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Abstract Understanding of the formative conditions of fluvial bedforms is significant for both river
management and geological studies. Diagrams showing bedform stability conditions have been widely
used for the analyses of sedimentary structures. However, the use of discriminants to determine the
boundaries of different bedforms regimes has not yet been explored. In this study, we use discriminant
functions to describe formative conditions for a range of fluvial bedforms in a 3-D dimensionless
parametric space. We do this by means of discriminant analysis using the Mahalanobis distance. We
analyzed 3,793 available laboratory and field data and used these to produce new bedform phase
diagrams. These diagrams employ three dimensionless parameters representing properties of flow
hydraulics and sediment particles as their axes. The discriminant functions for bedform regimes proposed
herein are quadratic functions of three dimensionless parameters and are expressed as curved surfaces
in 3-D space. These empirical functions can be used to estimate paleoflow velocities from sedimentary
structures. As an example of the reconstruction of hydraulic conditions, we calculated the paleoflow velocity
of the 2011 Tohoku-Oki tsunami backwash flow from the sedimentary structures of the tsunami deposit. In
so doing, we successfully reconstructed reasonable values of the paleoflow velocities.

1. Introduction

Bedforms are topographic features formed by interactions between flow and sediment transport. For exam-
ple, ripples and dunes form under subcritical flows, that is, flows with a Froude number smaller than unity
and frequently observed on the bottom of river channels (Bridge & Demicco, 2008). It has also been observed
that turbidity currents commonly form bedforms migrating upstream on the floor of the deep sea (Hughes
Clarke, 2016). In general, bedform heights and lengths range from several millimeters to hundreds of meters.
Bedforms are classified into several types according to their configuration or size. The presence of bedforms
on a channel bed affects flow resistance via the form drag, so that the prediction of bedform formation and
characteristics, especially dunes, is useful for river management (Best, 2005). Different ranges of flow condi-
tions and sediment grain size result in the formation of bedforms with different characteristics, that is, bedform
phases or bed phases (in the sense of Southard, 1991). Bedform phase diagrams for unidirectional flows have
been proposed on the basis of laboratory and field observations (e.g., Chaubert & Chauvin, 1963; Simons &
Richardson, 1966; Southard & Boguchwal, 1990; van den Berg & van Gelder, 1993) to describe conditions for
equilibrium bedform phase. It is important to mention here that bedform phase diagrams have been pro-
duced also for oscillating (wave) flows and combined wave-current flows (e.g., Dumas et al., 2005; Kleinhans,
2005b; Perillo et al., 2014).

Understanding the bedform formative conditions is also important for geological studies. Bedforms are pre-
served as sedimentary structures in strata, and hence, they are clues to the reconstruction of paleoflow
conditions. Downstream dipping cross lamination is produced by undulating downstream migrating bed-
forms such as ripples and dunes, and parallel lamination is formed by plane beds (Bridge & Best, 1988).
Antidunes produce lenticular lamina sets with concave upward erosional bases (Alexander et al., 2001;
Yokokawa et al., 2010). The presence of bedforms can be identified in the geologic records, for example, in
outcrops, and diagrams for equilibrium bedform phase can be used in the analysis of sedimentary structures
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to reconstruct paleoflow conditions (e.g., Baas et al., 2000). In other words, when the bedform type is identi-
fied from sedimentary structures in geologic sections, bedform phase diagrams can be used to infer a range
of paleoflow velocities based on the bedform formative conditions. In addition, an observed transition of pri-
mary sedimentary structure in strata suggests that flow conditions likely changed during deposition. Thus,
the paleohydraulic condition at the transition between sedimentary structures can be estimated from the
threshold conditions of bedform phases in question. Applications of bedform phase diagrams are not lim-
ited to the analysis of sedimentary structures in fluvial deposits. They have been applied to deposits formed
in various environments such as turbidites (e.g., Baas et al., 2000), megaflooding from glacial lakes (e.g., Alho
et al., 2010), tidal deposits (e.g., Mitchell et al., 2010), and tsunami deposits (Fujiwara & Tanigawa, 2014).
Diagrams employing dimensionless parameters are also applicable to extraterrestrial environments such as
Mars (Kleinhans, 2005a).

In recent years, research has focused on the understanding of bedforms of unconventional type. For instance,
Yokokawa, Takahashi, et al. (2011) and Cartigny et al. (2014) compiled data from laboratory experiments of
Froude (Fr) supercritical flows conducted by themselves and other researchers (e.g., Yokokawa et al., 2010).
They produced bedform phase diagrams showing Fr supercritical regimes such as cyclic steps, which had
not been included in previous bedform phase diagrams (e.g., Southard & Boguchwal, 1990). Furthermore,
Baas et al. (2009, 2013) focused on the effect of cohesive materials on the formation of bedforms, and
Baas et al. (2016) proposed a new phase diagram for bedforms which consist of sand-mud mixtures. These
recent endeavors imply that more comprehensive diagrams are needed to understand the full range of bed-
form development, which presumably requires extension of conventional 2-D diagrams into at least 3-D
alternatives.

In spite of their significance in analyses of sedimentary structures, boundaries of bedform regime in bedform
phase diagrams have tended to be drawn arbitrarily and were rarely examined quantitatively using the robust
inferential methodologies. In addition, the majority of studies have employed only two parameters for their
diagrams, despite the fact that it has been shown that the formative conditions for equilibrium bedforms
are governed by at least three dimensionless parameters (Southard & Boguchwal, 1990; Garcia, 2008). These
dimensional analyses indicate that the threshold conditions between bedform phases should be (hyper) sur-
faces in dimensionless parametric space, not 2-D lines. In several previous studies, however, the threshold
conditions between bedform phases were defined as functions of one or two variable(s) (e.g., van den Berg &
van Gelder, 1993; Vanoni, 1974).

In addition to the visual expression obtained by bedform phase diagrams, quantitative examination of the
threshold conditions of bedform phase can contribute to our understanding of the physical mechanisms of
bedform formation. For example, Izumi and Parker (2009) developed a theory for the weakly nonlinear stabil-
ity analysis of bedforms, which predicts hysteresis in transition between upstream migrating antidunes and
upper plane beds. Their theory is supported by the fact that these bedforms are observed in regions which at
least partially overlap with theoretical predictions.

Here we present novel three-dimensional bedform phase diagrams in which the boundaries between bed-
form phases are determined using discriminant analysis. Discriminant analysis is a statistical method to
determine a function to categorize a set of parameters on the basis of given categorized sets of variables,
the discriminant function. Our discriminant functions were derived on the basis of dimensionless parame-
ters computed from hydraulic data for unidirectional open-channel flows. For simplicity, we employed data
for only equilibrium bedforms consisting of cohesionless siliciclastic particles. Bedforms formed by combined
flows or waves were excluded. In particular, we used 3,438 available laboratory data and 355 available field
data. Two sets of dimensionless parameters are employed to define discriminators for equilibrium bedform
phase. The first set contains dimensionless particle diameter, the Shields parameter, and Froude number, and
the second set contains dimensionless particle diameter, dimensionless flow velocity, and dimensionless flow
depth. We applied the method of discriminant analysis using the Mahalanobis distance (de Maesschalck et al.,
2000), which permits non-Gaussian data distribution. Although it is somewhat difficult to visualize the thresh-
old conditions for bedforms in the new 3-D bedform phase diagrams (because the typical visualization first
involves projection onto a plane), our discriminant analysis provides a simple quadratic polynomial function
of three dimensionless variables to calculate the threshold conditions for bedform phase. These are expressed
as curved surfaces in the 3-D diagrams. The discriminant functions obtained in this study allow us to estimate
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paleoflow velocities from sedimentary structures in strata. We tested our method by reconstructing a back-
wash flow velocity from a tsunami deposit. Reasonable estimates of the flow conditions were obtained from
our analysis.

2. Methodology
2.1. Governing Parameters
Open-channel flow bedforms depend on several parameters that reflect the properties of flows and sediment
grains. Southard and Boguchwal (1990) stated that seven dimensional parameters, including flow velocity,
sediment size, and fluid density characterize the bed state. With the aid of dimensional analysis the number
of parameters characterizing the bedform states can be reduced to four nondimensional parameters. Two
parameters represent the flow conditions, one the sediment size, and one the density difference between the
sediment and the ambient fluid (Garcia, 2008). Bedform phase regimes can be thus expressed in the space
of these dimensionless parameters (e.g., van den Berg & van Gelder, 1993; Chaubert & Chauvin, 1963). In
this study, three dimensionless parameters describing hydraulic conditions and sediment properties are con-
sidered. The density difference between sediment and water was not in the analysis because it was nearly
constant (1.65 for submerged specific gravity) among all experiments and field observations.

The 2-D diagram proposed by Chaubert and Chauvin (1963) describes bedform phase regimes in lower regime
(lower plane beds, ripples, and dunes) using the Shields number 𝜏∗ and the shear Reynolds number Re∗. These
dimensionless parameters are defined respectively as

𝜏∗ =
u∗

2

RgD50
(1)

Re∗ =
u∗D50

𝜈
(2)

where u∗ is the shear velocity, defined as u∗ =
√

ghS, and R is the submerged specific gravity of the sediment,
defined as R = (𝜌s − 𝜌f)∕𝜌f with 𝜌f and 𝜌s respectively denoting the fluid and sediment densities; g is the
acceleration of gravity, h is the flow depth, and S is the bed slope. In addition, D50 denotes the median diameter
of the sediment, and 𝜈 denotes the kinematic viscosity of water. Chaubert and Chauvin diagram also shows the
relationship between bedforms and the dimensionless particle diameter D∗, where D∗ is defined by Bonnefille
(1963) as follows:

D∗ = D50

(
Rg
𝜈2

) 1
3

(3)

Vanoni (1974) used the Froude number Fr and the relative flow depth h∕D50 as metrics of hydraulics and the
ratio of Rep to R

1
2 as the property of sediment particles. The Froude number is defined as

Fr = U√
gh

(4)

where U is the depth averaged flow velocity. The particle Reynolds number Rep is defined as

Rep =
√

RgD50D50

𝜈
(5)

The diagram produced by van den Berg and van Gelder (1993) employed the dimensionless particle diameter
D∗ and a mobility parameter 𝜃′, defined as

𝜃′ = U2

gRD50C′2 (6)

with

C′ = 18 log
4h

D90
(7)

in which C′ is the dimensionless Chézy coefficient related to grain roughness and D90 is the grain size such
that 90% of the bed material is finer. Their diagram was extended to supercritical flow regime by Cartigny et al.
(2014) and to bedforms which contain cohesive clay particles by Baas et al. (2016).
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Southard and Boguchwal (1990) stated that the following four parameters characterize bedform type: dimen-
sionless sediment size D0, dimensionless flow velocity U0, dimensionless flow depth h0, and density ratio 𝜌s/𝜌f .
The three dimensionless parameters above are respectively defined as

D0 = D50

(
𝜌f𝛾

′

𝜇2

) 1
3

= D50

(
Rg
𝜈2

) 1
3

U0 = U

(
𝜌2

f

𝜇𝛾 ′

) 1
3

= U

(
1

𝜈Rg

) 1
3

h0 = h

(
𝜌f𝛾

′

𝜇2

) 1
3

= h

(
Rg
𝜈2

) 1
3

(8)

where 𝜇 denotes fluid viscosity and 𝛾 ′ denotes submerged sediment specific weight. However, they used a
temperature of 10∘C as a reference temperature and proposed 10∘C-equivalent depth-velocity-size diagram
which can then be modified for application to other temperatures. It is seen from a comparison of equation (3)
and the first of equation (8) that D∗ and D0 are identical.

In the present study, we employ two sets of dimensionless parameters to describe the bedform phase regimes.
The first set is D∗-𝜏∗-Fr, and the second set is D0-U0-h0. The former set of dimensionless parameters D∗-𝜏∗-Fr
has an advantage in terms of the physical interpretation. For example, when Fr is high, the water surface may
become unstable, and the resulting surface waves affect sediment transport and therefore can give rise to
antidunes (Kennedy, 1963). In addition, Fr is convenient to distinguish Fr supercritical from subcritical flows.
The disadvantage of using Fr and 𝜏∗ is that both parameters contain the flow depth; in other words they are not
independent. This notwithstanding, here we employed Fr and 𝜏∗ as dimensionless metrics of flow depth and
velocity, respectively. The latter set of dimensionless parameters D0-U0-h0 contains the parameters D50, U, and
h separately. Therefore, discriminant functions obtained in this parametric space become explicit functions
of D50, U, and h, which is convenient to intuitively grasp the bedform phase regimes.

2.2. Data Processing Procedures
We used 3,438 laboratory data and 355 field data, from the literature, to produce the new diagrams based on
two sets of dimensionless parameters described above. The relevant references are summarized in support-
ing information Table S1, and the data are compiled in Table S2. In general, all bedforms in this study were
assigned to the same class as in the original references without consideration of further subclassifications
provided therein. For the purposes of this study, bedforms were classified into seven types: lower plane beds,
ripples, dunes, transition, upper plane beds, antidunes, and cyclic steps. Definitions of these bedforms are
as follows. Ripples and dunes are downstream migrating bedforms that have gentle slopes along their stoss
sides and steep slopes along their lee sides. Dunes in large rivers commonly have low-angle lee sides (e.g.,
Best et al., 2001). Ripples do not deform the water surface, whereas dunes are out of phase with the water sur-
face waves (Venditti, 2013). These two bedforms are also different in size, such that wavelengths and heights
of dunes are larger than those of ripples (Allen, 1982). Here megaripples and sand waves are regarded as syn-
onymous to dunes (Ashley, 1990). If the bedform length was larger than 0.6 m and the bedform type was not
described in the literature, the bedform in question was classified as dunes. Plane beds are characterized by
nearly flat topography and are subclassified into two types: lower plane beds and upper plane beds. Accord-
ing to Bridge and Demicco (2008), lower plane beds are formed at around the threshold condition for the
inception of sediment particle movement, and upper plane beds occur as the bed shear stress is increased
well above the threshold of motion. Antidunes and cyclic steps are observed under Fr supercritical flow con-
ditions (Cartigny et al., 2014). Antidunes are in phase with water surface waves, and they may migrate either
upstream or downstream (Fukuoka et al., 1982). Although antidunes can be subclassified into several types
such as nonbreaking antidunes (standing waves) and breaking antidunes (Cartigny et al., 2014; Fukuoka et al.,
1982; Guy et al., 1966; Yokokawa, Takahashi, et al., 2011), this study regards these subdivisions collectively as
a single type of bedforms. Cyclic steps are defined as a series of slowly upstream migrating steps (Cartigny
et al., 2014; Parker & Izumi, 2000). The flow rapidly accelerates on the lee side of the cyclic step, and a hydraulic
jump occurs near the boundary between the stoss and lee sides. Chutes and pools have similar features to
cyclic steps (Simons et al., 1965), so that they are regarded as synonymous to cyclic steps.

The ranges of basic variables are as follows. Median particle diameters, flume width, and flow depth of labo-
ratory data range from 11 μm to 23 mm, 0.02 to 4 m, and 1.2 mm to 0.91 m, respectively. The corresponding
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Table 1
Number of Data Points for Each Bedform Type and P Values Calculated Using the Method of Mardia (1970)

Bedform Data P value

type points log10 D∗-log10 𝜏∗-log10 Fr log10 D0-log10 U0-log10 h0

L 94 0 0.15420

R 729 0 0

D 1,487 0 0

T 326 0 0

U 701 0 0

A 420 0.013904 0.035377

C 36 0.078464 0.031336

R&D 2,216 0 0

U&A 1,121 0 0

T&U 1,027 0 0

Note. The null hypothesis tested in this analysis is that the data are distributed according to the Gaussian
data distribution. L: lower plane beds, R: ripples, D: dunes, T: transition, U: upper plane beds, A: antidunes,
C: cyclic steps.

ranges of field data range from 18 μm to 7 mm, from 3.2 to 1136 m, and from 0.2 to 26 m. The flow velocity for
the laboratory data ranges from 0.058 to 2.34 m/s, and that for the field data ranges from 0.31 to 3.75 m/s. In
the same way as van den Berg and van Gelder (1993), 𝜈 is assumed to be a function of temperature according
to the relation for clear fresh water:

𝜈 = [1.14 − 0.031(T − 15) + 0.00068(T − 15)2]10−6 (9)

Figure 1. Conceptual diagram of the apparent error rate. Black circles and
white squares denote different types of bedforms. The solid line, which
indicates the discriminant function f (x, y) = 0, divides parametric space into
regions dominated by black circles and white squares. The squares above
the solid line and the circles below the solid line are misclassified. The ratio
of the number of misclassified data points to the total number of data
points is the apparent error rate.

where T is temperature in degrees Celsius. A value of 20∘C was assumed
for data whose water temperature was not reported. The water tempera-
ture T for the laboratory and field data ranged from 1.67 to 65.56∘C and
from 1.1 to 31.5∘C, respectively. The submerged specific gravity R ranged
from 1.61 to 1.7 in the laboratory data. The corresponding value for all the
field data was assumed to be equal to 1.65 (the value for quartz). Labo-
ratory flumes have smooth side walls and a rough bed which consists of
sediment grains, so that shear stress on the side wall differs from that on
the bed. Hence, the method of Chiew and Parker (1994) has been applied
to remove the influence of side walls in determining bed shear stress for
the experimental data. We have thus accounted for the side wall effect
in computing the Shields mobility number 𝜏∗b based on the bed shear
stress (see Appendix A for details). Hereafter, we use the symbol 𝜏∗ for
both 𝜏∗ and 𝜏∗b for convenience. Moreover, the hydraulic conditions related
to the formation of bedforms range very widely, and it was difficult to
produce discriminant functions of bedform phases in linear parametric
space. Therefore, we employed log-transformed parameters to obtain the
discriminant functions.

2.3. Discriminant Analysis
We applied the method of discriminant analysis to identify the thresh-
old conditions for bedform phase. Discriminant analysis is a statistical
method of the supervised classification, which determines a function to
categorize a set of parameters on the basis of given categorized sets of
variables. Some classification methods (e.g., linear discriminant analysis,
Fisher, 1936) assume that the variables of each data group follow normal
distributions. Therefore, data were subjected to normality tests prior to
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Figure 2. Three-dimensional phase diagram as a log10 D∗-log10 𝜏∗-log10 Fr
cube. For convenience, we use the axis label log10 𝜏∗ for both experimental
and field data.

analysis to select the most appropriate classification method. The para-
metric space in this study consists of multivariables; as such the method
of Mardia (1970) was used. We tested distributions of parameters catego-
rized into bedform type as follows: lower plane beds (L), ripples (R), dunes
(D), transition (T), upper plane beds (U), antidunes (A), cyclic steps (C),
lower regime bedforms (ripples and dunes: R&D), upper regime bedforms
(upper plane beds and antidunes: U&A), and transition and upper plane
beds (T&U). The categories R&D and U&A were tested in order to compare
our discriminant functions with those of Karim (1995).

The results of the normality test were not significant for most groups of
variables at the 5% level (Table 1). In other words, we could not accept
the null hypothesis that the data were normally distributed, indicating
that nonparametric discriminant analysis is appropriate herein. Thus, the
classification method using the Mahalanobis distance (de Maesschalck
et al., 2000), which does not make assumptions on the shape of distribu-
tions, was adopted to obtain the boundaries of bedform phase regimes.
The Mahalanobis distance is the distance between a data point and a
categorized group of data points in parametric space, defined as follows:

DM(x) =
√
(x − 𝝁)′Σ−1(x − 𝝁) (10)

in which 𝝁 denotes the mean vector of a group and Σ denotes the covari-
ance matrix. Using the Mahalanobis distance, this method assigns a data
point to the group that shows the shortest distance among all categorized
groups. In other words, a data point showing equivalent distances to two
different groups can be regarded as a point on a boundary between two

groups. Hence, the discriminant function which classifies data points to group A and group B is derived by
solving the following equation:

DA
M(x) = DB

M(x) (11)

where DA
M and DB

M are the Mahalanobis distances from x to groups A and B, respectively. The discriminant func-
tions are inevitably quadratic polynomials because the Mahalanobis distance of an observation x is expressed
as x squared.

In this study, the parameter 𝝁 for each bedform type consists of three dimensionless parameters, that is,
D∗-𝜏∗-Fr or D0-U0-h0. As a result, discriminant functions were derived as quadratic surfaces for specific pairs
of bedform types, as defined later. Two kinds of error rates of each function were calculated to evaluate the
reliability of the discriminant functions. One is the apparent error rate EApp, which is the observed inaccuracy
of the fitted model applied to the original data points (Efron, 1986). Figure 1 is a conceptual diagram of the
apparent error rate. The other error rate is the result of leave-one-out cross-validation ELOO (Kohavi, 1995).
Leave-one-out cross validation is a method to estimate prediction error (Hastie et al., 2009). In this validation
method, one data point is chosen as the validation data, and the other points are chosen as the training data.
Discriminant analysis is conducted with the training data, and the performance of the resulting function is
then tested against the validation data. This procedure is repeated, and the prediction error rate is eventually
obtained from the ratio of misclassification of the validation data to the total number of data points.

3. Results
3.1. Three-Dimensional Bedform Phase Diagram
This study resulted in new bedform phase diagrams in which three dimensionless parameters are employed
as axes of 3-D diagrams (Figures 2 and 4). Figures 2 and 4 show diagrams using log10 D∗-log10 𝜏∗-log10 Fr axes
and log10 D0-log10 U0-log10 h0 axes, respectively. In addition, 2-D diagrams showing data projected on a plane
of two dimensionless parametric space were also constructed (Figures 3 and 5).

3.1.1. The log10 D∗-log10 𝝉∗-log10 Fr Diagram
Figure 2 shows the three-dimensional distribution of bedform phase regimes in the parametric space of
log10 D∗-log10 𝜏∗-log10 Fr. Figures 3a–3c are 2-D diagrams projected from the log10 Fr, log10 𝜏∗, and log10 D∗

OHATA ET AL. NEW BEDFORM PHASE DIAGRAMS 2144



Journal of Geophysical Research: Earth Surface 10.1002/2017JF004290

Figure 3. New bedform phase diagrams projected onto (a) the log10 D∗-log10 𝜏∗ plane, (b) the log10 D∗-log10 Fr plane,
and (c) the log10 𝜏∗-log10 Fr plane.
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Figure 4. Three-dimensional phase diagram as a log10 D0-log10 U0-log10 h0

cube.

axis direction, respectively. Lower plane beds tend to occur for log10 𝜏∗
less than −1 (𝜏∗ < 0.1) and for log10 D∗ larger than 0.5 (D∗ > 3.16)
(Figures 3a–3c). Lower plane beds do not form for log10 Fr higher than 0
(Fr > 1) (Figures 3b and 3c). Ripples tend to occur for log10 Fr less than−0.2
(Fr < 0.63) (Figures 3b and 3c) and for log10 D∗ less than 1.5 (D∗ < 31.6)
(Figures 3a and 3b) and form within a range of values of log10 𝜏∗ that is
higher than that of lower plane beds (Figures 3a and 3c). Dunes form in
the field where either log10 Fr or log10 D∗ is higher than the range for rip-
ples (Figures 3a–3c). In addition, the range of values of log10 𝜏∗ in the dune
region is about the same as that of ripple region (Figures 3a and 3c). The
transition region overlaps other regions and mainly extends between the
dune region and upper plane bed region. Most transition data points exist
in the field for which log10 Fr is larger than −0.4 (Fr > 0.4) and log10 𝜏∗ is
larger than −0.5 (𝜏∗ > 0.32) (Figure 3c). Upper plane beds form for log10 Fr
larger than −0.4 (Fr > 0.4) (Figures 3b and 3c). Many data points for upper
plane beds plot in the field for which log10 𝜏∗ is larger than−0.5 (𝜏∗ > 0.32),
but some data points plot in the field for which log10 𝜏∗ is less than −1
(𝜏∗ < 0.1) and overlap the lower plane bed region (Figures 3a and 3c).
Antidunes data points plot such that log10 Fr is above −0.2 (Fr > 0.63) and
log10 𝜏∗ is above −1 (𝜏∗ > 0.1) (Figures 3a–3c). Some data points overlap
the upper plane bed region and the transition region (Figures 3a–3c).
Cyclic steps tend to plot in the range where log10 𝜏∗ exceed approximately
0.2 (𝜏∗ > 1.58) (Figures 3a and 3c). In addition, cyclic steps plot in a region
for which log10 Fr can be as high as 0 (Fr ∼ 1) (Figures 3b and 3c). In the
2-D diagrams, the domain 0.5 < log10 D∗ < 1.5, −1 < log10 𝜏∗ < 0, and
−0.6 < log10 Fr < 0 (3.16 < D∗ < 31.6, 0.1 < 𝜏∗ < 1, and 0.25 < Fr < 1)
contains several types of bedforms (Figure 3).

3.1.2. The log10 D0-log10 U0-log10 h0 Diagram
Figure 4 shows the three-dimensional distribution of bedform phase in the parametric space of
log10 D0-log10 U0-log10 h0. Figures 5a–5c are 2-D diagrams projected from the log10 h0, log10 U0, and log10 D0

axis direction, respectively. Lower plane beds are found on a regime such that log10 h0 varies from 2.5 to 4
(316 ≤ h0 ≤ 104) (Figures 5b and 5c). Further, lower plane beds form in the range for which log10 U0 is less
than 1.5 (U0 < 31.6) (Figures 5a and 5c). The ranges of log10 U0 and log10 h0 corresponding to the ripple region
are nearly identical to those of lower plane beds (Figure 5c). Figures 5a and 5b show that ripples are found
for log10 D0 less than about 1.2 (D0 < 15.8). The dune region extends into higher range of values of log10 U0

domain than the ripple region (Figures 5a and 5c). The dune region lies between values of log10 h0 of 2.5 and
about 5.6 (316 ≤ h0 ≤ 398,110) (Figures 5b and 5c). The transition region overlaps other regions and mainly
extends between dunes and upper plane beds region, as was the case for the log10 D∗-log10 𝜏∗-log10 Fr dia-
gram (Figures 2 and 4). Upper plane beds mainly form in the field for which log10 U0 is larger than 1.2 (U0 >15.8)
(Figures 5a and 5c). The range of values of log10 h0 in the upper plane bed region is as wide as that of the dune
region (Figures 5b and 5c). Data points for antidunes are scattered around the domain 0.8 < log10 U0 < 2.0
and 1.5 < log10 h0 < 4 (6.3 < U0 < 100 and 31.6 < U0 < 104) (Figures 5a–5c). In particular, Figure 5c shows
that the larger the log10 h0, the larger the log10 U0 needed to form antidunes. Cyclic steps form for conditions
similar to those of antidunes (Figure 5c). Additionally, the overlapping region between cyclic steps and other
bedforms is clearer than the log10 D∗-log10 𝜏∗-log10 Fr diagram (Figures 3c and 5c). In the 2-D diagrams, the
domain 0.5 < log10 D0 < 1.5, 1.2 < log10 U0 < 1.6, and 3 < log10 h0 < 4 (3.16 < D0 < 31.6, 15.8 < U0 < 39.8,
and 103 < D0 < 104) contains several kinds of bedforms (Figure 5).

3.2. Discriminant Functions
We have determined discriminant functions for the following boundaries: L-R, R-D, D-T, T-U, U-A, A-C, D-U,
R&D-T, T-U&A , R&D-T&U, and T&U-A. The discriminant functions take the form

𝛼1X2 + 𝛼2Y2 + 𝛼3Z2 + 𝛼4XY + 𝛼5YZ + 𝛼6XZ + 𝛼7X + 𝛼8Y + 𝛼9Z + 𝛼10 = 0 (12)

where X denotes log10 D∗ or log10 D0, Y denotes log10 𝜏∗ or log10 U0, and Z denotes log10 Fr or log10 h0. The
coefficients of the discriminant functions 𝛼i (i = 1, 2,… , 10) are summarized in Tables 2 and 3. Table 2 shows
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Figure 5. New bedform phase diagrams projected onto (a) the log10 D0-log10 U0 plane, (b) the log10 D0-log10 h0 plane,
and (c) the log10 U0-log10 h0 plane.
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Table 2
Coefficients of Discriminant Functions Expressed in Terms of log10D∗-log10𝜏∗-log10Fr Axes

Boundary 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

L-R −45.852 −16.41 −11.665 −58.652 6.921 16.673 49.523 47.742 −17.481 1.428

R-D 40.217 19.455 20.114 51.264 −21.183 −32.735 −42.358 −22.774 30.391 13.674

D-T −0.81876 −13.661 −4.8051 −9.6952 8.3125 11.423 −6.3066 2.4187 6.7753 10.319

T-U 4.6385 13.976 −2.8831 10.53 11.247 1.8652 −6.2307 −2.91 2.8736 2.3908

U-A 6.0004 −2.7535 −23.469 4.3836 −19.219 −23.388 −6.7601 −0.73867 26.841 1.7883

A-C −4.0227 −28.199 −83.101 −15.33 −96.017 −65.101 12.178 46.627 86.111 −14.026

D-U 3.8197 0.31551 −7.6881 0.8349 19.559 13.288 −12.537 −0.49125 9.6489 12.71

R&D-T −2.3063 −13.887 −1.6238 −12.117 8.3288 10.841 −1.5096 6.8203 9.4663 8.2113

T-U&A 8.821 15.069 −3.5122 15.634 8.2078 −5.2503 −11.783 −6.1084 9.6981 4.4626

R&D-T&U 1.3729 −0.64461 −2.9068 2.5702 17.594 12.381 −6.0229 4.7881 11.461 9.9712

T&U-A 6.9596 −2.0194 −25.069 5.3665 −17.237 −23.063 −8.4775 −1.6164 27.72 2.4193

Note. All abbreviations are as defined in Table 1.

the coefficients of the discriminant functions which use the set log10 D∗-log10 𝜏∗-log10 Fr, and Table 3 shows
the coefficients of discriminant functions which use the set log10 D0-log10 U0-log10 h0.

Table 4 shows the error rates for each function. In the region at the boundary between the transition regime
to upper regime bedforms (T-U, U-A, and T-U&A), the apparent error rates are higher than 23% and up to
36%. Meanwhile, the apparent error rates are lower than 19% in the region at the boundary between lower
regime to the transition regime (R-D, D-T, and R&D-T). Compared to the parameter ELOO of the discrimi-
nant functions of the two dimensionless parameter sets, the discriminant functions in the parametric space
log10 D∗-log10 𝜏∗-log10 Fr are more reliable for describing the boundaries of L-R, U-A, A-C, D-U, and T&U-A. On
the other hand, the discriminant functions in the parametric space log10 D0-log10 U0-log10 h0 are more reliable
for describing the boundaries of R-D, D-T, T-U, R&D-T, T-U&A, and R&D-T&U. These boundaries are illustrated
in Figures 6 and 7. The quantitative boundaries are expressed as 2-D lines without the data points in Figure 8.

4. Application to the 2011 Tohoku-Oki Tsunami Deposit

We apply our results here for the reconstruction of the paleoflow velocity of the 2011 Tohoku-Oki tsunami
deposit. Paleoflow velocities can be reconstructed by solving the discriminant functions for U. The discrimi-
nant functions which are in the dimensionless form fND(D∗, 𝜏∗, Fr) = 0 or fND(D0,U0, h0) = 0 can be recast in
the dimensional form fD(U,D50, h) = 0. Consequently, the flow velocity U is obtained by substituting D50 and
h into the recast dimensional discriminant functions.

Table 3
Coefficients of Discriminant Functions Expressed in Terms of log10D0-log10U0-log10h0 Axes

Boundary 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

L-R 9.6579 48.535 −6.1939 −80.509 6.2728 −6.5707 75.981 −15.832 37.845 −95.503

R-D 6.8182 −8.8847 7.7118 2.2824 17.205 3.3619 −24.329 −19.281 −74.929 133.65

D-T −1.0718 −15.016 −1.2217 0.41986 −19.432 −2.0878 0.20258 146.65 29.911 −163.24

T-U 4.268 69.347 0.38717 −17.728 −0.80278 4.0865 5.9918 −192.79 −5.6765 154.38

U-A 1.4488 −42.174 −7.0204 −3.4779 35.455 3.6859 −9.2341 29.871 −16.851 6.7306

A-C −14.965 −9.8653 −11.258 −21.656 24.302 33.034 −54.844 −40.14 11.278 39.842

D-U 3.1962 54.331 −0.83458 −17.308 −20.235 1.9987 6.1944 −46.134 24.234 −8.8574

R&D-T 0.049927 −32.149 −0.74641 −3.1144 −16.902 −1.8706 2.3732 192.4 22.602 −185.24

T-U&A 4.9597 66.845 −0.14943 −17.791 2.1128 5.1229 1.3442 −192.1 −8.4096 160.11

R&D-T&U 3.5783 32.145 −0.38636 −19.83 −17.85 1.2205 11.329 14.627 18.463 −46.464

T&U-A 2.1884 −37.122 −6.9932 −4.4898 35.6 4.6814 −12.198 14.851 −18.388 22.336

Note. All abbreviations are as defined in Table 1.
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Table 4
Error Rates of Each Function

log10 D∗-log10 𝜏∗-log10 Fr log10 D0-log10 U0-log10 h0

Boundary EApp (%) ELOO (%) EApp (%) ELOO (%)

L-R 15.067 15.188 27.339 27.582

R-D 18.863 19.043 18.908 18.998

D-T 14.396 14.562 10.259 10.370

T-U 34.567 35.151 33.204 34.177

U-A 32.917 33.095 35.593 35.772

A-C 6.1404 6.7982 11.623 11.842

D-U 17.550 17.687 21.115 21.207

R&D-T 12.785 13.021 8.5366 8.5759

T-U&A 24.326 24.741 22.668 22.806

R&D-T&U 22.418 22.448 20.506 20.598

T&U-A 32.205 32.619 36.006 36.351

Note. Here EApp is apparent error rate and ELOO denotes results of leave-one-out cross
validation.

When we apply the discriminant functions to the sedimentary structures in rock records, it is necessary to con-
sider the process of bedform development and the preservation potential of bedforms, since bedforms are not
always at their equilibrium state. However, the discriminant functions considering the nonequilibrium condi-
tions are not currently available, so that we assume the equilibrium state and intact preservation of bedforms
as an approximation for the estimation of paleoflow conditions. Bedform preservation under nonequilibrium
conditions is a future challenge for the definition of bedform phase diagrams.

We analyzed the tsunami deposit at Rikuzentakata City reported by Naruse et al. (2012). The deposit at Locality
93 of Naruse et al. (2012) shows cross laminae of dunes overlain by parallel laminae of upper plane beds
(see Naruse et al., 2012, Figure 6C). This succession of sedimentary structures implies that the bed state was
transiting from dunes to upper plane beds. Here we estimate the paleoflow condition at the time when this
bedform transition occurred. The discriminant function of these two bedform phases must be equal to 0 at
this timing. In this study, the discriminant function between the dune region and the upper plane bed region
is defined as follows:

3.8197(log10 D∗)2 + 19.559(log10 𝜏∗)2 − 7.6881(log10 Fr)2

+ 0.8349 log10 D∗ log10 𝜏∗ + 19.866 log10 𝜏∗ log10 Fr + 13.288 log10 D∗ log10 Fr

− 12.537 log10 D∗ − 0.49125 log10 𝜏∗ + 9.6489 log10 Fr + 12.71 = 0

(13)

We employ the relation of Keulegan (1938) to estimate u∗, since S cannot be determined in this case. The shear
velocity u∗ is defined as follows:

u∗ =
U
Cz

(14)

with

Cz =
1
𝜅

log

(
11h

ks

)
(15)

Here Cz denotes the nondimensional Chézy coefficient according to Keulegan (1938),𝜅 is the Karman constant
(= 0.4), and ks is the roughness height. The roughness height ks is estimated by ks = 2.5D50. The reduced form
of equation (13) with D50 = 0.3635 × 10−3 m and T = 20∘C is obtained as follows:

9.7477 log
U

9.81h
1
2

+ 0.13582 log
27.193U2

(log 12105h)2
+ 0.059509

{
log

27.193U2

(log 12105h)2

}2

+ 3.6891 log
U

9.81h
1
2

log
27.193U2

(log 12105h)2
− 1.4501

(
log

U

9.81h
1
2

)2

+ 4.1793 = 0

(16)
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Figure 6. Discriminant functions expressed as quadratic surfaces in a log10 D∗-log10 𝜏∗-log10 Fr 3-D diagram. The gray
surfaces separate two fields of bedform type. Each of the surfaces is viewed from two different angles. (a, b) L-R
boundary; (c, d) U-A boundary; (e, f ) A-C boundary; (g, h) D-U boundary; and (i, j) T&U-A boundary. All abbreviations are
as defined in Table 1.
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Figure 7. Discriminant functions expressed as quadratic surfaces in a log10 D0-log10 U0-log10 h0 3-D diagram. The gray
surfaces separate two bedform fields of bedform type. Each of the surfaces is viewed from two different angles. (a, b)
R-D boundary; (c, d) D-T boundary; (e, f ) T-U boundary; (g, h) R&D-T boundary; (i, j) T-U&A boundary; and (k, l) R&D-T&U
boundary. All abbreviations are as defined in Table 1.
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Figure 8. (left column) Schematic diagrams of log10 𝜏∗-log10 Fr for fine, medium, and coarse sand. Dashed lines denote
the critical Shields number defined by Garcia (2008) as follows: 𝜏∗c = [0.22Rep

−0.6 + 0.06exp(Rep
−0.6)]∕2. (right column)

Schematic diagrams of log10 U0-log10 h0 for fine, medium, and coarse sand.
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Table 5
Estimated Values of Paleoflow Velocity at the Transition From Dunes to
Upper Plane Beds

Method Paleoflow velocity (m/s)

Naruse et al. (2012) 3.0 <

Fritz et al. (2012) 3.0–11.0

This study (h = 0.8 m) 0.449 or 1.905

This study (h = 2 m) 0.416 or 3.239

This study (h = 9 m) 0.382 or 7.271

Although the representative grain size can be measured from the deposit, recon-
struction of the paleoflow velocity by equation (16) requires estimates of the
flow height h. Fritz et al. (2012) reported that the maximum tsunami height at
Kesennuma Bay reached 9 m and the mean height after its peak was 1–2 m. Over
time, tsunami height diminished to about 0.8 m. The inundating flow height of
the Tohoku-Oki Tsunami was nearly constant (1–2 m) for about 20 min. It is known
that bedforms can be established within 5 min on sandy beds Baas et al. (2013).
For this reason, we conclude that data for equilibrium bedforms can be used as an
approximation in this case. We set the values of 0.8, 2, and 9 m as possible values
for the flow height at the study site.

As a result of the solution of equation (16), we obtained estimates of the velocity of
the backwash flow ranging from 0.382 to 0.449 m/s and 1.90 to 7.27 m/s (Table 5).

Figure 9 shows bedform phases of dunes and upper plane beds projected on the log10 𝜏∗-log10 Fr plane and
the result of reconstruction. The value of log10 D∗ plotted in this diagram ranges from 0.863 to 1.063 (7.29 ≤

D∗ ≤ 11.6). The dashed line denotes equation (13) with D50 = 0.3635 × 10−3 m and T = 20∘C.

It should be noted that the discriminant functions can have multiple real number solutions because they are
quadratic polynomial functions. In other words, as a result of solutions of the discriminant functions, we may
obtain multiple values of the flow velocities corresponding to a single value of flow depth. These multiple
solutions require careful examination for judging whether or not the results are applicable. In the case of this
study, small estimates of flow velocities (0.382, 0.416, and 0.449 m/s) and large estimates (1.905, 3.239, and
7.271 m/s) were obtained as solutions of the discriminant functions. All the small estimates and the large esti-
mate for a flow depth of 0.8 m (1.905 m/s) are lower than the threshold velocity of critical motion of the largest
grains in the deposit (3.0 m/s) reported by Naruse et al. (2012). As a result, they were not considered as rea-
sonable solutions. Accordingly, the large flow velocities for flow depths of 2 and 9 m (3.239 and 7.271 m/s)
were interpreted as probable values of the tsunami backwash flow velocity (Figure 10). These probable val-
ues are consistent with the estimates of previous studies. Fritz et al. (2012) determined the velocity of the
tsunami surface current at Kesennuma Bay using digital particle image velocimetry analysis. They estimated
that the flow velocity ranged from 3 to 11 m/s at flow depth of about 2–3 m. Their measurements imply that

Figure 9. The values of log10 𝜏∗ and log10 Fr for given values of flow depth.
Black rhombuses, squares, and circles denote the results at flow depths h of
0.8, 2, and 9 m, respectively. The dashed line is equation (13) with
D50 = 0.3635 × 10−3 m and T = 20∘C. The discriminant function which
includes the reconstructed data is only described in this figure.

our discriminant functions are useful to reconstruct paleoflow velocities
from geologic records.

5. Discussion
5.1. Significance of the Dimensionless 3-D Bedform Phase Diagrams
The bedform phase diagrams presented here, which employ dimension-
less governing parameters, are useful for a variety of purposes. Southard
and Boguchwal (1990) produced a series of 2-D diagrams using govern-
ing parameters that are not in dimensionless form. Although the use of
dimensional parameters is useful to understand the characteristics of bed-
form phase intuitively, dimensional phase diagrams are difficult to apply
to large-scale flows because of relative paucity of large-scale experimen-
tal data. In contrast, dimensionless diagrams can be applied to large-scale
flows including not only river flows but also subaqueous gravity currents
or flows on other planets (Baas et al., 2000; Kleinhans, 2005a; van den Berg
& van Gelder, 1993). For instance, Kleinhans (2005a) produced a diagram
that shows the boundaries of bedform phases on Earth and Mars. The
acceleration of gravity is included in the dimensionless parameters, so that
the diagrams are valid even in planets with gravitational accelerations or
flowing fluids that differ from Earth.

Our diagrams incorporate data for both Fr-subcritical and Fr-supercritical
flow regimes. The bedforms for both Fr-subcritical and supercritical flow
regimes have rarely been described together in previous dimension-
less 2-D bedform diagrams, such as the diagram by van den Berg and
van Gelder (1993). The diagram of Cartigny et al. (2014) used the Froude
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Figure 10. Estimation of tsunami paleoflow velocity. The solid line is
equation (16), and oblique pattern denotes the region for U below the
threshold velocity of critical motion of the largest grains in the deposit
(3.0 m/s) reported by Naruse et al. (2012). The circles denote the solutions
which exceed 3.0 m/s, and the crosses denote the solutions which are lower
than 3.0 m/s.

number as an axis to illustrate the transition from upper plane bed regimes

to Fr-supercritical flow regime, but it does not focus on Fr-subcritical

bedforms.

As a result of the incorporation of Fr as an axis in addition to flow veloc-

ity and sediment diameter parameters, our diagrams inevitably became

3-D diagrams. The 3-D diagrams clearly show the spatial extent of bedform

phase regimes, whereas there appears to be many overlapping regions

of bedform phase in 2-D diagrams such as that of van den Berg and van

Gelder (1993). This same behavior is apparent when our 3-D phase dia-

grams are projected into 2-D, as shown in Figures 3 and 5. In Figure 3a,

for instance, the domain corresponding to −0.5 < log10 𝜏∗ < 0 and

0.5 < log10 D∗ < 1 (0.316 < 𝜏∗ < 1 and 3.16 < D∗ < 10) contains data

for several kinds of bedforms. This demonstrates that overlapping regions

in 2-D diagrams occur as the result of projection of 3-D diagrams. Stabil-

ity conditions for bedforms are thus better defined in three-dimensional

parametric space.

5.2. Comparison With Previous Discriminant Functions
for Bedform Phase
The discriminant functions based on the new 3-D diagrams express quanti-

tatively the boundaries between bedform regimes. Although a few studies

have proposed discriminant functions, our method is superior in terms of

reproducibility and ease of application to natural flows. Our discriminant

functions can be easily updated when new laboratory or field data become

available, because our method can be used irrespective of the number of

data points.

Here we compare our functions with those of previous studies, in which the boundaries of bedform regime

were expressed using the value of Fr (Karim, 1995; Kennedy, 1963). Figure 11 shows a diagram using the log-

arithmic form of h∕D50 and Fr for its axes, as per the diagram of Karim (1995). Our data set is plotted with

three lines showing boundaries of previous studies. The dashed line is log10 Fr = −0.0737 (Fr = 0.844), which

denotes the discriminator derived theoretically by (Kennedy, 1963), and the two solid lines denote criteria

proposed by Karim (1995). The diagram shows that lower plane beds occur for log10 Fr less than 0. Data points

for ripples and dunes are scattered around the field for log10 Fr less than 0.2 and for log10 h∕D50 between 1

and about 5 (Fr < 1.58 and 10 ≤ h∕D50 ≤ 105). The transition region overlaps other regions, including dune

and upper plane bed regions. Most transition data points fall in the region corresponding to log10 Fr larger

than −0.4 and log10 h∕D50 lower than 4 (0.398 < Fr and h∕D50 < 104). Upper plane beds are positioned in the

range for which log10 Fr is larger than −0.4 and for which log10 h∕D50 falls between 1 and 5 (0.398 < Fr and

10 ≤ h∕D50 ≤ 105). Antidunes and cyclic steps are formed above a value of log10 Fr of −0.2 and below a value

of log10 h∕D50 of 3.5 (0.631 < Fr and h∕D50 < 3162).

Kennedy (1963) and Karim (1995) published equations using Fr to express the threshold conditions of bed-

form phase. Kennedy (1963) stated that the bedform phase transition from upper plane beds to antidunes

occurs when the Froude number equals 0.844. The apparent error rate of the criterion Fr = 0.844 is found

to be 32.3% (Figure 11) from our data set, while the apparent error rate of our discriminant function in the

log10 D∗-log10 𝜏∗-log10 Fr diagram is 32.9%. The apparent error rates of our functions and Fr = 0.844 are nearly

equal; however, many points of upper plane beds plot above the criterion Fr = 0.844 as shown on Figure 11.

In fact, 46.6% of upper plane beds plot above Fr = 0.844, whereas 8.4% of antidunes plot below the criterion.

Thus, Kennedy’s criterion generally fails to predict the upper plane beds even though the total apparent error

rate seems identical to our study. On the other hand, the apparent error rates of our discriminant function

for upper plane beds and antidunes are 35% and 29.5%, respectively. Hence, our discriminant function rep-

resents an improvement of the previous criterion Fr = 0.844 to predict the boundary between upper plane

beds and antidunes.
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Figure 11. Diagram of log10
h

D50
-log10 Fr with the criteria Fr = 0.844,

equations (17) and (18). The dashed line denotes log10 Fr = −0.0737
(Fr− = 0.844). The lower and upper solid lines correspond to equations (17)
and (18), respectively.

Karim (1995) proposed two discriminant functions Ft and Fu for boundaries
between (i) the lower flow and transition regimes and (ii) the transition and
upper flow regimes. These take the following respective forms

Ft = 2.716

(
h

D50

)−0.25

(17)

Fu = 4.785

(
h

D50

)−0.27

(18)

The apparent error rates of these functions are 8.77% and 53.3%, respec-
tively. The apparent error rates of the function Ft and Fu were higher than
those of this study (8.54% and 22.7%). Although the apparent error rate
of Ft was low since the boundary between the lower flow and transition
regimes happens to be linear in the log10

h
D50

-log10 Fr plane, other bound-
aries of bedform phase generally show curved geometry. Our method
is suitable to obtain the discriminant functions for any combinations of
bedform phase.

In addition, the reliability of the boundaries published by previous studies
cannot be tested with statistical methods such as the information crite-
rion since it was derived by theoretical analysis. This study corresponds to
first comprehensive attempt to perform the statistical analysis of bedform
formative conditions, and we infer that comparison of functions using the
information criterion will be effective when other discriminant functions
are proposed in future studies.

5.3. Evaluation of Boundary Properties Between Bedform Phase
Using Discriminant Analysis
Discriminant analysis enables us to evaluate the characteristics of the
boundaries of bedform phase in terms of analytical error rates. In the phase

diagram of Southard and Boguchwal (1990), modes of bed phase transitions were evaluated qualitatively,
using terms such as “abrupt” or “gradual” (see Southard & Boguchwal, 1990, Figure 8). This study provides a
quantitative evaluation for the mode of bedform phase transition using the error rates of discriminant func-
tions. Higher error rates of discriminant functions imply that the corresponding boundaries are rather diffuse
or different regions of bedform phase overlap. Lower error rates of the discriminant functions indicate that the
boundaries between bedform phases are well defined in the parametric space, suggesting that the bedform
phase transition is abrupt.

As a result of our discriminant analysis, we found that the apparent error rates are high (23–36%) at the
boundaries from the transition regime to upper regime bedforms (T-U, U-A, and T-U&A), while they are low
(<19%) at the boundaries from lower regime to the transition regime (R-D, D-T, and R&D-T). The reason why
the boundaries of the upper regime bedforms may not be clearly defined might be explained by invoking
the theoretical analysis of Izumi and Parker (2009). Using a weakly nonlinear stability analysis, they predicted
that the threshold conditions for the transition from plane bed to antidunes can be different from that for the
transition from antidunes to plane bed. This hysteresis in bedform transition can be the reason for the overlap-
ping region in the experimental data, because available research does not generally pertain to the change of
flow conditions. Another possible explanation for the gradual transition of bedform phase is that the phase is
actually a continuum, so that it can change its boundaries with slight perturbations of the conditions. Unclear
boundaries or overlapping of bedform phases could also suggest that significant parameters have not been
considered. This would suggest a need for further theoretical studies. Our method derives the empirical func-
tions without any theoretical assumptions and therefore can provide an independent method for testing the
validation of future theoretical analysis.

5.4. Significance of Discriminant Analysis in Future Studies of Bedforms
We infer that discriminant analysis of bedform phase will become more significant in future studies of bed-
forms. Recent studies have suggested additional governing parameters related to bedform formation. This
means that bedform phase regimes may be defined in more than three dimensions, which is impossible to
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represent graphically. For example, the submerged specific gravity of sediment R has been shown to be an
important parameter for bedform formation (Yokokawa, Tsuji, et al., 2011). The density difference between
sediment and water was not specifically included as an independent parameter in either previous diagrams
or the present study, because it is nearly constant for siliciclastic particles in clear water. However, it can vary
in case of pyroclastic flows and high concentration turbidity currents, as well as for flume experiments using
plastic particles. Further, Baas et al. (2016) stated that it is important to understand the effect of cohesive
material content on the formation of bedforms. Baas et al. (2016) used the fraction of cohesive material in the
sediment as a new parameter in their diagram. Moreover, if bedform phase diagrams are extended to bed-
forms of waves and combined flows, the number of axes will increase more and more. The results of these
studies suggest the addition of extra axes to our 3-D diagram of bedform phase, again making it impossible to
visualize. This notwithstanding, our method can still yield discriminant functions irrespective of the number
of parametric axes, as well as the number of data points and bedform types. We can derive formative con-
ditions using discriminant analysis, and the properties of bed phase boundaries can be examined from the
error rates of the analysis without any visualization. Thus, as the study of bedforms advances in future, our
methodology has the potential to provide further useful information about bedforms.

6. Conclusions

We compiled 3,793 open-channel flow laboratory and field data from previous studies. On the basis of this
data set, new bedform phase diagrams, which express the formative fields of bedforms, were developed. We
then derived discriminant functions using discriminant analysis with the concept of the Mahalanobis distance.
The new bedform phase diagrams and discriminant functions enable us to analyze sedimentary structures
without arbitrary assumptions. As an example, we calculated the paleoflow velocity of tsunami. We show that
our method provides reasonable estimates of the velocity of the flow. Our method is also pertinent for the
quantitative examination of the characteristics of bed phase transitions.

Appendix A: Side Wall Correction

The side wall corrected Shields mobility number 𝜏∗b is calculated using the following procedures.

First, the dimensionless friction coefficient for the entire cross section is computed from the laboratory data
with the Darcy-Weisbach resistance relation. Let Cf be the nondimensional friction coefficient, equal to 1/C2

z .
The dimensionless friction coefficient Cf is defined as

Cf =
Sgr
U2

(A1)

Here r is the hydraulic radius for the entire cross section. In this method, the ratio between the dimension-
less friction coefficient Cf and the Reynolds number Re for the entire cross section must be computed. Re is
defined as

Re = rU
𝜈

(A2)

Recalling that Cf = f∕8, with f denoting the Darcy-Weisbach friction factor, the ratio between the Darcy-
Weisbach friction coefficient and the Reynolds number is obtained as follows:

f
Re

=
8Cf

Re
(A3)

Second, the friction factor for the wall region fw is estimated using the following equation (Chiew &
Parker, 1994):

1√
fw

= −0.86 log

(
𝜖w∕4rw

3.7
+ 2.51

Rew

√
fw

)
(A4)

where 𝜖w denotes wall roughness, rw denotes hydraulic radius for the wall region, and Rew denotes Reynolds
number for the wall region. We assumed that flume sidewalls are smooth, so that 𝜖w equals 0. Equation (A4)
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must be solved iteratively because the friction factor is on both sides of the equation. The first estimate of fw,
fw,0, is executed using the Blasius equation as follows:

fw,0 = 0.398
(

f
Re

) 1
5

(A5)

The assumption that the friction slope for the entire cross section is equal to the friction slope in the bed and
in the wall region implies that the ratio between the Reynolds number and the friction factor is constant. Thus,
the Reynolds number for the wall region is computed as follows:

Rew = fw,0

(
f

Re

)−1

(A6)

The estimates, fw,i and Rew, i, are calculated as functions of the values obtained one iteration prior, fw,i−1 and
Rew,i−1. We repeat this procedure until the difference between fw,i and fw,i−1 becomes sufficiently small.

Third, the dimensionless friction coefficient for the wall region is computed by

Cfw =
fw

8
(A7)

Next, from the conservation equation of streamwise momentum, the friction coefficient for the bed region
Cfb is computed as

Cfb =
Cf(B + 2h) − 2Cfwh

B
(A8)

where B is flume width.

Finally, the side wall corrected Shields mobility number 𝜏∗b is given by

𝜏∗b =
CfbU2

RgD50
(A9)
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