How Efficient is an Integrative Approach of GIS and Resistivity Data in Groundwater Exploration? A Case Study of Esna, Luxor, Egypt

M. Attwa1*, M. El-Bastawesy2, A.M. Abd El-fattah3

¹Environmental Geophysics Lab. (ZEGL), Geology Department, Faculty of Science, Zagazig University, Egypt

²Geology department, The National Authority for Remote Sensing and Space Sciences (NARSS)
³Geology Department, Faculty of Science, Aswan University, Egypt
*Corresponding author

Email: attwa_m2@yahoo.com

Keywords: GIS, DC Resistivity Sounding, Groundwater Exploration, Esna,

Presently, Geographical Information System (GIS) technique and direct current (DC) resistivity soundings are widely used for characterizing the groundwater aquifers. In this study, an integrated suite of quantitative morphometric analysis and DC resistivity data is used to evaluate the hydrogeological conditions at western part of Esna area, Luxor, Egypt. The geo-hydrological characteristics are assessed and an attempt is made to identify the groundwater potential zones through geo-morphometric specs. Geomorphological analysis of the drainage network of the area points out to the existence of five hydrographic basins. According to the morphometric analysis of drainage basins results, DC resistivity measurements in the form of 1D survey are carried out to demonstrate the subsurface layer distributions and delineate the groundwater aquifers in the main basin of the area. The DC inversion results indicate that the main Pleistocene aquifer overlies the saline Pliocene-Pleistocene aquifer. Further, an integrated relationship between salinity and electrical resistivity is established. The obtained results can serve as a basis for monitoring, planning and management of water resources in this area, and as a whole, they constitute an encouraging example using an integrated approach of morphometric and resistivity data in groundwater exploration.

How efficient is an integrative approach of GIS and resistivity data in groundwater exploration? A case study of Esna, Luxor, Egypt

<u>M. Attwa¹</u>, M. El-Bastawesy² and A.M. Abd El-Fattah³

¹Geology Department, Faculty of Science, Zagazig University, Egypt ²Geology department, The National Authority for Remote Sensing and Space Sciences (NARSS) ³Geology Department, Faculty of Science, Aswan University, Egypt *Email: attwa_m2@yahoa.com https://peagla.acdmim.edu/MohomedAttwa*

Mohamed Attwa

Outline

• Aims

- Location /Local geology
- Geographic Information System (GIS) /Morphometric analysis
- DC Resistivity measurments/Inversion
- Geoeelctrical Results and discussion
- Conclusions and outlook

Morphometric Parameter	Formula	Basin 1	Basin 2	Basin 3	Basin 4	Basin 5	Basin 6
Basin Area (A) Km ²	GIS software Analysis	878.59	1024.43	109.47	163.1	353.1	389.54
Basin Perimeter (P) Km		182.11	201.87	62.35	67.72	121.17	154.5
Basin Length (L _b) Km		50.7	53.99	22.56	22.92	35.69	47.1
Stream Length (L _u) Km (All order)		895.35	976.17	124.71	182.72	357.27	360.14
No. of streams (N _u) (All order)		369	423	54	70	161	187
Length of Overland Flow (Lof) Km	Lof=1/2D D= L_/A	0.51	0.48	0.57	0.56	0.51	0.46
Ler	ngth of Ove	erland Flow val	ue indicated	l good surface	runoff of the	study area	
Linear Parameters (one Dimensional)							
Drainage Frequency (F _s) / Km ²	N_/A	0.42	0.413	0.493	0.429	0.456	0.48
Drainage Density (D.)	LJ/A	1.019	0.953	1.139	1.121	1.012	0.925
Dramage Defisity (Dg)		Moderate Drainage Density indicates the basins is moderate permeable sub-soil					
Texture ratio (R _t)	N1/P	1.554	1.650	0.593	0.753	1.048	0.926
Drainage Texture (D _t)	N _u /P	2.026	2.095	0.866	1.034	1.329	1.21
Drainage Intensity (D _i)	F_s/D_d	0.412	0.433	0.433	0.383	0.451	0.519
Infiltration Number (I _t)	F,* D _d	0.428	0.393	0.562	0.481	0.461	0.444
Low value of D ₂ , F ₂ , and D ₂ indicates surface runoff quickly removed from the basins							

GIS /Morphometric analysis								M	
Shape Parameter (two Dimensional)									
Morphometric Parameter	Formula	Basin 1	Basin 2	Basin 3	Basin 4	Basin 5	Basin 6	HOM	
Form Factor (R _t)	A/L _b ²	0.342	0.351	0.215	0.311	0.277	0.176	Ę	
Elongation Ratio (R _e)	$R_e = 2v(A/\pi)/L_b$	0.66	0.67	0.523	0.629	0.594	0.473	ĩ	
Compactness Coefficient (Cc)	Cc= P/2(v/nA)	1.734	1.78	1.681	1.496	1.819	2.209	ANA	
Runoff Volume	Rational equation *	26165.76	30549.43	6571.49	8916.13	13162.03	11418.5	LYSIS	
Rational equation where V is the surface upstream the po	n: V = R * C * A	* P(1) ne, P is the and R is the	R = 1.05 – e total raint reduction f	0.0053 vA fall depth, C actor that de	(2) is runoff coe	fficient, A is t n area (HELWA	he basin area A, M., 1993).		

Conclusion/Outlook	0				
\checkmark Overall, the study demonstrates the advantages of using an integrated approach using (GIS) and	ONC				
DC resistivity data to evaluate the hydrogeological conditions at Esna area.	LUSION/				
• The use of dis identified the optimum locations for water hooding potentiality. Consequently	Ô				
high chance for runoff water harvesting and increasing groundwater recharge possibilities .					
\checkmark The sequential use of GIS and DC resistivity data show the importance of such tools for planning	Ň				
and management of water resources in the area.					
\checkmark From all applied studies showed that the study area can be considered as a promising					
development area.					
$\checkmark {\rm The}$ overall geoelectrical results indicated that the prediction of TDS of the main aquifers using					
an empirical relationships is recommended.					
$\checkmark {\sf Continuous}$ geophysical monitoring is essential to evaluate the reclamation impacts on the					
groundwater potentiality to avoid the deterioration of the aquifer system.					