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Avenaol, isolated from the allelopathic plant black oat, was the first C20 germination sti-

mulant related to strigolactones. Structurally, it consisted of a bicyclo[4.1.0]heptanone

skeleton containing a cyclopropane ring bearing three main chains projecting in the same

direction (i.e. all-cis-substituted cyclopropane). Herein, we report the total synthesis of

avenaol using a robust strategy involving the formation of an all-cis-substituted cyclopropane

via an alkylidenecyclopropane. The key factors in the success of this total synthesis include

the Rh-catalysed intramolecular cyclopropanation of an allene, an Ir-catalysed stereoselective

double-bond isomerisation, and the differentiation of two hydroxymethyl groups via the

regioselective formation and oxidation of a tetrahydropyran based on the reactivity of a

cyclopropyl group. This strategy effectively avoids the undesired ring opening of the cyclo-

propane ring and the formation of a caged structure. Furthermore, this study confirms the

proposed structure of avenaol, including its unique all-cis-substituted cyclopropane moiety.
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Natural products containing complex three-dimensional
structures represent challenging synthetic targets, and
compounds of this type have consequently received con-

siderable interest from research groups all over the world1–3.
Notably, cage-shaped natural products have been reported to
show several interesting biological activities, and numerous poly-
cyclic terpene4–7 and alkaloid8 targets of this type have inspired
synthetic chemists to develop innovative new strategies to access
these compounds. Non-cage-shaped natural products that are
capable of being converted to cage-shaped materials also exhibit
an interesting range of biological activities, as exemplified by
avenaol9, shagene A10, erythrolide A11 and arisanlactone C12

(Fig. 1a). These compounds are characterised by their bicyclo
[4.1.0]heptane (avenaol, shagene A), bicyclo[3.1.0]hexane (ery-
throlide A), and bicyclo[6.1.0]nonane (arisanlactone C) skeletons,
all of which contain a cyclopropane ring bearing three main
chains projecting in the same direction (i.e. an all-cis-substituted
cyclopropane). Although the synthesis of these natural products is
considered to be as challenging as the synthesis of their cage-
shaped counterparts, there have been very few reports to date
pertaining to the synthesis of all-cis-substituted cyclopropanes. In
fact, there have been no reports to date concerning the total
synthesis of non-cage-shaped natural products containing an all-
cis-substituted cyclopropane. Furthermore, it is envisaged that
these syntheses would lead to the identification of several stereo-
chemically interesting structures. With this in mind, we became
interested in investigating the synthesis of natural products con-
taining an all-cis-substituted cyclopropane using the non-typical
strigolactone avenaol, which shows important biological activity,
as a representative example.

Avenaol (1), which was first isolated from the allelopathic plant
black oat (Avena strigosa Schreb.) by Yoneyama and co-workers

in 2014, was the first reported natural C20 germination stimulant
structurally related to strigolactones (SLs)9. Extensive NMR and
high-resolution mass spectrometry analyses indicated that the
structure of 1 consisted of a bicyclo[4.1.0]heptanone skeleton, a C
ring lactone, four contiguous stereogenic centres and an all-cis-
substituted cyclopropane. Although the all-cis-substituted cyclo-
propane ring in 1 might readily cyclise to form a caged structure
via the formation of a C–C bond between the A and C rings, the
analytic data for this compound were consistent with a non-cage
structure (Fig. 1b). Given that the structure of avenaol differs
from those of typical SLs such as strigol and orobanchol, it was
designated as a novel class of SL. Avenaol shows potent
germination-stimulating activity for Phelipanche ramosa seeds,
but much lower activities for Striga hermonthica and Orobanche
minor. Although the biosynthetic pathways and target protein of
a few typical SLs have recently been reported13, 14, the biological
properties of compound 1 have been poorly explored. Further
study is therefore required to understand the relationship
between the properties of avenaol and those of a few typical SLs.
Although a variety of different strategies have been reported for
the synthesis of typical SLs15–25, there have been no reports to
date for the synthesis of avenaol.

Herein, we report the total synthesis of avenaol based on a
strategy for the construction of all-cis-substituted cyclopropanes
using alkylidenecyclopropane as a key intermediate. The core
structure is constructed through the Rh-catalysed intramolecular
cyclopropanation of an allene, and an Ir-catalysed stereoselective
double-bond isomerisation. This strategy effectively avoids the
undesired ring opening of the cyclopropane ring and the for-
mation of a caged structure. Furthermore, this study confirms the
proposed structure of avenaol, including its unique all-cis-sub-
stituted cyclopropane moiety.
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Fig. 1 Natural products containing all-cis-substituted cyclopropanes. a Various natural products containing an all-cis-substituted cyclopropane, all of which
have been reported to show intriguing biological activities. b The structures of avenaol and two typical strigolactones. The major differences between these
compounds include the AB ring carbon skeleton and the connectivity between the BC rings. The construction of the AB ring of avenaol represents a
challenging problem
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Results
Retrosynthetic analysis. The main challenges associated with the
synthesis of avenaol include the construction of a bicyclo[4.1.0]
heptanone skeleton containing an all-cis-substituted cyclopro-
pane, controlling the stereochemistry at the C8 position of the C
ring, and the introduction of a C3 hydroxyl group on the A ring.
The construction of bicyclo[4.1.0]heptanone skeletons has mainly
been investigated in the context of constructing caged

structures26–28. For non-caged structure, the direct synthesis of
these systems has been limited to the 1,4-addition of a suitable
anion of a trans-chloroallylphosphonamide29 or Ir-catalysed or
Rh-catalysed cis-selective cyclopropanation reactions30, 31. How-
ever, preliminary work in our own group has shown that these
methods are unsuitable for the synthesis of avenaol (Supple-
mentary Fig. 1). Furthermore, cyclopropane rings bearing an
electron-withdrawing group can readily undergo a ring-opening
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Fig. 3 Synthesis of all-cis-substituted cyclopropane 4. Conditions: a HC≡CCH2OTHP, BnMe3NOH, DMSO, 94%; b NaH, MeI, THF–DMPU; c pyridinium
p-toluenesulfonate, MeOH, 92% (two steps); d LiAlH4 then I2, Et2O, −78 °C, 83%; e TIPSCl, imidazole, DMF, 84%; f 9-BBN, then aq. NaOH, aq. H2O2, 71%;
g nor-AZADO, DAIB, CH2Cl2–pH 7 buffer, 78%; h PivCl, iPr2NEt, then MeOH, DMAP, 89%; i lithium bis(trimethylsilyl)amide, CH3CN, THF, −78 °C, 97%; j
(imidazoyl)SO2N3, pyridine, CH3CN, 87%; k NaBH4, CeCl3, MeOH 95%, (dr 17:1); l PMBCl, NaH, NaI, THF, 0–50 °C, 97%; m diisobutylaluminium hydride,
toluene–THF, −78 °C to rt; n NaBH4, MeOH, 0 °C, 76% (two steps); o I2, PPh3, imidazole, CH2Cl2, 0 °C; 84%, p NaBH4, DMSO, 80 °C, 76%; q TBAF, THF,
97%; r [Ir(cod)(pyr)PCy3]BArF, CH2Cl2, H2, 68% (dr 10:1). THP tetrahydropyranyl, DMPU N,N′-dimethylpropylene urea, triisopropylsilyl, DAIB
(diacetoxyiodo)benzene, DMAP 4-dimethylaminopyridine, BArF (3,5-bisCF3C6H3)4B−
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reaction32–34, further highlighting the difficulties of this
approach. On the basis of these issues, we envisioned that the use
of alkylidenecyclopropane35 as an appropriate intermediate
would avoid an unwanted ring-opening reaction and the forma-
tion of a caged structure. We also envisioned that avenaol could
be obtained from 2 by the dihydroxylation of its convex face and
the introduction of the D ring (Fig. 2). The C ring lactone could
be constructed by the diastereoselective transformation of the diol
based on the reactivity of the cyclopropyl group in 3, which could
be obtained by introduction of a hydroxymethyl group to the all-
cis-substituted cyclopropane 4. Compound 4 could be synthesised
by the intramolecular cyclopropanation of allene 6, which could
be readily prepared from aldehyde 7, followed by double-bond
isomerisation of alkylidenecyclopropane 5. The intramolecular
cyclopropanation of an allene to form a six-membered carbocycle
has not been reported, indicating that development work would
be required to allow for the construction of the bicyclo[4.1.0]
heptanone core.

Construction of an all-cis-substituted cyclopropane. Our
synthesis began with the preparation of the cyclisation
precursor 6 (Fig. 3). The treatment of known aldehyde 736 with
2-(prop-2-yn-1-yloxy)tetrahydro-2H-pyran and BnMe3NOH37,
followed by methylation and acidic treatment gave 8. The sub-
sequent hydroalumination of 8, followed by the treatment of the
resulting intermediate with iodine gave 938, which was converted
to carboxylic acid 10a via sequential protection as a triisopro-
pylsilyl (TIPS) ether, hydroboration and oxidation by 9-
azanoradamantane N-oxyl (nor-AZADO)39. The cyclisation
precursor α-diazo-β-ketonitrile 6a was synthesised by sequential
β-ketonitrile formation and diazo transfer reactions40. A similar
sequence was used to prepare the benzyl-protected methyl dia-
zoketone 6b. The α-diazo-β-ketoester 6c and ketonitrile 6d were
also synthesised via 10b (Supplementary Fig. 2).

We subsequently investigated the formation of the alkylidene-
cyclopropane intermediates via the intramolecular cyclopropana-
tion of allenes 6a–d using a Rh or Cu catalyst41. We initially
investigated the cyclisation of methyl diazoketone 6b with
Rh2(OAc)4, but this reaction failed to afford the desired cyclised
product (Table 1, entry 1). Substrates bearing a β-ketoester or
ketonitrile instead of a methyl group were also evaluated in an

attempt to stabilise the metal carbene. The reaction of 6c with
Rh2(OAc)4 or Cu(CH3CN)4PF6 did not give the desired product
(Table 1, entries 2 and 3). In sharp contrast, the cyclisation
reactions of the α-diazo-β-ketonitriles 6a and 6d with Rh2(OAc)4
proceeded smoothly to give the alkylidenecyclopropanes 11a and
11d, respectively, in excellent yields, most likely because of the
more electrophilic nature of the metal carbene (Table 1, entries 4
and 5)42. It is noteworthy that this reaction only afforded the E
isomer, because the metal carbene only approached from the less
hindered face of the allene. For further transformation toward the
all-cis-substituted cyclopropane, we used compound 11a because
of the ease with which this compound could undergo protecting
group manipulation.

Next, we focused on the construction of the all-cis-substituted
cyclopropane structure from alkylidenecyclopropane 11a. We
initially investigated the hydrogenation of the alkylidenecyclo-
propanes (Supplementary Fig. 3). For example, compound 12,
which was prepared by reduction of 11a, followed by the PMB
protection of the resulting alcohol, was hydrogenated over a Pd
on carbon catalyst using H2 gas. Surprisingly, this reaction gave
the undesired trans isomer as the major product, most likely
because of the steric effect of the nitrile group. We subsequently
investigated the transition-metal-catalysed isomerisation of the
double bond in this system using a directing group to reverse this
selectivity. To determine the best position for the directing
groups, we prepared alcohol 13, silyl ether 14 and allyl alcohol 5
by the stepwise reduction of the nitrile group (Fig. 3). Despite our
initial concerns regarding the ring-opening of the cyclopropane
system during these transformations, the cyclopropane ring
remained intact because it was stabilised as an alkylidenecyclo-
propane. Compound 12 was initially treated with Crabtree’s
catalyst43, which was preactivated with H2, but failed to afford the
all-cis-substituted cyclopropane (Table 2, entry 1). Use of a
substrate having nitrile and hydroxyl groups resulted in no
reaction, and recovery of the starting material (Supplementary
Fig. 4). These results indicated that the nitrile group deactivated
the Ir catalyst rather than acting as a directing group. In contrast,
the reaction of 13 bearing a hydroxymethyl group under these
conditions, allowed for the successful isomerisation of the olefin
under H2 to give the silyl enol ether 15a in 92% yield with
excellent stereoselectivity (Table 2, entry 2). The success of this

Table 1 Formation of alkylidenecyclopropane by allene cyclopropanation

Rh or Cu cat.

11a-d
O
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OR2

•

H OR2

O R1

N2

6a-d

(E)
H

CH2Cl2, rt

Entry Substrate R1 R2 Catalyst Yielda

1 6b Me Bn Rh2(OAc)4 0%b

2 6c CO2Et Bn Rh2(OAc)4 0%c

3 6c CO2Et Bn Cu(CH3CN)4PF6 0%d

4 6d CN Bn Rh2(OAc)4 85%
5 6a CN TIPS Rh2(OAc)4 84%

aIsolated yield
bCarboxylic acid 10b was obtained in 26% yield
cCarboxylic acid 10b was obtained in 35% yield
dThe reaction gave a complex mixture
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reaction indicated that the Ir catalyst approached from one face
after its coordination to the alcohol (i.e. X, Fig. 4a), resulting in
the exclusive formation of the all-cis isomer. However, the
hydroxymethyl group on 15a could not be converted to a methyl
group without opening the cyclopropane ring. Notably, the
treatment of silyl ether 14 with Crabtree’s catalyst resulted in very
little reaction, because of the lack of a directing group of the
substrate and relatively low reactivity of the catalyst (Table 2,
entry 3). The reactivity improved when we used Pfaltz’s modified

Ir catalyst bearing a non-coordinating counter anion (i.e. BArF)
44–46, although this catalyst only afforded the trans isomer
(Table 2, entry 4). The selectivity of this reaction was attributed to
intermediate Y2, where the PMB ether would act as a better
directing group rather than the corresponding TIPS ether
(Fig. 4b). Allyl alcohol 5 was therefore used for this conversion.
The reaction of 5 under the same conditions44, 45 gave aldehyde 4
and alcohol 16b as 2.7:1 isomeric mixtures, respectively (Table 2,
entry 5). This selectivity can be explained by the preferential

Table 2 Formation of all-cis-substituted cyclopropane

5, 12-14
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Entry Substrate R1 R2 X Yield (all-cis:trans)a,b

1 12 CN TIPS PF6 No reaction
2 13 CH2OH TIPS PF6 15a: 92% (all-cis only)
3 14 Me TIPS PF6 15b: 6% (2.3:1)c

4 14 Me TIPS BArF 15b: 17% (trans only)
16a: 75% (trans only)

5 5 Me H PF6 4: 61% (2.7:1)
16b: 5% (2.7:1)

6 5 Me H BArF 4: 68% (10:1)
16b: <5% (2.6:1)

BArF, (3,5-bisCF3C6H3)4B−, cod, cyclooctadiene, pyr, pyridine, Cy, cyclohexyl
aIsolated yield
bThe ratio was estimated using 1H NMR spectroscopy
cStarting material 14 was recovered (64%)
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formation of reaction intermediate Z1 over Z2, which would
suffer considerable steric hindrance (Fig. 4c). The diastereomeric
ratio improved considerably when we used Pfaltz’s modified Ir
catalyst to promote the coordination of the substrate to the
catalyst, affording an all-cis:trans ratio of 10:1 (Table 2, entry 6).
Most notably, the selectivity of this step was found to be highly
reproducible, allowing us to generate gram-scale quantities of the
all-cis-substituted cyclopropane 4 for further transformations.

Total synthesis of avenaol. Having established a successful route
to the all-cis-substituted cyclopropane, we turned our attention to
the formation of the C ring. Aldehyde 4 was converted to diol 3
by the introduction of an exo methylene at the α position of the
aldehyde, followed by a hydroboration (Fig. 5). We subsequently
screened a wide range of conditions to allow for the differentia-
tion of the hydroxymethyl group. Surprisingly, the diaster-
eoselective DDQ-mediated intramolecular cyclisation of 3 to give
acetal 17 resulted in the formation of the caged compound 18 in
~30% yield as a single isomer (Supplementary Table 1, entry 1).
We envisaged that the selective transformation of 18 to 22 via an
oxidative ring cleavage reaction would allow for the two hydro-
xymethyl groups to be differentiated. Thus, we switched our focus
to the unexpected formation of the tetrahydropyran ring. The
treatment of this system with Cu(OTf)2 was found to be inef-
fective, whilst Zn(OTf)2 and Sc(OTf)3 gave the cyclised products
18 and 19 (Supplementary Table 1, entries 2–4). These results
indicated that acidic conditions would be important, and that this
transformation would proceed via the secondary cation

intermediate A. With this in mind, we investigated the addition of
BF3·OEt2 and p-toluenesulfonic acid (pTsOH) (Supplementary
Table 1, entries 6 and 7). The results revealed that pTsOH gave a
best yield, although a large portion of the other hydroxy group
also reacted with a by-product derived from PMB group to give
mixture of 18 and 19. The addition of thiophenol (PhSH) was
effective for trapping this by-product, allowing for the diaster-
eoselective formation of the desired product 18 as a single pro-
duct. Interestingly, the ring-opening product was not observed
under these conditions, most likely because of the stability of the
bisected cyclopropylcarbinyl cation intermediate A, where the π-
orbitals of the cation would interact with the sp2-like orbitals of
the cyclopropane ring47–49.

The C–H oxidation of the tetrahydropyran ring in 18 was
investigated for the construction of compound 22. The alcohol
moiety in compound 18 was initially protected by a benzoyl
group. The addition of a stoichiometric charge of CrO3 or a
combination of RuCl3 and NaIO4 resulted in the oxidation of the
ring to give the undesired lactone 23 and carboxylic acid 24,
respectively (Table 3, entries 1 and 2). We also conducted the C–H
oxidation according to the procedure reported by White’s group
using (2S,2′S-(−)-[N,N′-bis(2-pyridylmethyl)]-2,2′-bipyrrolidine-
bis(acetonitrile)iron(II) hexafluoroantimonate ((S,S)-Fe(pdp))50,
which gave the desired alcohol 22 in 65% yield via 21. It is
noteworthy, however, that this reaction required a stoichiometric
amount of an iron reagent (Table 3, entry 3). In an attempt to
improve the yield, we investigated the use of dimethyldioxirane
(DMDO) and methyltrifluromethyldioxirane (TFDO)51. The use
of an excess of DMDO resulted in a slow reaction (i.e. starting
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j p-toluenesulfonic acid, benzene, reflux, 49% (three steps); k OsO4, 4-methylmorpholine N-oxide, acetone–tBuOH–H2O, 63% (dr 14:1); l TESCl, imidazole,
DMF, 76%; m tBuOK, HCO2Me, THF; n 5-bromo-3-methylfuran-2-one, K2CO3, 1-methyl-2-pyrrolidinone, 57% (two steps), dr 1:1; o Dess–Martin
periodinane, CH2Cl2–pyr, 39% (for 28) and 36% for (C2′-epi-28); p HF·pyr, THF, 97% (for 1), 11% (for C2′ epi-1). Bz Benzoyl, TES triethylsilyl, TFDO
methyl(trifluromethyl)dioxirane
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material remaining after 1 day) (Table 3, entry 4), whereas the use
of TFDO at 0 °C gave a mixture of alcohol 22 and lactone 23,
presumably because of its high reactivity (Table 3, entry 5). This
reaction was subsequently performed at −78 °C to improve the
regioselectivity and proceeded smoothly to give 22 in excellent
yield (Table 3, entry 6).

The final stage of the total synthesis involved the formation of an
α-hydroxyketone and the introduction of the D ring of avenaol.
Mesylation of the alcohol moiety in 22, followed by the substitution
of the resulting mesylate with cyanide gave the corresponding nitrile
(Fig. 5). The subsequent reduction of the ketone moiety, hydrolysis
of the nitrile and benzoyl protecting groups, followed by an acidic
treatment, resulted in the formation of the lactone ring to give 25.
To avoid the possibility of an intramolecular cyclisation between the
α position of the lactone and the C2 position of the A ring
(Supplementary Fig. 5), we proceeded via the dehydration of the
alcohol rather than an oxidative transformation. The stereoselective
dihydroxylation of 2, followed by the selective protection of the
alcohol at the C3, gave 26 with excellent selectivity. Formylation,
followed by the introduction of a butenolide unit 2716 gave a
mixture of C2′ epimers. Dess–Martin oxidation gave the protected
avenaol 28, which was separated from the corresponding C2′ epi-28
by column chromatography over silica gel. To determine the
stereochemistry, the silyl groups in both 28 and C2′ epi-28 were
subsequently removed using HF·pyridine to give avenaol (1) and
C2′ epi-1, respectively. Despite the low yield for the latter of these
two reactions, we were able to obtained a crystal of C2′ epi-1 for
X-ray crystallography. The X-ray crystal structure of C2′ epi-1
confirmed that the relative stereochemistry between C2′ and C8 was
as shown in Fig 5. Moreover, the spectroscopic data obtained for
synthetic avenaol (1) (i.e. 1H, 13C NMR and HRMS) were identical
to those of the natural sample 19. These results therefore confirm
that the proposed structure is correct.

Discussion
In summary, we have achieved the total synthesis of avenaol. The
key feature of this synthesis is the use of an alkylidenecyclopro-
pane, which allowed for the robust formation of an
all-cis-substituted structure via a stereoselective double-bond
isomerisation and avoided the cleavage of the cyclopropane ring

and the formation of a caged structure. The regioselective for-
mation and C–H oxidation of a tetrahydrofuran ring were also
important steps in this synthesis. The interesting structural fea-
tures of avenaol, including its all-cis-substituted cyclopropane
were confirmed to be correct as a consequence of our total
synthesis. This established route has provided synthetic samples
for further biological evaluation and is also suitable for the
synthesis of a range of analogues. Furthermore, this strategy will
provide a platform for the synthesis of other natural products
containing this structure. The extension of this strategy to
structurally related natural products, as well as structure–activity
relationship studies of avenaol, are currently underway.

Methods
General. All non-aqueous reactions were run in dried glassware under a positive
pressure of argon atomosphere. Reactions were monitored by thin-layer chroma-
tography using Silica gel 60 plates (Merck, Darmstadt, Germany). Silica gel column
chromatography was performed using Chromatorex BW-300 (Fuji silysia, Aichi,
Japan) and Kanto silica gel 60 (particle size 63–210 μm, Kanto, Tokyo, Japan).
Proton nuclear magnetic resonance (1H NMR) spectra were taken with a JNM-AL
400 (JEOL) at 400MHz or a JNM-ECA 500 (JEOL, Tokyo, Japan) at 500MHz.
Chemical shifts were measured relative to the residual solvent peak in C6D6 (δ 7.16)
or Me4Si (δ 0.00) in CDCl3. Multiplicity was indicated by one or more of the
following: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); br (broad).
Carbon nuclear magnetic resonance (13C NMR) spectra were recorded on a JNM-
AL 400 at 100MHz or a JNM-ECA 500 at 126MHz. Chemical shifts were mea-
sured relative to CDCl3 (δ 77.0) or C6D6 (δ 128). Infrared spectra were collected on
a FT/IR-4100 Fourier-transform infrared spectrometer (JASCO, Tokyo, Japan) as
ATR (attenuated total reflectance). Low and high-resolution mass spectra were
recorded on a LCMS-IT-TOF (Shimadzu, Kyoto, Japan) for ESI-MS and JMS-700
mass spectrometer (JEOL) for FAB-MS.

Experimental data. For the experimental procedures and spectroscopic and
physical data of the compounds and the crystallographic data of C2′-epi avenaol,
see Supplementary Methods. For NMR spectra of synthetic intermediates, see
Supplementary Figs. 5–35. For the comparisons of 1H and 13C NMR spectra of the
natural and synthetic avenaol, see Supplementary Figs. 36 and 37.

Data availability. The X-ray crystallographic coordinates for the structure of
C2′-epi avenaol have been deposited at the Cambridge Crystallographic Data
Centre (CCDC), under deposition number 1544731. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif. Other data are available from the authors upon rea-
sonable request.

Table 3 C–H oxidation of tetrahydrofuran 20

Me

O

H
OBz

22O
Me

H

OH
OBz

20

Me

O

H
OBz

oxidative 
conditions

23

O

O
Me

H

OH
OBz

O

24

Entry Conditions Yield of 22a

1 CrO3, AcOH, rt 0% (23: 35%)
2 RuCl3, NaIO4,CCl4–MeCN–pH7 buffer, rt 0% (23: 7%, 24: 33%)
3 (S,S)-Fe(pdp), AcOH, aq. H2O2, rt 65%
4 DMDO, CH2Cl2, rt 22% (30% brsm)
5 TFDO, CH2Cl2, 0 °C 24% (23: 36%)
6 TFDO, CH2Cl2, −78 °C 96%

DMDO, dimethyldioxirane, pdp, N,N’-bis(2-pyridylmethyl)]-2,2′-bipyrrolidine, TFDO, methyl(trifluoromethyl)dioxirane
aIsolated yield
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