min = min

sp,sq∈SNt ,sp 6=sq
‖RU (sp − sq)‖2F, (3.11)

where sp and sq are two possible vectors of transmitted symbols.

By examining Eqs. (3.10) and (3.11), it can be concluded that in order to minimize

the BER, the master user should select the signal subset having the largest minimum

Euclidean distance as the collaborating users. In this thesis, this technique is labeled as

the MMED technique. For the case of point-to-point MIMO, MMED is described in [17].

In MMED, the selected signal subset, Û , can be obtained by
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Û = argmax
U∈U

min
sp,sq∈SNt ,sp 6=sq

‖RU (sp − sq)‖2F

= argmax
U∈U

min
e∈ENt ,e 6=0

‖RUe‖2F

= argmax
U∈U

min
e∈ENt ,e 6=0

 Nt∑
j=1

∣∣∣∣ Nt∑
i=j

rUj,iei

∣∣∣∣2
,

(3.12)

where ei is the symbol error between two possible transmitted symbol of the ith user, e =

[e1, e2, . . . , eNt ]
T is the vector of symbol error between two possible vector of transmitted

symbols, and ENt is the set of all possible vector of symbol error.

It should be noted, however, some of these symbol errors are actually identical. Thus,

to minimize the complexity, the Euclidean distance calculations can be conducted only

for all those unique symbol errors. Furthermore, the Euclidean distance for e is equal

to the Euclidean distance for −e, ei, and −ei. Therefore, the calculation of Euclidean

distance for four vectors of symbol error that can be represented by e, −e, ei, and −ei,

can be conducted once. As the Euclidean distance calculation for e = 0 can be discarded,

the number of required Euclidean distance calculations in MMED for each signal subset

can be written as

NED =
1

4
(|E1|Nt − 1), (3.13)

where E1 is the set of all unique error vectors in each element of e.

The value of |E1| in Eq. (3.13) corresponds to the modulation technique which is used

in the transmission. Denotes Q as the number of bits in each symbol of a square-shaped

QAM. The value of |E1| can be obtained by

|E1| =
(

2
Q
2

+1 − 1
)2
. (3.14)

In Fig. 3.2, all of the unique symbol error for QPSK modulation are shown. As can be

seen in the figure, there are nine unique symbol errors in the QPSK modulation, which
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Fig. 3.2. Error vectors in QPSK modulation.

are E1 = {0, 2,−2, 2i,−2i, 2 + 2i, 2 − 2i,−2 + 2i,−2 − 2i}. Each of this unique symbol

error is denoted as E1, where E1 ∈ E1.

From Eq. (3.12), it can be seen that the selection process in MMED is conducted

by directly multiplying matrix R with the vector of symbol error, e. In other words,

MMED considers only the total accumulative Euclidean distance in its selection process.

This selection criterion, therefore, cannot minimize the error propagation in QRM-MLD.

In addition, this direct multiplication incurs high computational complexity. As can be

observed from Eq. (3.13), MMED requires a large number of Euclidean distance calcu-

lations, which makes implementation infeasible. In the case of four transmit antennas

with 16QAM modulation, for example, selecting four out of eight users requires more

than 100 million calculations of Euclidean distance.
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3.3 Proposed User Selection Tecnhique for QRM-MLD

QRM-MLD is a detection algorithm which is based on the MLD algorithm. To optimize

the BER performance, therefore, the user should be selected based on the user selection

algorithm for MLD. It should be noted, however, the user selection process should ac-

commodate the recursive nature of QRM-MLD. In the proposed technique, therefore, the

calculation of the minimum accumulative Euclidean for each signal subset is conducted

in a recursive manner using an M-algorithm. Hereafter, the proposed technique is labeled

as MMED-M.

In each stage of the selection process, the calculation of Euclidean distance is con-

ducted only for a certain number of symbol error and greatly reduce the computational

complexity. In addition, MMED-M stores the minimum value of Euclidean distance in

each stage of selection. This process is required as the detection error in QRM-MLD is

possible to occur in the early stage of detection. By considering the minimum Euclidean

distance in each selection stage, the error propagation in QRM-MLD can be minimized

and better BER performance can be expected especially for the case of KQRM is relatively

small.

The pseudocode of the proposed technique, in general, can be seen in Algorithm 1.

In the pseudocode, d̄min denotes the minimum accumulative Euclidean distance in a user

subset. The largest value of d̄min from all possible user subsets is denoted as d̄max. In

addition, d̄ is a (GS +1)×1 vector of the stored accumulative Euclidean distances where

GS is the number of surviving nodes at each selection stage. The elements in d̄ are

arranged in increasing order so that d̄1 < d̄2 < · · · < d̄GS+1. Next, the surviving nodes at

each selection stage are stored in a matrix and denoted as E. The number of columns in

matrix E is equal to GS while the number of its rows at the nQRMth stage of selection is

equal to m. To support the selection process, a temporary variable, vector, and matrix,

which are d, d′, and E′ are also required in the algorithm.
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Algorithm 1 MMED-M algorithm.

1: d̄max = 0 % initiate the value of d̄max

2: Define the number of surviving nodes, GS

3: for U ∈ U do
4: d̄min =∞ % initiate the value of d̄min

5: Obtain RU from HU

6: d̄ = ∞(GS+1)×1 % initiate vector d̄

7: E = 01×GS
% initiate matrix E

8: for E1 ∈ E1 do
9: d = rUNt,Nt

E1

10: if d < d̄GS+1 then
11: Stores d to d̄
12: if d < d̄GS

then
13: Stores E1 to E

14: for nt = 2 : Nt do
15: E′ = E
16: d′ = d̄
17: E = 0m×GS

% expand matrix E
18: d̄ = ∞(GS+1)×1 % reset vector d̄
19: for g = 1 : GS do
20: for E1 ∈ E1 do

21: d = d′g +

∣∣∣∣∣rUNt−nt+1,Nt−nt+1:Nt

[
E1

E′(:,g)

]∣∣∣∣∣
2

22: if d < d̄GS+1 then
23: Stores d to d̄
24: if d < d̄GS

then

25: Stores

[
E1

E′(:,g)

]
to E

26: if nt = Nt then
27: if d̄2 < d̄min then
28: d̄min = d̄2

29: else
30: if d̄GS+1 < d̄min then
31: d̄min = d̄GS+1

32: if d̄min > d̄max then
33: d̄max = d̄min

34: Û = U

3.3.1 M-algorithm Implementation

Fig. 3.3 shows a tree diagram of the MMED-M user selection technique for the case of

QPSK transmission with Nt = 3. In the figure, dnt,q denotes the qth largest accumulative
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Fig. 3.3. Tree diagram representation of MMED-M.

Euclidean distance at the stage of nt. At the first stage of selection, Euclidean distances

are calculated by multiplying rUNt,Nt
with all unique error vectors, E1. The Euclidean

distance obtained from the multiplication of the error vector of
[
2
]
,
[
−2
]
,
[
2i
]
, and[

−2i
]

with any values of rUNt,Nt
, however, will produce the equal result. In Fig. 3.3, the

result is written as d1,2. The equal result will also be obtained from the multiplication

to the error vector of
[
2 + 2i

]
,
[
2− 2i

]
,
[
−2 + 2i

]
, and

[
−2− 2i

]
. In Fig. 3.3, the result

is written as d1,3, where d1,3 > d1,2.

To significantly reduce the computational complexity, the nodes having large Eu-

clidean distances are discarded. As an example, the nodes having the Euclidean distance

of d1,3 in Fig. 3.3 are discarded. Furthermore, MMED-M considers the nodes having

the equal Euclidean distance as one node. Therefore, in Fig. 3.3, only one from four

nodes which have the Euclidean distance of d1,2, survived, while the other three nodes

are discarded.
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Table 3.1. Symmetry properties of the error vectors in MMED-M.

Vector of symbol error
Stage 1 Stage 2

e1 e2 e3 e4 e9[
2
] [

2

0

] [
2

2

] [
2

−2

] [
2

2i

]
. . .

[
2

−2−2i

]
−e1 −e3 −e2 −e5 −e6[

−2
] [

−2

0

] [
−2

2

] [
−2

−2

] [
−2

2i

]
. . .

[
−2

−2−2i

]
e1i e5i e4i e2i e8i[

2i
] [

2i

0

] [
2i

2

] [
2i

−2

] [
2i

2i

]
. . .

[
2i

−2−2i

]
−e1i −e4i −e5i −e3i −e7i[

−2i
] [

−2i

0

] [
−2i

2

] [
−2i

−2

] [
−2i

2i

]
. . .

[
−2i

−2−2i

]

This discarding process is possible owing to the symmetry property of the vectors of

symbol error. In Table 3.1, the second column shows all possible vectors of symbol error

at the second stage of selection which are from the nodes with the symbol error of
[
2
]
,[

−2
]
,
[
2i
]
, and

[
−2i
]
. In the table, ev denotes the vth possible vector of symbol error

at the second stage of selection, originated from the symbol error of
[
2
]

from the first

selection stage. Herein, v = {1, 2, ..., |E1|}. As can be seen in the table, all of the nodes

in the second stage of selection originated from the nodes with the error vector of
[
−2
]
,[

2i
]
, and

[
−2i

]
can be represented as −ev, evi, and −evi, and will produce the equal

Euclidean distance. This representation is also applicable for the third stage onwards.

Therefore, for each signal subset, the number of required Euclidean distance calculations

using the MMED-M technique with GS surviving nodes can be written as

N ′ED = |E1|+ (Nt − 1)GS |E1|. (3.15)

Similar to the case of QPSK modulation, symbol-error-grouping can also be held for

the case of 16QAM modulation and can be seen in Table 3.2. In the table, the vectors
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Table 3.2. Vector of symbol error grouping at the first stage of MMED-M for 16QAM.

Group Squared- Error Vectors
No. distance

1 0 {0}
2 4 {2,−2, 2i,−2i}
3 8 {2 + 2i, 2− 2i,−2 + 2i,−2− 2i}
4 16 {4,−4, 4i,−4i}
5 20 {2 + 4i,−4 + 2i, 4− 2i,−2− 4i}
6 20 {4 + 2i,−2 + 4i, 2− 4i,−4− 2i}
7 32 {4 + 4i, 4− 4i,−4 + 4i,−4− 4i}
...

...
...

13 72 {6 + 6i, 6− 6i,−6 + 6i,−6− 6i}

of error symbol that can be represented by e, ei, −e, and −ei are unified into one

group. For the case of 16QAM modulation, however, the equal Euclidean distances can

be produced by the vectors of symbol error from different groups. In Table 3.2, it can

be observed that both groups 5 and 6 have an equal Frobenius norm of 20. Fortunately,

this case only occurs when a large number of surviving nodes is used. Since a small

number of surviving nodes is sufficient, this phenomenon will not give any effect in the

MMED-M technique.

3.3.2 Determining the Optimum Value of surviving nodes

In MMED-M, the number of surviving nodes, GS, can affect the performance of QRM-

MLD at the detection process. The optimum value of GS depends on the value of KQRM,

and vice versa. At the first stage of user selection, determining the optimum number of

surviving nodes is relatively easy, but yet, critical.

At the first detection stage of QPSK transmission, QRM-MLD with KQRM = 2 could

only select a symbol with its vertical or horizontal neighbors in constellation mapping

as its candidates. Using QPSK with Gray mapping, for example, QRM-MLD could not

select symbol {0, 3} or {1, 2} as its candidates. In the user selection process, therefore,
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besides consider the symbol error of 0, only the symbol errors which have the vertical or

horizontal direction should be considered. In the conventional MMED, all of the symbol

errors are considered in the selection process even when two candidates in QRM-MLD

could not have those symbol errors. The conventional MMED, therefore, is not suitable

for the QRM-MLD detection algorithm.

In Fig. 3.2, the symbol error of 0 and the symbol errors which have the vertical or

horizontal direction are grouped in group one and group two. Therefore, only the symbol

error in these groups should be considered in the selection process while the symbol errors

in group three should be discarded. Next, at the first stage of selection, the symbol errors

in group two produce the equal Euclidean distance and can be considered as one node.

Therefore, for the case of QRM-MLD with KQRM = 2, the optimum value of GS in the

MMED-M is 2. As can be seen later in the simulation results, selecting GS > 2 causes

an error floor on the BER performance.

For the case of KQRM = 4, QRM-MLD selects all of the QPSK symbols as its candi-

dates at the first stage of detection. In the user selection process, therefore, all possible

symbol errors should be considered. As the vertical and horizontal symbol errors will

produce an equal Euclidean distance at the first stage of selection, they can be consid-

ered as one node. The same consideration can be applied to the diagonal symbol errors.

Therefore, for the case of KQRM = 4, the optimum value of GS is 3.

At the stage of 2 to Nt− 1, determining the optimum number of the surviving nodes

is relatively hard, owing to the random nature of the channel matrix and the noise vector.

However, as it will be shown later in the simulation results, excellent BER performance

can be obtained by keeping the number of surviving nodes at the stage of 2 to Nt− 1 to

be equal to the number of surviving nodes at the first stage of selection.
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3.3.3 Determining the Stored-Accumulative-Euclidean distance

In Eq. (3.12), it can be seen that in MMED, the minimum Euclidean distance in each user

subset is obtained by directly multiplying RU with all possible vectors of symbol error.

Therefore, only the total accumulative Euclidean distances are considered in MMED.

On the other hand, one of the problems of QRM-MLD lays in the error events which

are possible to occur at each stage of detection. As a result, for the QRM-MLD im-

plementation, conventional MMED is only able to provide optimum BER performance

if the value of KQRM is sufficiently large or if an optimum channel ordering technique

is employed. For the case of the value of KQRM is relatively small and a sub-optimum

channel ordering technique is used, the error propagation will occur at the QRM-MLD

detection process.

To avoid the error-events in the early stage of QRM-MLD, MMED-M user selection

considers the accumulative Euclidean distance at each stage of the selection. At the stage

of 1 to Nt − 1, the performance of QRM-MLD will be affected by the minimum value of

the accumulative Euclidean distance of the discarded nodes. Therefore, at these stages,

MMED-M stores the value of dnt,GS+1. At the stage of Nt, however, QRM-MLD selects

the smallest branch metric instead of selects KQRM candidates. Therefore, at this stage,

MMED-M stores the value of dnt,2.

In Fig. 3.3, the stored value at each stage of selection is shown by the dashed

circle. The minimum value of all of these stored-values is then selected as the minimum

accumulative Euclidean distance for the corresponding signal subset, d̄min. In Table 3.3,

an example of Euclidean distance information obtained through MMED-M user selection

is shown.

In the conventional MMED, only the total accumulative Euclidean distances are

considered in the selection process. In MMED-M representation, this total Euclidean
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Table 3.3. Example of Euclidean distance values obtained through MMED-M.

Stage
Euclidean distance

at each stage of selection

U1 U2 U3

1 1.5 1.3 1.1

2 1.2 1.4 1.7

3 1.8 1.7 1.9

distance is equal to the Euclidean distance at the Ntth stage of user selection process.

In Table 3, therefore, the minimum Euclidean distances for U1, U2, and U3 using the

conventional MMED, are 1.8, 1.7, and 1.9, respectively. As signal subset U3 has the

largest Euclidean distance at that stage, this signal subset is selected by MMED to

conduct detection process.

This signal subset is, indeed, suitable for MLD algorithm. As MLD calculates the

branch metric for all possible transmitted symbols, only the total Euclidean distance will

determine the MLD performance. It should be noted, however, the detection process in

QRM-MLD is conducted in a recursive manner. Therefore, the BER performance of

QRM-MLD is determined by the Euclidean distance at each stage of selection. When

signal subset U1 is used for detection process, for example, the error event of QRM-MLD

will most likely occurs at the second stage of detection process. On the other hand,

When signal subset U2 or U3 is used for detection process, the error event of QRM-MLD

will most likely occur at the first stage of the detection process. Therefore, in MMED-M,

the minimum Euclidean distances for U1, U2, and U3 are 1.2, 1.3, and 1.1, respectively.

Thus, rather than selects signal subset U3, MMED-M selects signal subset U2 to conduct

the detection process.
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3.3.4 Computational Complexity

Table 3.4 shows the comparison of the computational complexities between CM, MMED,

and MMED-M. In this table, the comparison is made based on the number of complex

multiplications. In Eq. (3.7), it can be seen that in CM, the computation for each user

subset depends only on the QR decomposition process. Therefore, in CM, the number

of complex multiplications in one loop of user selection process is equal to the number

of complex multiplications in the QR decomposition multiplied by

(
Kava

Kcol

)
.

In MMED, besides the QR decomposition process, the Euclidean distance calcula-

tions are also required. However, for some user subsets, these QR decompositions and

Euclidean distance calculations can be omitted. In MMED, |rU1,1|2 ≥ d̄2
min. The value of

|rU1,1|2 itself is equal to ||hU1 ||2, where hU1 is the first column vector of HU . Therefore,

for the user subsets which have the value of ||hU1 ||2 less than the value of d̄2
min from

the previous user subset, the QR decomposition and Euclidean distance calculations can

be omitted. In Table 3.4, δ denotes the average number of QR decompositions and

Euclidean distance calculations in one user selection loop.

In MMED-M, NtKava additional complex multiplications are required for channel

ordering. Similar to MMED, not all of QR decompositions and Euclidean distance cal-

culations have to be calculated. In addition, the calculations of Euclidean distances in

MMED-M are not required for all stage of selection. When the stored value of Euclidean

distance at the stage of nt is less than the value of d̄2
min from the previous user subset,

the Euclidean calculations from the stage of nt + 1 to the stage of Nt can be skipped. In

Table 3.4, µnt denotes the average number of Euclidean distance calculation processes at

the stage of nt. For the case of Nt = 4, the value of δ and µnt can be seen in Table 3.5.
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Table 3.4. Number of complex multiplications in CM, MMED, and MMED-M.

Technique Number of complex multiplications

CM

(
Kava

Kcol

)
Nt∑
nt=1

(2Nt(Nt − nt + 1))

MMED δ

(
Kava

Kcol

)
Nt∑
nt=1

(2Nt(Nt − nt + 1))

+δ

(
Kava

Kcol

)
Nt∑
nt=1

(nt + 1)(|E1|nt − 1)/4

MMED-M NtKava + δ

(
Kava

Kcol

)
Nt∑
nt=1

(2Nt(Nt − nt + 1))

+δ

(
Kava

Kcol

)(
2µ1|E1|+

Nt∑
nt=2

µnt(nt + 1)GS|E1|
)

Table 3.5. Values of δ and µnt in MMED and MMED-M for Nt = 4.

Technique Item Kava

6 7 8 9 10

MMED δ 0.92 0.87 0.82 0.77 0.72

MMED-M δ 0.52 0.38 0.28 0.21 0.16

µ1 0.36 0.43 0.48 0.51 0.53

µ2 0.13 0.16 0.17 0.18 0.19

µ3 0.03 0.04 0.04 0.04 0.05

µ4 0.47 0.37 0.31 0.27 0.24

3.4 Simulation Results

3.4.1 BER Performance

Figure 3.4 shows the BER performance of an MU-MIMO system with CIC for the case

of four transmit antennas at the BS serve four active users. A user selection is conducted

to select four collaborating users out of six available users. At the detection process,
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QRM-MLD is used with the number of candidates, KQRM, is set to 2 or 4. The BER

performances of QRM-MLD when using MMED, and MMED-M user selection techniques

are compared. For the case of KQRM = 2, the value of GS of MMED-M is set to 2, while

for the case of KQRM = 4, the value of GS of MMED-M is set to 3. In addition, the

BER performance when the capacity maximization (CM) is used as the user selection

technique is also plotted.

From the figures, it can be observed that in the case of the number of candidates

in QRM-MLD, KQRM, is sufficiently large (i.e: 4), both MMED and MMED-M is able

to achieve a performance with the diversity close to 6 at the BER of 10−5. At this

BER value, this performance surpasses the performance of CM by about 0.9dB. The

performance degradation which occurs in CM comes from the fact the BER performance

of a MIMO system at the high SNR value is determined by the minimum Euclidean

distance from all possible vector of the transmitted symbols. On the other hand, CM

considers only the channel sub-matrix in its selection process.

For the case of the value of KQRM is relatively small (i.e: 2), an error floor occurs

when conventional MMED is used as the selection technique. This error floor occurs due

to the fact that MMED considers only the accumulative Euclidean distance from all of

the possible error vectors at the stage of Nt. On the other hand, QRM-MLD conducts its

detection process in a recursive manner and have a potential to suffer from error propa-

gation. The conventional MMED, therefore, is suitable for QRM-MLD implementations

only when the number of candidates in QRM-MLD is sufficiently large. Using CM user

selection technique, this error floor does not occur as CM user selection technique con-

siders all of the diagonal values of matrix RU . In MMED-M, the accumulative Euclidean

distance at each stage of selection is considered in the selection process and minimize the

error events in the early stage of QRM-MLD detection. Using the proposed technique,

the performance degradation compared with the case of KQRM = 4 is relatively small.
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Fig. 3.4. BER performance of MMED-M user selection for a transmission of four QPSK
signals, Kava = 6 (Copyright( c©) 2016 IEICE, [71] Fig. 5).

Fig. 3.5. BER performance of MMED-M user selection for a transmission of four QPSK
signals, Kava = 8 (Copyright( c©) 2016 IEICE, [71] Fig. 6).

This performance degradation is even smaller when a larger number of users is available.

As can be seen in Fig. 3.5, the performance degradation is negligible when eight users

are available.
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3.4.2 Effect of the number of surviving nodes

In Fig. 3.6, the effect of the number of surviving nodes, GS, is shown. For this simulation,

a transmission of four QPSK signals is employed with Kava = 8 and Kact = 4. MMED-M

is employed to select four out of eight users to conduct CIC. From the figure, it can be

seen that for the case of KQRM = 4, the BER performance of MMED-M with GS = 3

is slightly better than the BER performance of MMED-M with GS = 2. For the case of

KQRM = 2, however, an error floor occurs when GS = 3, while a better performance is

obtained when GS = 2. As mentioned in the Sect. 3.3.2, the error floors when GS = 3

occurs as several symbol errors which have the zero probability to become a symbol

error between two candidates at the QRM-MLD are still considered in the user selection

process.

Observing Fig. 3.6, it can be concluded that there is an optimum value for GS for

each KQRM. In addition, it can also be seen from the figure that for the case of GS = 2

is used on MMED-M, the performance of QRM-MLD with KQRM = 2 and KQRM = 4 is

relatively equal. Therefore, for the case of four QPSK signals, the value of GS = 2 can

be selected for a stable performance.

3.4.3 Computational Complexity

Figure 3.7 shows the comparison of the computational complexities of CM, MMED, and

MMED-M user selection techniques. The comparison is conducted by comparing the

number of complex multiplications on those techniques with the increasing number of

Kava. In this comparison, QPSK modulation is employed for the transmissions. For

MMED-M, the number of surviving nodes, GS, is set to 2.

As can be seen in the figure, the number of complex multiplications in MMED is

larger than the other two techniques for all values of Nt and Kava. In addition, it can

also be observed from the figure that for a relatively small number of available users, CM
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Fig. 3.6. Effect of the number of surviving nodes in MMED-M (Copyright( c©) 2016
IEICE, [71] Fig. 8).

Fig. 3.7. Number of complex multiplications in CM, MMED, and MMED-M for QPSK
transmissions (Copyright( c©) 2016 IEICE, [71] Fig. 10).

requires a smaller number of complex multiplications compared to that of MMED-M. In

a relatively large value of Kava, however, the number of complex multiplications in the

CM technique is larger than that of MMED-M technique.

This circumstance occurs as in the large number of Kava, the value of

(
Kava

Kcol

)
grows

rapidly and directly increases the number of complex multiplications in the CM tech-

nique. On the other hand, as the early breaking process can be employed in MMED-M,
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not all of the QR decomposition processes have to be conducted. Therefore, the number

of complex multiplications can be significantly reduced, especially for a large number of

Kava. As an example, for the case of Nt = 4 and Kava = 8, MMED-M is able to reduce

the number of complex multiplications by about 37% and 99% compared to CM and

MMED, respectively. In addition, the number of complex multiplications in MMED-M

increases relatively linear and makes implementation feasible.

3.5 Field Experiments

3.5.1 Experiment Setup

In order to verify the effectiveness of MU-MIMO with CIC, field experiments with the

parameters shown in Table 3.6 are conducted. It should be noted, however, due to

the time limitation, no user selection is applied in the field experiments. Figure 3.8(a)

shows signal generators that generates four QPSK signals at a symbol rate of 312.5 k

symbols/s. These QPSK signals are then sent to four antennas in the BS. The height

of the BS is 25.5m. In the BS, the antennas are installed in perpendicular positions, as

shown in Fig. 3.8(b). From the BS, packet signals are broadcasted to the users. Each

of these packets contains 15 BPSK symbols of synchronization word, 16 BPSK symbols

of training sequences, 15 QPSK symbols for control, and 80 QPSK symbols of data,

including the cyclic redundancy check (CRC). In this field experiment, the performance

of MU-MIMO with CIC is observed for both MLD and MMSE algorithms.

The BS in this experiment is located at a building in Kyoto University. The MSs

are installed inside a car that moves along the route shown in Fig. 3.9. The route can

be divided into two parts. In part A, the speed of the car is about 15 km/hour, and

in part B, the speed of the car is about 45 km/hour. Inside the car, seven universal

software radio peripherals (USRPs) are used to represent the MSs. Each USRP in Fig.

3.10(a) uses 3 dBi antenna gains. Inside the USRP, an analog to digital converter (ADC)
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Table 3.6. Experiment parameters of MU-MIMO with CIC

System Parameters Values

Number of antennas of BS 4

Number of antennas of MS 1

Number of active MSs 4

Number of collaborating MSs 4, 7

Frame length 50 ms

Carrier frequency 5.11 GHz

Symbol rate 312.5 k symbols/s

Modulation QPSK

BS Parameters Values

Transmit filter Square Root Nyquist
(roll-off factor=0.4)

Antenna hight 25.5 m

Antenna gain 5 dBi

MS Parameters Values

Antenna gain 3 dBi
ADC resolution 14 bits

Packet Configuration Values

Synchronization word 15 BPSK symbols

Training sequence 16 BPSK symbols

Control 15 QPSK symbols

Data + CRC 80 QPSK symbols

with 14 bit resolution is used. The position of each MS can be seen in Fig. 3.10(b). To

conduct a signal exchange, WiFi connections with IEEE 802.11n in the 5 GHz band are

used as inter-MS communications. Each MS broadcasts its quantized-received-signal to

the other MSs in a dedicated time slot by using User Datagram Protocol (UDP). For

each real and imaginary part, 8 bits quantization is used.
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(a) Signal generators. (b) Antennas.

Fig. 3.8. Transmitter setup on the field experiment of MU-MIMO with CIC
(Copyright( c©) 2017 IEICE, [72] Fig. 2).

Fig. 3.9. Experiment route of MU-MIMO with CIC (Copyright( c©) 2017 IEICE, [72]
Fig. 3).

3.5.2 Experiment Results

The results obtained through the field experiment can be seen in Figs. 3.11-3.14. In

Figs 3.11-3.13, packet index from 1 to 1700 corresponds to the part A of the route, while
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(a) USRP + PC. (b) MS positions.

Fig. 3.10. MS setup (Copyright( c©) 2017 IEICE, [72] Fig. 4).

packet index from 1701 to 2800 corresponds to the part B of the route. Figure 3.11

shows the number of signals successfully shared to MS1 for each packet of transmitted

data. The average numbers of signals successfully shared to MS2, MS3, and MS4 are also

shown. From this figure, it can be observed that the interuser links for signal information

exchange are generally successful and very reliable.

In Fig. 3.12, the received power of the transmitted signals of the BS at MS1 is shown.

The average power at MS1 is −95 dBm. The median of the received power at all active

MSs is also shown. From the figure, it can be seen that all of the MSs have similar

received powers. This similar received power, together with an equal number of received

signals from the other MSs, results in a similar BER performance of all MSs for all

packets, as shown in Fig. 3.13. In this figure, the black-dashed line is the BER for the

case of 4× 4 MLD, while the red line is the BER for the case of 4× 7 MMSE.
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(a) Four collaborating MSs.

(b) Seven collaborating MSs.

Fig. 3.11. Number of shared signals at MS1 (Copyright( c©) 2017 IEICE, [72] Fig. 5).

Fig. 3.12. Received power measured at MS1 (Copyright( c©) 2017 IEICE, [72] Fig. 6).
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Fig. 3.13. BER in each packet transmission (Copyright( c©) 2017 IEICE, [72] Fig. 7).

Next, the CDF of the BER of MU-MIMO with CIC is shown in Fig. 3.14 for the case

of Kcol = 4 using MLD and for the case of Kcol = 7 using both MLD and MMSE. In

the CDF graph, the instantaneous BER is calculated for every 10 packets of data. As

shown in the figure, the BER performance at part A is better than the BER performance

at part B. This circumstance occurs as the received power in part A is larger than that

of part B due to the difference on the geographical topology. In addition, the average

speed in part B is higher, causing the channel response fluctuates faster. Furthermore,

it can be seen from the figure that at the cost of higher complexity, MLD obtains better

performance compared to that of MMSE when an equal value of Kcol is used. However,
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(a) Part A of the route (15 km/hour).

(b) Part B of the route (45 km/hour).

Fig. 3.14. CDF of BER of MU-MIMO with CIC (Copyright( c©) 2017 IEICE, [72] Fig. 8).

it can also be seen that by having more array gain, 4 × 7 MMSE performs better than

4 × 4 MLD although these scenarios have a similar theoretical diversity. This better

performance is obtained for both cases of average speed.

3.6 Summary

In this chapter, MU-MIMO transmission employing CIC is described. Afterward, it is

shown that user selection will hold a key role in the implementation of MU-MIMO with

CIC due the fact that MU-MIMO with CIC has to be able to exploit a large number of
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available users while maintaining the number of signal exchanges relatively low. On the

other hand, user selection technique for a contemporary signal detection technique, i.e.,

QRM-MLD has not been available yet. In this chapter, therefore, a novel user selection

technique is proposed with the goal of optimizing the BER performance for the case of

QRM-MLD is used as the detection algorithm.

Differ with the conventional user selection technique, the proposed technique stores

the minimum Euclidean distance in each stage of selection and considers it for the user se-

lection process. This feature is important, mainly to accommodate the recursive manner

of QRM-MLD. In addition, an M-algorithm is also employed in the proposed technique.

Through the M-algorithm implementation, the computational complexity of MMED-M

only grows linearly with the number of transmit antennas and makes implementation

feasible. In addition, the M-algorithm in MMED-M can be used to discard the symbol

error which has a zero probability to become a symbol error between two candidates

of QRM-MLD. By maximizing the accumulative Euclidean distance in each stage of se-

lection and selecting the appropriate number of surviving nodes, MMED-M is able to

provide excellent BER performance even when the number of candidates in QRM-MLD

is relatively small.

In addition to user selection, this chapter also presents the field experiment which

is conducted to verify the effectiveness of MU-MIMO with CIC. Through the results of

the field experiments, it can be concluded that in the actual environment, MU-MIMO

with CIC is applicable, despite the moving nature of the group mobility and the unideal

condition occurred in the interuser links. As accurate CSI at the transmitter is not re-

quired, CIC could become a potential approach for MU-MIMO communications in group

mobility scenarios. In addition, through the field experiment, it is also worth to note that

a higher number of collaborating users with MMSE has better performance compared

to that of a smaller number of collaborating users with MLD even when the theoretical
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diversity order is equal. On the other words, the large number of collaborating users has

better potential to combat unideal condition which occurs in the actual environment,

e.g. the channel correlation among users.
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Chapter 4

Interference Driven Power
Allocation for MU-MIMO with
Precoding Under Time-Varying
Channel

4.1 Introduction

The most common approach for interference cancellation in MU-MIMO systems is by

using precoding technique [9–11]. When perfect CSI is available, this technique can be

used to greatly reduce the interuser interference or to significantly increase the power of

the received symbols. In its implementation, hundreds of transmit antenna elements can

be used at the BS to serve tenths of users. Such scenario is called massive MIMO [73–75],

which currently becomes one of the hottest topics in wireless communications.

4.1.1 Review of Previous Works

4.1.1.1 Power Allocation

To exploit its full potential, power allocation technique can be applied to MU-MIMO. The

design of the power allocator itself will depend heavily on its main purpose. In [76], power

allocation is used to improve the security of the transmission from the eavesdropper. In

[77–86], power allocation was implemented to improve the sum-rate capacity. Specifically,
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research in [77] proposed power allocation techniques in a single cell downlink MU-

MIMO for several linear precoding techniques. Research in [78], on the other hand,

proposed a power allocation technique designed to maximize the capacity of multicell

massive MIMO. A more specific scenario, i.e. where the beam division multiple access is

employed in multicell massive MIMO, is considered in [79]. Power allocation for capacity

maximization is also presented in [80], where power allocation is used jointly with the user

scheduling for the case of distributed massive MIMO with backhaul capacity constraint.

Meanwhile, a joint optimization of power allocation and antenna selection is suggested

in [81–83]. For the case of massive MIMO with joint spatial division and multiplexing, a

designated power allocation technique can be found in [84]. The extended version of [84],

where the user scheduling is also jointly considered with the power allocation, is then

proposed in [85]. Taking the quality of service as consideration, research in [86] employs

a game theory approach to design a power allocation technique to maximize the sum-rate

capacity.

Besides to the capacity, power allocation can also be used to improve the energy

efficiency (EE) of MU-MIMO transmission. In [87], the number of users and transmit

power were jointly optimized. The idea is then extended in [88], where the number of

antennas, users, and transmit power were jointly optimized for the case of single cell

massive MIMO system with zero forcing (ZF) precoding. For the case of maximum

ratio transmission (MRT) precoding, a power allocation technique to increase the EE

can be found in [89]. In [90], a power control algorithm for multicell massive MIMO

where channel estimation error, pilot contamination, and channel correlation are taken

into account was presented. Research in [91], on the other hand, presented a power

allocation algorithm which could maximize the EE when the power amplifier efficiency

is taken into account.
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Considering the channel characteristic, research in [92] designed a power allocation

technique to optimize the EE of massive MIMO in the Ricean fading environment. Mean-

while, the power allocation technique is designed in [93] by taking the quality of service

as the main consideration. In [94], power allocation is jointly used with the resource,

antenna, and sub-carrier allocation to optimize the EE of an orthogonal frequency di-

vision multiple access massive MIMO systems. Taking the sum user transmit power

and user data rate constraint into consideration, research in [95] has designed a power

allocation technique which could optimize the EE of the systems. To improve the EE

even further, research in [96] uses power allocation jointly with the user scheduling, in

particular, for the case of multi-cell massive MIMO. Meanwhile, research in [97] proposed

a power allocation which jointly considers both spectral efficiency and EE and discussed

its trade-off. It should be noted, however, all of these schemes consider a convenient

block fading channel on the transmission. In this thesis, therefore, power allocation is

investigated for the case of time-varying MU-MIMO.

4.1.2 Effect of Channel Aging

The full benefit of MU-MIMO relies heavily on the congruity between the CSI used in the

precoder and the actual channel. Unfortunately, this condition is hard to be fulfilled, in

particular, due to the time varying nature of the channel caused by the relative movement

between the users and BS. In the near future, this challenge will be even harder as

the forthcoming wireless communication system will most likely implement the higher-

frequency bands [26]. In addition, the system should also be able to serve users with

high mobility. In this condition, the channel will fluctuate faster and the effect of channel

aging will be more severe [98].

Channel aging refers to the mismatch between the CSI used in the precoder calcula-

tion and the actual channel when the data are transmitted. This discrepancy causes the
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intended signal to be phase shifted and interuser interference arises. The effect of chan-

nel aging on the achievable rates of large MIMO systems has been analyzed in [99,100].

Closed form bounds for the achievable sum rate and deterministic equivalents of the

signal-to-interference-plus-noise ratio for maximal ratio combining and regularized linear

receivers in the presence of channel aging are derived in [101,102]. A tighter lower bound

on the achievable sum rate has been presented in [103] for an arbitrary number of users

and antennas at the BS. In [104, 105], the combined effects of phase noise and channel

aging for massive MIMO are observed by means of an autoregressive model. Research

in [106], on the other hand, investigates the effect of increasing the number of transmit

antenna on the outage capacity performance on massive MIMO in time varying channel.

A difference aspect has been investigated in [107], where the effect of channel aging to

the energy efficiency of massive MIMO has been derived.

To combat the channel aging effect, several techniques have been proposed in pre-

vious literature. In [108], the channel aging effect is reduced by using a narrow beam

receiver at the MS. Meanwhile, [109] proposed a combination of beamforming, followed

by Doppler compensation to minimize the channel aging in a single-input multiple-ouput

system. This technique is then generalized in [110] for the case of MIMO system. Simi-

lar techniques are also used in [111] to reduce the effect of channel aging, mainly in an

OFDM system. All of these techniques, however, compensate the Doppler spread effect

at the MS side. Implementing these techniques to the MU-MIMO scenario would be

difficult as the MS will receive signals from tenths to hundreds transmit antennas.

4.1.3 Our Study

One straight forward approach to mitigate the channel aging effects on MU-MIMO is by

frequently update the precoder matrix. To minimize the required uplink transmission,
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the CSI for updating the precoder can be obtained by using channel prediction tech-

niques such in [99, 101–103, 112]. Those works, however, only discuss the effect of the

channel prediction to the sum-rate capacity of time-varying MU-MIMO. A method of

how to intelligently exploit those channel prediction to improve the system performance,

therefore, still become an open task. This issue is important, as exploiting the channel

prediction by directly use it for frequently updating the precoder matrix will drastically

increase the computational complexity.

To reduce the effect of channel fluctuation, a novel power allocation technique for

time-varying MU- MIMO is proposed in this research. First, by using pilots from the

users, the BS extracts Doppler shift information experienced by the user to create a

predicted channel matrix. This matrix is then used to calculate the predicted interference

level for each user. Based on this information, the BS then allocates the power for

each user in a recursive manner. As the precoder matrix is not necessarily updated

frequently, this technique could minimize the interuser interference with a low addition

in the computational complexity.

4.2 Time-Varying MU-MIMO

In a moving environment, all rays arrived at the MSs are experiencing Doppler shift. As

each ray arrives at a different angle, the values of the Doppler shift will vary. The varia-

tion on the Doppler shift values, i.e. Doppler spread, causes each element in the channel

matrix H to fluctuate. The channel matrix, H, therefore, becomes time-dependent and

is denoted as H(t). Denotes ak,nt [n̄] and f̄k,nt [n̄] as the amplitude and the Doppler shift

of the n̄ ray at t = 0 occurs between ntth transmit antenna and kth user. The value of

(k, nt)th element of H(t) can be written as

hk,nt(t) =

N̄k,nt∑
n̄=1

ak,nt [n̄]ej2πtf̄k,nt [n̄]. (4.1)
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While the actual channel, H(t), fluctuates, the precoder matrix, W , is constant

inside one precoder update period. This circumstance causes a mismatch between H(t)

and W . The mismatch causes the original signal for each MS is phase-shifted, and the

interference from the other MSs arises. The channel-equivalent matrix, as the result of

the multiplication between H(t) and W , therefore, will be no longer an identity matrix,

IK×K . This problem can be diminished by frequently update the precoder matrix W .

However, although the CSI required for recalculating W can be obtained by channel

prediction such in [99, 101–103, 112], frequently updating W significantly increases the

computational complexity.

4.3 Interference Minimization through Power Allocation

In this thesis, a novel power allocation technique to minimize the channel aging effect

on the MU-MIMO system is proposed. First, the BS will extract the Doppler shift

information from the pilot symbols sent by the MS to create a predicted channel. Next,

based on the predicted channel, the BS calculates the predicted interference level at all

MSs to allocate the power for each MS. The predicted channel is also used to determine

the phase-shift compensation for each MS. Using this technique, the BS did not have

to update the precoder matrix frequently, and thus, enable the MU-MIMO transmission

without significantly increasing the computational complexity.

4.3.1 Channel prediction

In the proposed technique, the channel prediction is conducted based on the Doppler

shift information of the signals. Using this approach, perfect channel prediction can be

obtained when the BS has information of the amplitude and the Doppler shift of each

ray in Eq. (4.1). This ideal condition, however, is hard to be fulfilled. In this research,

therefore, the channel prediction is conducted by firstly represent the predicted channel
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as the addition of Ñ virtual rays. Each of these rays has a fixed value of Doppler shift

which lays linearly between −fD and +fD, and can be obtained by

f̃k,nt [ñ] = −fD + 2fD
ñ− 1

Ñ − 1
, (4.2)

where ñ = 1, 2, . . . , Ñ . Denotes ãk,nt [ñ] as the amplitude of the signal with the estimated

Doppler shift of f̃k,nt [ñ], the predicted signal can be written as

h̃k,nt(t) =
Ñ∑
ñ=1

ãk,nt [ñ]ej2πtf̃k,nt [ñ]. (4.3)

The larger value of Ñ in Eq. (4.2) produces a smaller gap between f̃k,nt [ñ] and the actual

Doppler shift value. When an appropriate value of Ñ is used, the difference between

hk,nt and h̃k,nt will be small.

In Eq. (4.3), the values of ãk,nt [ñ] can be obtained by transmitting X training symbols

at the uplink transmission. Here, X ≥ Ñ . Denotes, ÿk,nt = [ÿk,nt [1], ÿk,nt [2], . . . , ÿk,nt [X]]T

as the vector of the received signal of X training symbols from kth MS to ntth antenna

arrays and ãk,nt = [ãk,nt [1], ãk,nt [2], . . . , ãk,nt [Ñ ]]T. The amplitude of each estimated

Doppler shift can be obtained by

ãk,nt = F̃−1ÿk,nt , (4.4)

where

F =


ej2πt1f̃k,nt [1] ej2πt1f̃k,nt [2] . . . ej2πt1f̃k,nt [Ñ ]

ej2πt2f̃k,nt [1] ej2πt2f̃k,nt [2] . . . ej2πt2f̃k,nt [Ñ ]

...
...

. . .
...

ej2πtX f̃k,nt [1] ej2πtX f̃k,nt [2] . . . ej2πtX f̃k,nt [Ñ ]

 , (4.5)

where tx = t1, t2, . . . , tX is the time index of the training symbols. The value of ãk,nt

obtained from Eq. (4.4) is then inserted to Eq. (4.3) to create the predicted channel.
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4.3.2 Power Allocation

In this thesis, a novel power allocation technique to reduce the interuser interference

at time-varying MU-MIMO is proposed. This technique exploits the fact that even a

mismatch between H(t) and W occurs, the interference level varies between the MSs.

In particular, low interference levels could occur at several MSs either because the MSs

have low mobility, the signals arrived at the MSs in a near orthogonal direction relative

to the MSs movement, and or the interference from the other MSs added destructively

at the designated MS.

To determine the power allocation for each MS, the interference level of all MSs at

the end of each precoder update period, TP, has to be calculated. Denotes gk,j(t) as the

(k, j)th element of G(t). The interference level for kth MS at time TP can be obtained

by

Rk(TP) =
∑
j 6=k
||gk,j(TP)||2 pj (4.6)

where pj is the allocated power for jth MS. In the matrix form, Eq. (4.6) can be written

as 
R1(TP)

R2(TP)

...

RK(TP)

=


0 ||g1,2(TP)||2 . . . ||g1,K(TP)||2

||g2,1(TP)||2 0 . . . ||g2,K(TP)||2
...

... 0
...

||gK,1(TP)||2 ||gK,2(TP)||2 . . . 0



p1

p2

...

pK


= V p.

(4.7)

The proposed power allocation algorithm can be seen in Algorithm 1. In the algo-

rithm, p̄ is the power for each MS when an equal power allocation is used for all MSs, p̃k

is the minimum power for kth MS to achieve its target BER, and p̂ is the excess power

of the MS in obtaining its target BER, which could be transferred to the next MS.

First, the BS will calculate the interference level for all MSs, and arrange the MS

in an ascending order based on its interference level. The BS then allocates the power
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Algorithm 2 Proposed power allocation technique

1: p̂ = 0
2: for i = 1 : K do

3: k̃ = argmin
k

K∑
j=1

vk,j

4: if p̂+ p̄ > p̃k̃ + (K − i)(p̂+ p̄− p̃k̃) max
j
vk̃,j then

5: pk̃ = p̃k̃ + (K − i)(p̂+ p̄− p̃k̃) max
j
vk̃,j

6: p̂← p̂+ p̄− p̃k̃
7: else
8: pk̃ = p̂+ pk̃
9: vk̃,∗ = []

10: v∗,k̃ ←
pk̃
p̄ v∗,k̃

firstly to the MS having the smallest interference level. In the allocating process, if the

available power is larger than the power to achieve the target BER, the power should be

reduced. The excess power is then kept and transferred to the next MS in the recursion

process. Before goes to the next recursion, the k̃th column of matrix V should be updated

according to the value of pk̃. In addition, the k̃th row of V should be removed so that

it will no longer be calculated in the next recursion. Similar processes are then repeated

until the power for the last MS, pK , has been allocated.

In addition to the power allocation purpose, the predicted channel is also used to

calculate the phase shift of the signals. The value of the phase shift at time TP can be

represented by the diagonal values of G(TP). Using this value, the value of the phase shift

of kth MS at time t can be obtained by simple interpolation. Denotes θk = ∠gk,k(TP)

as the phase shift occurs on kth MS at the end of each precoder update period. Using

the proposed technique, the modulated symbol for kth MS should be updated before the

precoding process as

s̃k(t) =
pkt

TP
sk(t)e

− jtθk
TP . (4.8)
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Table 4.1. Parameters of Time-Varying MU-MIMO Simulation

Parameters Values

Number of antenna arrays 36

Beam width of −3dB AF 10◦

Side lobe gain −23 dB

Precoding ZF

Carrier frequency 6 GHz

Precoder updating period every 200µs

Number of MSs 6

MS velocity 0, 0, 40, 40, 80 and 80 m/s

Symbol period 1µs

Modulation QPSK

In Algorithm 1, it is probable that the power allocating process stops at a certain MS.

This circumstance could take place when severe channel aging occurs in a large number

of MSs, causing the total interference power for all MSs becomes significantly large. In

this condition, the following MS will endure a significant performance degradation. This

problem can be tackled by updating the precoder more than once in every downlink

period. The number of precoder updating processes, however, should be minimized by

intelligently utilizing the predicted channel. In addition, this problem can also be solved

by using a proper user selection or user scheduling techniques. In this thesis, however, a

method to tackle this issue is left as a potential future research.

4.4 Simulation Parameters and Results

4.4.1 Simulation Parameters

Table 4.1 shows the parameters used in the computer simulation. In this simulation, an

MU-MIMO scenario where the BS is equipped with a large number of antenna arrays,

i.e. massive MIMO, with hybrid beamforming technique [113] is considered. The BS
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Fig. 4.1. Height and locations of the buildings, BS, and MSs in a virtual building
database.

is assumed to have 36 antenna arrays. Each antenna array consists of several antenna

elements which are arranged in a cosine distribution function to forms a 10◦ beam width

of −3 dB array factor (AF) and −23 dB of side lobe [114]. The precoder matrix is updated

in every 200µs. Six MSs with the velocity of 0, 0, 40, 40, 80, and 80 m/s are assumed in

this simulation. To obtain a near realistic channel characteristic, a ray launching method

is used to generate the channel [115]. The locations of the MSs are randomly selected in

the virtual building database which can be seen in Fig. 4.1. The symbols are modulated

using QPSK modulator, with a symbol period of 1µs.

4.4.2 Channel-Equivalent Characteristic

Fig. 4.2 shows the comparison of the fluctuation on the channel-equivalent matrix with

and without the proposed technique when the MSs are located at the coordinate of

(51, 86), (134, 88), (387, 88), (24, 83), (447, 88), and (354, 54) on the virtual building

database. A target signal to noise ratio (SNR) of 16 dB is assumed. In the figure, the
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Fig. 4.2. Normalized power of channel-equivalent matrix.

normalized power is defined as the ratio between the intended signal and the total power

of intended signal plus interference and is plotted for MS1 and MS5. As can be seen in

the figure, the normalized power of MS5 without Doppler compensation at t = 200µs

is very low. Using the proposed technique, on the other hand, the normalized power of

MS5 can be significantly improved. Although the normalized power for MS1 is reduced,

the proposed technique could maintain the normalized power above the acceptable power

limit.

4.4.3 BER Performance

In Fig. 4.3 comparison on the BER performance of MS1, MS3, and MS5 with and without

the proposed technique are plotted. In the simulation, a target BER of 10−3 is assumed,

which in general, is acceptable for the case of no channel code is applied. For the

case of MS1, an optimum performance can be obtained for both with and without the

proposed power allocation technique. This circumstance occurs as MS1 has zero velocity,

and thus, there is no mismatch between the precoder matrix and the actual channel.

Without the proposed technique, however, an error floor above a BER of 10−2 occurs at

MS3 and MS5 due to the fluctuation on their channel. Using the proposed technique, the

performance degradation at MS3 and MS5 can be significantly reduced while maintaining
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Fig. 4.3. BER performance of the proposed technique.

the performance of MS1. This improvement can be obtained as the proposed power

allocation technique could minimize the interuser interference at the MS. In addition,

the phase shift of the signal is also reduced by the phase compensator. Using the proposed

technique, error floors below 10−3 can be obtained after a target SNR of 16 dB for both

MS3 and MS5.

4.5 Summary

In this chapter, a novel technique to minimize the performance degradation on time

varying MU-MIMO is proposed. The proposed technique improves the BER performance

by exploiting power allocation to minimize the interuser interference. First, the BS

extracts the Doppler shift information from the pilots sent by the MSs to create the

predicted channel. Using the predicted channel, the interuser interference at the MS

can be predicted. Recursive power allocation is then conducted so that the interuser
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interference at the MSs can be minimized. Computer simulation shows that by using

the proposed technique, the performance of MSs having large Doppler spread can be

significantly improved while maintaining the performance of MSs experiencing small

Doppler spread.
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Concluding Remarks

This thesis has focused on offering solution for performance enhancement of MIMO

transmission technique, in particular, for the case of the number of receive antennas is

limited. In such case, three approaches can be taken, which are overloaded MIMO, MU-

MIMO with CIC, and MU-MIMO with precoding. Throughout this thesis, the challenges

which arising for each approach has been derived, and solutions have been proposed.

For the case of overloaded MIMO approach, the challenge lies on performance degra-

dation in the detection process. In a system with channel coding, this degradation

leads to a significant reduction in the LLR quality as the decoder input. In Chapter 2,

therefore, a joint decoding technique which could significantly improve the decoding ca-

pabilities of the system in the overloaded MIMO scenario is proposed. In this technique,

rather than for each bit, the LLR is calculated for each combination bits. The decoding

process is then conducted jointly between streams instead of separately. Using the pro-

posed technique, the BER performance can be improved, throughput can be increased,

and the mutual information on the EXIT function could converge faster.

For the case of MU-MIMO with CIC, the challenges lie in the number of signal ex-

changes required to obtain an excellent performance. To counter this issue, the user

selection can be applied to select only several users from the available users to conduct

CIC. It should be noted, however, user selection should be tailored to the detection
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algorithm design. In this regard, user selection technique for the contemporary sig-

nal detection such as QRM-MLD is not yet available. In Chapter 3, therefore, a user

selection technique suitable for QRM-MLD detection algorithm is proposed. In the pro-

posed technique, the user selection is conducted in a recursive manner to adapt with the

recursive property of QRM-MLD. Using computer simulation, it has been shown that

the proposed technique gives significant performance improvement especially when the

number of candidates in QRM-MLD is relatively small.

In addition to the signal exchange issue, MU-MIMO with CIC also faces challenges

for the real environment implementations such as channel shadowing, channel correlation

between users, and the difference on user sampling time and frequency offset. This

thesis, therefore, also shows field experiment results of MU-MIMO with CIC. Through

the field experiment, it has been shown that regardless the above issues, MU-MIMO with

CIC still applicable and has a solid potency to be implemented in the future wireless

communication systems.

In Chapter 4, the common form of MU-MIMO, i.e. MU-MIMO with precoding have

been described. As described in this thesis, the challenge of using this approach is its

sensitivity to the precoder accuracy. The mismatch between the precoder and the actual

channel causes the interuser interference arises in the users. This circumstance especially

occurs when the user experiencing channel aging phenomena caused by the Doppler

spread effect. In this thesis, channel prediction is exploited to minimize the interuser

interference. Specifically, the information contained in the channel prediction is used

to conduct power allocation. In the proposed power allocation technique, the power is

allocated in such a way that the interference level in the users can be minimized. Using

the proposed technique, the BER performance of users having large Doppler spread can

be significantly improved while maintaining the performance of the users having small

Doppler spread.
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Certainly, in order to extend the current investigation towards much more compli-

cated real wireless communication systems, further extensive research is required. As a

future research direction, below extension might be appealing.

• For the case of joint turbo decoding, it is worth to note that even the joint turbo

decoding can be conducted in a parallel manner and saves the processing time, the

computational complexity remains relatively high. A lower complexity joint turbo

decoding can be an attractive research. This can be done for example, by reducing

the number of super-trellis state in the LLR calculation. It can also be done by

using a hybrid technique between the conventional and joint turbo decoding. For

example, joint turbo decoding can be conducted first in only for several iterations.

Once the critical point at EXIT function is passed, the decoding process can be

continued by the conventional decoding technique.

• For the case of MU-MIMO with CIC, the field experiment is still conducted for

the basic signal detection techniques, i.e. MLD and MMSE. It can be interesting

to observe the performance of the system when the contemporary signal detection

technique such as QRM-MLD is used. In this regard, the user selection technique

can also be employed to observe its performance in the real environment.

• For the case of MU-MIMO with precoding, it will be interesting to investigate

the usefulness of the channel prediction even further. Except for power alloca-

tion which is proposed in this thesis, channel prediction might also be useful for

user scheduling. Taking channel prediction into consideration might improve the

performance of user scheduling, in particular when the served-users have a broad

Doppler spread variation between users.
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By extending the research to those directions, a better showcase of the potency of

the proposed technique towards more complex real wireless communication systems can

be obtained.
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