Jordanian Experience Regards Flash Flood Risk Reduction

Bany-Mustafa

Director of Monitoring and Water Resources Studies, National Water Information System Coordinator, Water Expert Group Member, Water Ambassador, EMWIS NFPC, Ministry of Water and Irrigation, MWI, Jordan

Email: mk_bm@mwi.gov.jo

Aqaba city is of great strategic importance in Jordan, since it is the Kingdom's only seaport on the Red Sea. In February 2001 and upon the direction of His Majesty King Abdullah II, the Aqaba Special Zone Authority (ASEZA) was established after passage of the Aqaba Special Economic Zone Law, No. 32 of the year 2000. The purpose of ASEZA is to transfer Aqaba into a Red Sea business hub and tourist destination.

Many of ASEZA developments are taking place on alluvial fans of Wadis, which will inescapably be under disastrous conditions when flood happen. Taking into consideration the increased occurrence of high intensity storms in the area of Aqaba, development of flood risk management strategy is inevitable. The most recent flash flood incident occurred in October 2012, affecting Aqaba and the South Aqaba Region. The magnitude of the damage indicates a storm intensity that exceeds the 100-Year storm extracted Ministry of Water and Irrigation Intensity, Duration and Frequency Curves.

Other documented events occurred in February 2006 and March 1966 and many others.

In recent years, development of the Wadi Yutum fan, the largest of the alluvial fans has considerably accelerated. Several industrial parks or estates have been constructed and more are planned. Accordingly and as a part of the task force mobilized to study and recommend flood mitigation measures that could be implemented at the regional level to protect Aqaba from the hazards of possible future storms, a flash flood hazard and risk map for Wadi Yutum has been developed.

Based on detailed and intensive hydrological analysis and by means of hydraulic modeling, hazard map for 25, 50 and 100 year return period was generated with peak flow of 1522.7 m3/s, 1812.7 m3/s and 2111.0 m3/s, respectively, to identify hazard locations within the stream of Wadi Yutum. Together with identified socio-economic map a risk map was generated with recognition of three risk classes; high, medium and low.

Zones of high and medium risk incorporate jeopardy to the current facilities and road and trail users. The most affected element is the Desert Highway, which is the main entrance of Aqaba city. As 2009 data indicates that, the weekday daily traffic flow on the Desert Highway is 14,650 vehicles. Models predicted the 2016 traffic flow to be 20,615 vehicles as actual measurements do not exists. Giving that the vehicle occupancy rate in Jordan is 1.6 person per vehicle a total amount of 33,000 person could be affected on a given day depending on the time and the severity of the storm. No major development exists within the risk zone. Low and no risk zone are safe for any future development. However, the land topography could be the obstacle for such developments.

The railway and other electrical and microwave facilities will be affected and could be in danger. Accordingly, several remedial measures are suggested to assist in adopting the best **mitigation measures**; namely:

I. Improving hydraulic discharge capacity by modifying the natural channel to be lined with concrete or reinforced concrete at certain locations, where flood is expected to reach the main road or railway.

- II. Relocate electrical communication utilities outside of the flood area. If not possible, then they need to be well protected by reinforced concrete structure or buried under ground below scour level.
- III. Placing rock riprap around bridges' piers and abutment.
- IV. Constructing a set of regulatory dams in the upstream.
- V. Establishment of flood protection center that will operate a flood early warning system for Aqaba region and will be responsible for managing and operating the flood pathway.

Further recommendations that include the following were put forward:

- No construction should be permitted in the flood way can be permitted in flood fringes after ensuring adequate storm water drainage facilities.
- An outlet drain should be connected to the major drain to drain out excess water.
- A well-planned layout and an organized development should be provided without blocking the natural drainage. Individual development should not be allowed. It should be accompanied with the layout of the surface drainage system having sufficient capacity covering the entire area.
- Roads and service lines should be laid before starting the construction

Flash Flood Hazard and Risk Maps for Wadi Yutum

The Second International Symposium on Flash Floods in Wadi Systems Mohammed Bany-Mustafa

> October 25th -27th, 2016 El Gouna-Hurghada, Egypt.

Introduction

- Jordan is mostly covered desert (90% of its area)
- Rainfall averages vary from 35 mm annually in the desert to as much as 800 mm in the northern hills.
- Agaba city is located in the south of Jordan

Introduction

- Aqaba is <u>located 330</u> km south of Amman on the gulf of Aqaba
- Only access for Jordan to open sea
- Very important economical city
- Aqaba is subject to frequent flash flood.

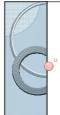
Introduction

- Agaba city is of great strategic importance in Jordan
- ASEZA was established to transfer Agaba into a Red Sea business hub and tourist destination
- The climate is **extremely** arid consisting of two distinct seasons

Introduction

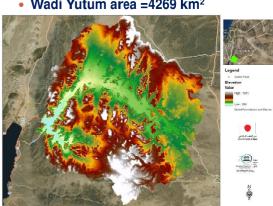
- ASEZA developments are taking place on alluvial fans of wadis
- Increased occurrence of high intensity storms in the area of Agaba
- The most recent flash flood incident occurred October 2012, before that 2006 and others
- Development of **flood risk** management strategy is important

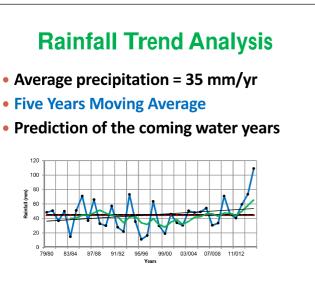
- Flash Floods, pose risk to human life and infrastructure in Agaba
 - Life losses
 - Destroy properties and infrastructures
 - Disturb the daily life

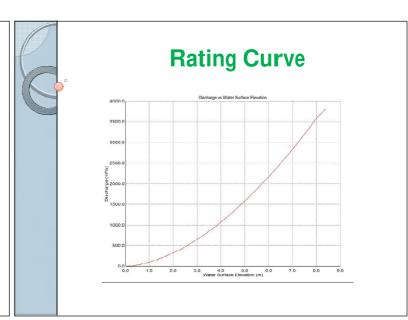


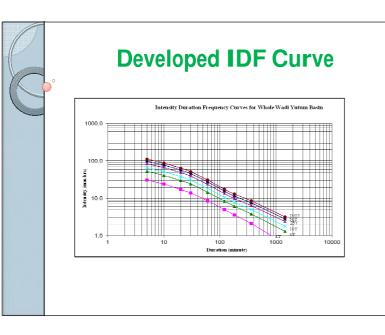
Characteristics of flash flood Short duration

- High rainfall intensity
- High peak flow
- Short time to peak
- Randomness of areal distribution
- Sharp and unexpected

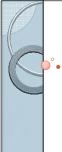






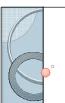

Area description

Wadi Yutum area =4269 km²



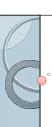
Development of Flash Flood Hazard and Risk Maps

 The basin was divided into sub-basins in order to get more accurate results



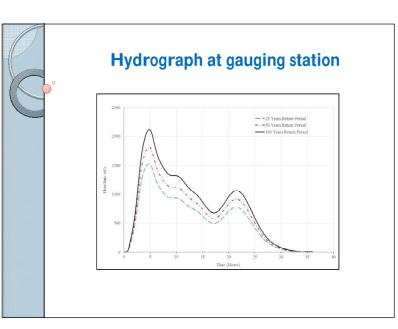
Wadi Yutum sub-basins Characteristics

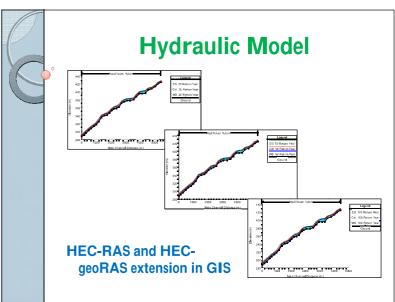
- Manning's n-values used for the channel flow was 0.05 (as typically used for natural mountain stream with no vegetation)
- The runoff was calculated using the SCS Unit Hydrograph transform method


main-fundamentum	Anna (part) Sheema Laugh Market (part) Laur			piloto Carlos	
		000	26gh	Low	
¥1	20.4	e/eres	1982	200	0.1018
72	229.7	86,697.1	2931	443	0.0295
¥9	43	M,039.4	2976	444	0.0001
¥4	1313	Talinan	2020	600	0.000
T)	1348	26,34Lb	2939	764	61001
74	19.1	E7,592.0	200	77	0.0570
21	87.3	22,034.0	222	796	0.0209
TI	110.0	22,692.2	2388	-	0.0002
TP	502.0	44,2869	2702	407	9.0200
¥18	200.1	15,271.0	7920	762	0.0098
¥11	65.5	61,535.5	2002	777	0.0352
¥12	76.3	20,002.0	3970	784	0.0360
¥18	46.1	20,872.7	2007	784	9.8227
¥10	126.7	(4,235.8	7476	768	0.0200
¥18	168.7	27,197.5	3626	888	0.0287
¥16	188.2	19,750.4	3624	959	9,521,0
¥17	177.0	B0,093.B	1966	768	9,0211
Y18	47.6	15,691.7	880	760	0.8388
Y18	111.6	49,839.8	3688	976	0.0700
YM	41.1	11,021.0	995	752	9,5202
FH	150.0	91,649.B	25.00	765	9,0208
THE	ша	11,941.1	2949	798	0.0270
E 25	148.7	26,132.4	1023	960	0.0204
TH	1368	22,000.0	2700	7024	9.8667
TM	19.7	25,949.0	1419	120	0.0255
724	20.3	20,422.5	22120	769	0.5555
Y 20	LUA	21,711.2	2042	100	0.0000
TH	109.7	25,285.0	27-62	769	0.0320
TP	85.0	20,705.0	2367	769	0.0720
TH	47.5	11,0074	2010	767	B.10002

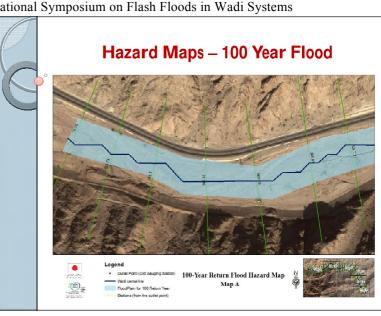
		Wa	di Yu	ıtun	n Curv	e Nur	nbers	}	
П	Rds-Australianus	Amadado	NABrim.	75 disele	Statement on	2000 deleteration	conditional)	(SP(Ess)	CENTRAL
- 11	27	100	70	79		9.3	68.5	74.0	945
- 11	20	2092	46	.50	58	107	60.6	654	91.6
o [73	10.0	25	185	239	44	683	79.7	68.0
ľ	374	874.0	- 6		50	100	69.5	68.3	930
	29	2006	-	- 61	10	12.0	609	639	807
- 10	Ye	19.1	29	.29	R	18-9	993	69-4	994
- E	77	68.3	,	24	67	8.0	94.0	894	63.7
- [378	1296	26	-6	-	64	65.0	76.7	55.3
_[X9	9856	253	485	6	64	89.0	71.7	98.3
П	Ttp	2000	(FT	25	30	10.5	74.6	2643	99.8
L	713	69.5	- 6	25	20	169	263	664	69.5
Ш	115	76.3	- 69	- IR	50	53.0	600	493	884
L	713	493	- 61	20	49	15.5	767	59.0	696
L	T16	92002	55	46	40	This	20.1	64	89.0
L	710	1682	25	46	- 46	64	65.6	71.7	83
L	775	2983	- 65	28	27	167	263	664	89.6
Į.	開発	172.0	59	45	46	1929	700	-60	99.5
L	710	48.6	18	607	20	183	70.6	505	850
L	719	1010	85	460	46	19,4	79.1	GLA.	892
Į.	720	49.1	- 8	-49	46	194	79-1	64	997
Į.	TEL	2054	- 6	207	- 80	MA	566	200	85.0
Į,	TAL	2056	155	85	89	4.0	90.0	663	963
Į.	789	949.7	20		- 6	67	684	714	65.0
I.	704	2184	- 6	20	94	19.9	2946	693	61
Į.	TRE	10.7	250	96	100	d.A.	683	79.7	98.0
М	755	51.2	20	-6		24	68.4	694	62.5
Į.	Yar	TIRA	- 89	700	70	68	- 69	777	185-0
J.	700	1000	10	-69	da	46	60.0	01.5	1657
- k	TRP	880	16	- 06	63	4.0	98.0	843	847
ж	730	49.6	- 25	79	36	88	PR 2	79-6	69.0
ŀ	マニ	MA	10		da	40	88.0	64.5	969
ж	THE	1000	38*	- 69	65	6.9	dika	100	48.9
Н	T 35	63	15	- 65	63	49	90.0	643	967
ж	Yas	896	26	6	- 0	67	694	714	254
ŀ	751	1000	35	-	-	64	65.0	71.5	20.3
Н	TM	5000	25	76	28	59	694	783	950
Н	727 729	565y	26 46	- 65	- 6	197	054 056	714 696	84 84

Wadi Yutum Time of Concentration

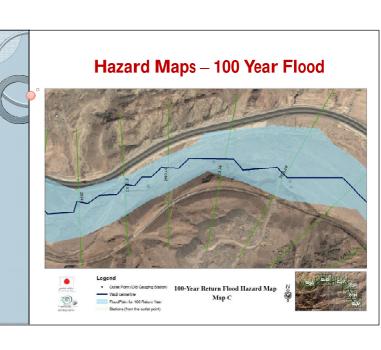

Sub-watershed		Time of Concentration (tc)						
Name	Clack Empirical		Kirpich Method		Average		Lag time	
ivaide	min	hr	min	Hr	min	hr	min	hr
Y 1	55.1	0.9	48.4	0.8	51.7	0.9	31.0	0.5
Y 2	313.1	5.2	273.3	4.6	293.2	4.9	175.9	2.9
Y 3	113.2	1.9	99.2	1.7	106.2	1.8	63.7	1.1
Y 4	169.5	2.8	148.2	2.5	158,8	2.6	95.3	1.6
Y 5	271.2	4.5	236.5	3.9	253.8	4.2	152.3	2.5
Y 6	123.3	2.1	108.1	1.8	115.7	1.9	69.4	1.2
Y 7	206.7	3.4	180.5	3.0	193.6	3.2	116.1	1.9
Y 8	184.2	3.1	161.0	2.7	172.6	2.9	103.6	1.7
Y 9	351.7	5.9	306.9	5.1	329.3	5.5	197.6	3.3
Y 10	438.7	7.3	381.2	6.4	410.0	6.8	246.0	4.1
Y 11	342.9	5.7	298.5	5.0	320.7	5.3	192.4	3.2
Y 12	273.1	4.6	237.9	4.0	255.5	4.3	153.3	2.6
Y 13	160.3	2.7	139.8	2.3	150.1	2.5	90.0	1.5
Y 14	329.0	5.5	286.4	4.8	307.7	5.1	184.6	3.1
Y 15	236.0	3.9	206.0	3.4	221.0	3.7	132.6	2.2
Y 16	335.6	5.6	292.7	4.9	314.2	5.2	188.5	3.1
Y 17	332.5	5.5	290.0	4.8	311.3	5.2	186.8	3.1
Y 18	193.1	3.2	168.1	2.8	180.6	3.0	108.3	1.8
Y 19	365.1	6.1	318.2	5.3	341.6	5.7	205.0	3.4
Y 20	127.4	2.1	111.1	1.9	119.2	2.0	71.5	1.2
Y 21	275.6	4.6	240.4	4.0	258.0	4.3	154.8	2.6
Y 22	324.0	5.4	282.3	4.7	303.2	5.1	181.9	3.0
Y 23	251.2	4.2	219.2	3.7	235.2	3.9	141.1	2.4
Y 24	193.9	3.2	169.3	2.8	181.6	3.0	109.0	1.8
Y 25	212.2	3.5	185.2	3.1	198.7	3.3	119.2	2.0
Y 26	57.2	1.0	50.7	0.8	54.0	0.9	32.4	0.5
Y 27	204.5	3.4	178.5	3.0	191.5	3.2	114.9	1.9

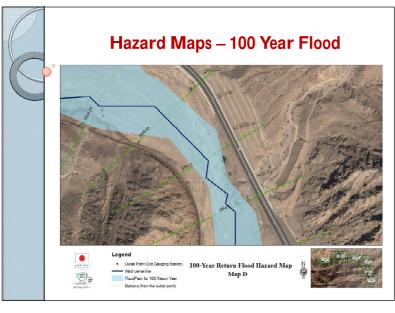


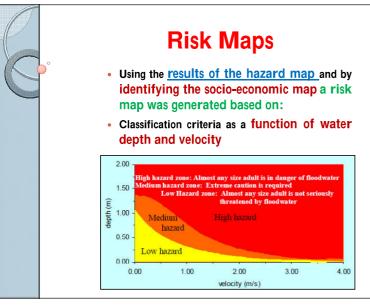

Hydrological model

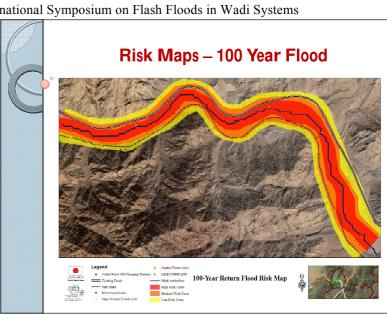

- Hydrological analysis using HEC-HMS
- Flood for the 25, 50, and 100 years return periods using the IDF curves
 - The NRCS Method was chosen as Loss Method, SCS Unit Hydrograph as Transform Method and Muskingum as routing method

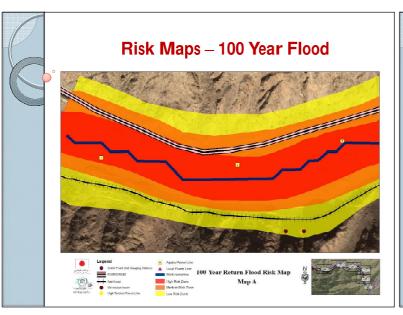

Return Period	Peak discharge	Volume	Time to peak	
(Years)	(m3/s)	(1000 m ₃)	(hr:min)	
25	1522.7	73,820	4:45	
50	1812.7	87,973	4:50	
100	2111.0	102,588	4:50	

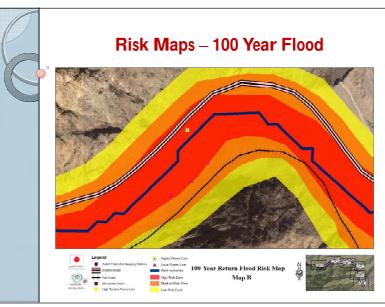


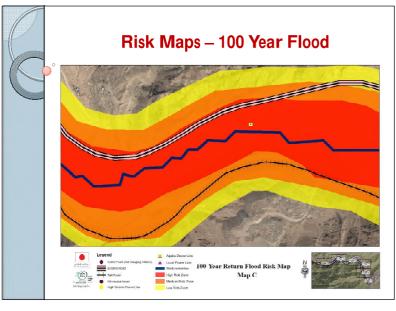


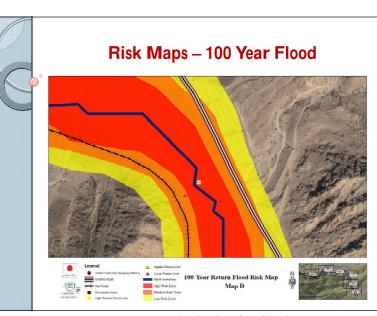


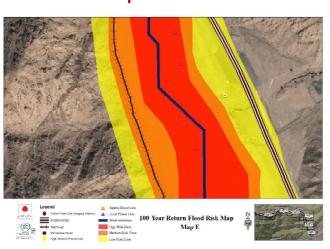












Risk Maps - 100 Year Flood

Affected Population

- The most affected element is the Desert Highway
- Traffic flow = 20,615 vehicles
- 33,000 person could be affected on a given day
- The <u>railway</u> and other <u>electrical</u> and microwave facilities will be affected and could be in danger

Remedial Measures for Flash Flood Mitigation

Channel Flow Capacity and road crossing structures

The mainstream discharge capacity can be improved hydraulically by modifying the natural channel. This could be done by lining the channel with concrete for example in which will improve the channel discharge capacity. At certain locations, where flood is expected to reach the main road or railway, reinforced concrete protection can be used. Additionally, all road-crossing structures should be redesigned to withstand the 100 year flood.

Highway and Railway

Based on onsite investigation, protection measures and improvement should be implemented at the highway and railway embankments where scour damage and erosion is expected. The main road (Desert Road) going into Aqaba is adjacent to Wadi Yutum mainstream, so is the Railway. Therefore; they are susceptible to erosion and scour. The best protection measure is the use of reinforced concrete. Other options could work after further investigating the velocity of flow and embankment material at the vulnerable locations

Remedial Measures for Flash Flood Mitigation

- Electrical, Communication and Subsurface Utilities
- It is clear that <u>electrical transmission</u>, <u>communication towers</u>, and <u>pipelines</u> are located in <u>Wadi Yutum mainstream</u>. Keeping those utilities in their current location could result in getting them <u>damaged by future floods</u>. It is recommended <u>to relocate the utilities outside of the flood area.</u> If not possible, then they need to be <u>well protected by reinforced concrete structure or buried under ground below scour level.</u>
- Bridge Pier and Abutment Scour

The bridge pier and abutment should be protected against scour. This can be done by placing rock riprap around the piers and abutment. Size and layers of the protection needs detailed investigation.

Remedial Measures for Flash Flood Mitigation

Flood Protection Center

Such a center will operate a flood early warning system for region of Aqaba. It will be responsible for managing and operating the flood pathway. It will set the regulations for the protection of the people and utilities in the danger area. It will be responsible for the maintenance and cleaning of the flood pathway and the hydraulic structures that could be a danger during a flood event. Cleaning the stream from debris and preventing dumping of any construction materials on the floor of the channel. Because the dumped material will increase the roughness of the channels and thus increasing the depth of the flow.

• Regulatory Dams - Check dam

A set of regulatory dams could be constructed at the <u>upstream</u>. The purpose of these dams will be <u>to regulate the flood by lowering the peak flood and increasing the flood base time. These dams act as retention and depression storage to delay the time of concentration.</u>

Recommendations

- No construction should be permitted in the flood way and can be permitted in flood fringes after ensuring adequate storm water drainage facilities.
- An outlet drain should be connected to the major drain to drain out excess water.
- A well-planned layout and an organized development should be provided without blocking the natural drainage. Individual development should not be allowed. It should be accompanied with the layout of the surface drainage system having sufficient capacity covering the entire area.
- Roads and service lines should be laid before starting the construction of buildings.

