
Molecular characterization of ZnT10 as a Mn transporter 

 

1 

Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular 
Characterization of ZnT10 as a Manganese Transporter 

 
Yukina Nishito1, Natsuko Tsuji1, Hitomi Fujishiro2, Taka-aki Takeda1, Tomohiro 

Yamazaki1†, Fumie Teranishi1, Fumiko Okazaki3#, Ayu Matsunaga3, Karin Tuschl4, Rajini 
Rao5, Satoshi Kono6, Hiroaki Miyajima6, Hiroshi Narita3, Seiichiro Himeno2, and Taiho 

Kambe1 
 
From the 1Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, 
Kyoto 606-8502, Japan; the 2Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 
Tokushima 770-8514, Japan; the 3Department of Food Science, Kyoto Women’s University, 
Kyoto 605-8501, Japan; the 4Clinical and Molecular Genetics Unit, University College London 
Institute of Child Health, London WC1N 1EH, UK; the 5Department of Physiology, School of 
Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; and the 6First 
Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, 
Japan 
†Present address: Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, 
Japan 
#Present address: Faculty of Agriculture, Ryukoku University, Ohtsu, Shiga 520-2194, Japan 
 

Running title: Molecular characterization of ZnT10 as a Mn transporter 
 
To whom correspondence should be addressed: Taiho Kambe, Division of Integrated Life 
Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan. Tel.: 
+81-75-753-6273; Fax: +81-75-753-6274; E-mail: kambe1@kais.kyoto-u.ac.jp 
 
Keywords: zinc, manganese, transporter, metal homeostasis, substrate specificity, efflux, 
SPCA1, ferroportin, ATP13A family protein 

ABSTRACT 
          Manganese (Mn) homeostasis 
involves coordinated regulation of specific 
proteins involved in Mn influx and efflux. 
However, the proteins that are involved in 
detoxification/efflux have not been 
completely resolved, nor has the basis by 
which they select their metal substrate. Here, 
we compared six proteins, which were 
reported to be involved in Mn 
detoxification/efflux, by evaluating their 
ability to reduce Mn toxicity in chicken DT40 
cells, finding that human ZnT10 (hZnT10) 
was the most significant contributor. A 
domain swapping and substitution analysis 
between hZnT10 and a zinc-specific 
transporter hZnT1 showed that residue N43, 
which corresponds to the His residue 
constituting the potential intramembranous 
zinc coordination site in other ZnT 
transporters, is necessary to impart hZnT10’s 
unique Mn mobilization activity; residues 

C52 and L242 in transmembrane domains II 
and V play a subtler role in controlling the 
metal specificity of hZnT10. Interestingly, the 
H->N reversion mutant in hZnT1 conferred 
Mn transport activity and loss of zinc 
transport activity. These results provide 
important information about Mn 
detoxification/efflux mechanisms in 
vertebrate cells as well as the molecular 
characterization of hZnT10 as a Mn 
transporter. 
  

Manganese (Mn) is an essential trace 
element. Mn is a key cofactor for a variety of 
enzymes, including glutamine synthetase, 
superoxide dismutase 2, decarboxylases, and 
sugar transferases, and thus is indispensable 
for central nervous system functions, immune 
functions, and carbohydrate metabolism (1,2). 
At elevated levels, however, Mn is toxic and 
exposure to this trace element has been 
associated with various pathogeneses, 
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including a neurological syndrome called 
manganism, whose symptoms resemble those 
of Parkinson disease (3,4). For these reasons, 
Mn homeostasis must be tightly controlled at 
a systemic and cellular level. Much of our 
current understanding of Mn homeostatic 
mechanisms is derived from genetic studies 
of Saccharomyces cerevisiae (reviewed in 
(5,6)), which reveals that a number of 
membrane transporter/channel proteins 
contribute to the control of Mn homeostasis. 
Based on these results, the Mn import system, 
i.e., Mn transport in the direction of the 
cytosol, has been extensively investigated in 
vertebrate cells (7-9). Two ZIP zinc (Zn) 
transporters ZIP8 and ZIP14, known to 
function as Zn uptake proteins, are involved 
in Mn uptake from the extracellular site 
(10,11). In addition, two Nramp transporters 
Nramp1 and Nramp2/DMT1 are involved in 
Mn mobilization into the cytosol. Nramp1 
acts to mobilize Mn into the cytosol from 
phagosomes in macrophages, thereby limiting 
Mn availability to invading microbes (12), 
whereas Nramp2/DMT1, a major iron 
transporter, probably functions in the uptake 
of Mn into the cytosol of all tissue (7). Mn 
can be transported via other membrane 
proteins including some types of calcium 
channels (7,13), although their contribution to 
cellular Mn homeostasis remains largely 
unknown.  

In contrast, less is known about Mn 
transporters/channel proteins that participate 
in Mn detoxification/efflux (13), and further 
effort is currently needed to completely 
understand this important process. This is 
particularly urgent because these 
transporters/channel proteins may play a role 
in an established clinical condition caused by 
excessive Mn accumulation (3,8,14). Of the 
proteins postulated to be involved in Mn 
detoxification/efflux, the Golgi-localized 
secretory pathway Ca2+-ATPase 1 (SPCA1), 
which is an ortholog of S. cerevisiae Pmr1p, 
is comparatively well characterized (15-17). 
Moreover, ATP13A2/PARK9 (hereafter 
ATP13A2) is involved in Mn detoxification 
(18) based on the observation that the S. 
cerevisiae ortholog Ypk9p protects cells from 
toxicity of Mn and other metals by vacuolar 
sequestration (19,20). Importantly, 
loss-of-function mutations of the ATP13A2 

gene were identified to cause an autosomal 
recessive form of early-onset parkinsonism 
(Kufor–Rakeb syndrome; KRS) (21). Recent 
significant findings show that 
loss-of-function mutations of the 
ZnT10/SLC30A10 gene result in 
parkinsonism with hypermanganesemia, 
syndrome of hepatic cirrhosis, polycythemia, 
and dystonia (22,23). ZnT10 is localized to 
the plasma membrane and functional in Mn 
metabolism by effluxing cytosolic Mn 
(24,25). ZnT10 is also involved in Zn 
homeostasis in subcellular localization 
(26,27). The finding that loss-of-function 
mutations of ATP13A2 and ZnT10 genes 
result in the development of parkinsonism 
accelerates the necessity to clarify Mn 
detoxification/efflux mechanisms in cells.  

We have previously established 
chicken DT40 cells as an important model 
system for studying zinc transporter functions 
using gene-targeting/re-expression strategies 
(28–30). This system is useful to explore 
metal homeostasis and membrane transport 
protein functions in vertebrate cells because 
DT40 cells have a similar homeostatic 
regulation system of metals to that of 
mammalian cells and allow efficient gene 
disruption owing to their high homologous 
recombination activity (31). In this study, we 
investigated transporter/channel proteins that 
function in detoxification/efflux of Mn using 
DT40 cells deficient in the SPCA1 gene 
(SPCA1-/-/- cells) because SPCA1 is involved 
in Mn resistance via its re-delivery into the 
Golgi apparatus (16,17). Using SPCA1-/-/- 
cells, which showed extreme sensitivity to 
high Mn concentrations, we compared six 
human proteins that are involved in Mn 
detoxification/efflux. Moreover, we 
investigated how hZnT10, which belongs to 
the ZnT transporter family, could mobilize 
Mn by domain swapping/substitution 
mutational analyses. These studies provide 
molecular information of the 
transporters/channels involved in Mn 
detoxification/efflux in vertebrate cells.  
 
RESULTS 

Characterization of DT40 Cells 
Deficient in the SPCA1 Gene−We established 
DT40 cells deficient in the SPCA1 gene 
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(SPCA1-/-/-) using three KO vectors (Fig. 1A) 
because DT40 cells have trisomic 
chromosomes 2. SPCA1-/-/- cells did not show 
any apparent defects in normal culture, but 
they showed significantly reduced resistance 
to high Mn concentrations as expected (Fig. 
1B). Here, the cells failed to grow in the 
presence of 40 µM MnSO4 or higher 
concentrations. Consistent with this, 
SPCA1-/-/- cells failed to efflux Mn out of the 
cells in the Mn retention assay using 
radioisotope 54Mn (Fig. 1C). Both reduced 
activities in SPCA1-/-/- cells were completely 
restored by expression of hSPCA1-GFP (Fig. 
1, B and C), indicating that hSPCA1 has a 
crucial function in Mn homeostasis by 
controlling its efflux in DT40 cells. 
hSPCA1-GFP was localized to the Golgi 
apparatus in SPCA1-/-/- cells (Fig. 1D), 
indicating that SPCA1 functions by effluxing 
Mn to the extracellular side via the secretory 
pathway, as described previously (16,17). 

Evaluation of Mn 
Detoxification/Efflux Protein Functions in 
SPCA1-/-/- cells−In vertebrates, a number of 
proteins are involved in Mn 
detoxification/efflux. We next evaluated these 
protein functions using SPCA1-/-/- cells by 
examining restoration of the viability of 
SPCA1-/-/- cells, stably expressing each of 
these proteins upon a cytotoxic challenge of 
increasing Mn concentrations. Specifically, 
we examined the functions of hFpn, 
hATP13A1, hATP13A2, hATP13A3, and 
hZnT10. Fpn locates to the plasma membrane 
and is indispensable for ferrous iron efflux to 
the extracellular site, but has also been shown 
to mobilize Mn (38,39). Expression of hFpn, 
however, failed to confer resistance to high 
Mn concentrations in SPCA1-/-/- cells, thus 
indicating that hFpn does not primarily 
contribute to Mn detoxification/efflux (Fig. 
2A). Similarly, we evaluated hATP13A2, 
which is involved in early-onset parkinsonism, 
KRS (21), and its homologs hATP13A1 and 
hATP13A3. We also found that 
hATP13A1−3 showed virtually no effect on 
the Mn resistance in SPCA1-/-/- cells to high 
Mn concentrations in the Alamar Blue assays 
(Fig. 2B). However, a small fraction of the 
cells cultured at 40 µM MnSO4 appeared 
morphologically normal by visual 

observation (data not shown), suggesting that 
hATP13A1-3 may slightly restore Mn 
resistance in SPCA1-/-/- cells. We then 
examined the contribution of hZnT10 to high 
Mn detoxification. As reported in a 
complementation assay using a S. cerevisiae 
pmr1 mutant (23), hZnT10 completely 
restored the viability of SPCA1-/-/- cells upon 
high Mn concentrations (Fig. 2C). Consistent 
with this, hZnT10 decreased accumulated 
54Mn in SPCA1-/-/- cells in the Mn retention 
assay (Fig. 2D). Both results indicate that 
hZnT10 contributes significantly to Mn 
detoxification. Co-expression of hZnT10 with 
hSPCA1 conferred greater resistance to high 
Mn concentrations than that observed for 
hSPCA1-only expression, and restored 
resistance to a similar level to that of 
hZnT10-only expression; the cells survived 
up to a concentration of 200 µM MnSO4 (Fig. 
2E). Although we could not examine a 
reduction of resistance to high Mn 
concentrations and its restoration by hZnT10 
expression in ZnT10-deficient DT40 cells 
(because DT40 cells do not express ZnT10 
mRNA (data not shown)), these results 
reiterate the key protective function of 
hZnT10 against high Mn concentrations. 
hZnT10 was localized mainly to the Golgi 
apparatus, but weak immunofluorescent 
signals were detected in the plasma 
membrane in SPCA1-/-/- cells (Fig. 2F). We 
closely examined its localization using a 
surface biotinylation assay with a 
membrane-impermeable biotinylation reagent 
and found the biotinylated hZnT10 protein in 
the cell surface fractions, which confirms that 
hZnT10 is localized on the cell surface, as 
reported previously (25) (Fig. 2G). However, 
the current data cannot be used to infer the 
relative distribution of hZnT10 between the 
Golgi apparatus and the plasma membrane 
because hZnT10 was overexpressed under the 
control of the strong β-actin promoter (30), 
which limits our ability to determine whether 
Mn efflux occurred from the plasma 
membrane or via a secretory pathway through 
the Golgi. These results, however, indicate 
that ZnT10, which is the primary transporter 
protein in excess Mn detoxification, can 
efflux Mn on the cell surface to the 
extracellular site. 

ZnT10 is Involved in Excess Mn 
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Detoxification But Not in Excess Zn 
Detoxification−ZnT10 belongs to the zinc 
transporter family, but is involved in Mn 
mobilization for its detoxification. 
Consequently, we investigated whether 
hZnT10 is involved in excess Zn 
detoxification using ZnT1-/-MT-/-ZnT4-/- cells, 
which were used previously to evaluate Zn 
detoxification activity (33,40). Expression of 
hZnT10 had almost no effects on the 
resistance of ZnT1-/-MT-/-ZnT4-/- cells to high 
Zn concentrations (Fig. 3A). Although the 
Alamar Blue assays showed no contribution 
to detoxification at a Zn concentration of 60 
µM ZnSO4 or higher, visual observation of 
the cells cultured in the high Zn conditions 
showed that a small fraction of the cells 
appeared still morphologically normal (data 
not shown). To examine metal transport 
specificity of hZnT10 in more detail, we 
compared hZnT10 with that of hZnT1 
because ZnT1 and ZnT10 can be subdivided 
into the same subfamily based on sequence 
similarities (37% identity between hZnT1 and 
hZnT10) (41,42). Expression of hZnT1 
reversed the Zn-sensitive phenotype of 
ZnT1-/-MT-/-ZnT4-/- cells, as described 
previously (33), but failed to confer Mn 
resistance in SPCA1-/-/- cells (Fig. 3B). These 
results clearly showed that expression of 
hZnT1 or hZnT10 conferred completely 
different metal resistance in cells. We have 
not yet examined the cell surface localization 
of hZnT1 in DT40 cells (30,33), but close 
examination by immunofluorescence staining 
and the surface biotinylation assay showed 
that hZnT1 was localized to the cell surface 
in both SPCA1-/-/- (Fig. 3C) and 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 3D). The cell 
surface localization of hZnT10 was 
confirmed in both cells in parallel studies (Fig. 
3, C and D).  

Domain Swapping/Substitution 
Analysis between hZnT10 and hZnT1−To 
examine the differences in their metal 
resistance activity more closely, we 
constructed domain swapping/substitution 
mutants between hZnT10 and hZnT1 by 
considering the unique properties of ZnT10. 
Specifically, ZnT10 contains an Asn residue 
instead of a His residue at the conserved 
position of transmembrane domain (TMD) II, 

which is thought to form the 
intramembranous tetrahedral zinc 
coordination site in other ZnT transporters, 
including ZnT1 (33,43-48) (Fig. 4). Moreover, 
ZnT10 has Arg- and Lys-rich sequences in 
the cytosolic loop between TMDs III and IV, 
and in the cytosolic C-terminal region; 
although, the cytosolic loop is known to be 
rich in His residues in other ZnT transporters 
(49,50,51). Initially, we expressed the 
hZnT10 mutants, specifically hZnT10(N43H), 
hZnT10(hZnT1Cter), or hZnT10(hZnT1Loop) in 
SPCA1-/-/- or ZnT1-/-MT-/-ZnT4-/- cells, in 
which the Asn residue in TMD II was 
substituted with His, the cytosolic C-terminal 
region or the cytosolic loop between TMDs 
III and IV was swapped with corresponding 
regions of hZnT1. We then examined whether 
these constructs conferred and altered Mn or 
Zn resistance in SPCA1-/-/- or 
ZnT1-/-MT-/-ZnT4-/- cells. Expression of 
hZnT10(hZnT1Cter) and hZnT10(hZnT1Loop) did not 
alter Mn resistance in SPCA1-/-/- cells (Fig. 5, 
A and C) or Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 5, B and D) 
when compared with that of hZnT10, 
indicating that the cytosolic C-terminal region 
or the cytosolic loop between TMDs III and 
IV of hZnT1 did not impair Mn transport by 
hZnT10, and corresponding regions of 
hZnT10 are not essential for Mn resistance. 
In contrast, expression of hZnT10(N43H) 
significantly decreased Mn resistance in 
SPCA1-/-/-

− cells (Fig. 5E) and did not confer 
Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells (Fig. 
5F). The surface biotinylation assay 
confirmed that all hZnT10 mutants were 
localized to the cell surface in both SPCA1-/-/- 
(Fig. 5G) or ZnT1-/-MT-/-ZnT4-/- cells (Fig. 
5H), which excludes the possibility that 
mislocalization of hZnT10(N43H) in SPCA1-/-/- 
cells resulted in a decrease in Mn resistance, 
and indicates that the Asn residue in TMD II 
is extremely important for the Mn transport 
activity of hZnT10. Taken together, Arg- and 
Lys-rich sequences in the cytosolic 
C-terminal region and in the cytosolic loop 
between TMDs III and IV are not involved in 
the Mn transport property of hZnT10, 
whereas the Asn residue in TMD II primarily 
contributes to Mn transport.  

We then constructed the domain 
swapping/substitution mutants of hZnT1 with 
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hZnT10 using a similar approach, specifically 
hZnT1(H43N), hZnT1(hZnT10Cter), and 
hZnT1(hZnT10Loop), and performed the same 
experiments. Expression of hZnT1(hZnT10Cter) 
and hZnT1(hZnT10Loop) did not confer Mn 
resistance in SPCA1-/-/- cells (Fig. 6, A and C), 
and did not alter Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 6, B and D), as 
in the case of hZnT10. Unexpectedly, 
expression of hZnT1(H43N), however, did 
confer Mn resistance in SPCA1-/-/- cells (Fig. 
6E) and the ability to confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells was lost (Fig. 6F), 
indicating that the Asn residue in TMD II can 
confer Mn transport activity to ZnT1. The 
surface biotinylation assay confirmed that all 
hZnT1 mutants were localized at the cell 
surface in both SPCA1-/-/- (Fig. 6G) and 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 6H). Taken 
together, the His-rich clusters in the cytosolic 
loop between TMDs III and IV of hZnT1 and 
the cytosolic C-terminal region of hZnT1 are 
not essential in determining the Zn transport 
property of hZnT1, while the His residue in 
TMD II is crucial. Moreover, only 
substitution of the Asn residue in TMD II is a 
major determinant of Mn specificity in 
hZnT1. Moreover, these results reveal that 
the cytosolic loop between TMDs III and IV 
and the cytosolic C-terminal region are 
compatible with each other between hZnT10 
and hZnT1 in their Mn or Zn transport 
activities, despite the presence of several 
unique differences. The results of Figs. 3, 5, 
and 6 are summarized in Table 1.  

Domain Swapping/Substitution 
Analysis between hZnT10 and hZnT2−We 
performed similar swapping/substitution 
analysis between hZnT10 and hZnT2, using 
hZnT2(H106N), hZnT10(hZnT2Cter), and 
hZnT2(hZnT10Cter) mutants. hZnT2 is divided 
into a different subfamily from hZnT10 and 
hZnT1, and thus shows only moderate 
similarity with hZnT10 (28% identity 
between hZnT10 and hZnT2) (41,42). hZnT2 
expression completely reversed the 
Zn-sensitive phenotypes of 
ZnT1-/-MT-/-ZnT4-/- cells (33,40), but unlike 
hZnT1(H43N), expression of hZnT2(H106N) failed 
to confer Mn resistance in SPCA1-/-/- cells 
(Fig. 7A). However, the hZnT2(H106N) mutant 
lost the ability to reverse Zn-sensitive 
phenotypes of ZnT1-/-MT-/-ZnT4-/- cells, as 

observed for the hZnT1(H43N) mutant (Fig. 7B). 
Moreover, the swapping of the cytosolic 
C-terminal region between hZnT10 and 
hZnT2 caused these mutants to lose Mn and 
Zn resistance in SPCA1-/-/- cells and 
ZnT1-/-MT-/-ZnT4-/- cells. Specifically, 
expression of hZnT10(hZnT2Cter) failed to 
reverse Mn resistance in SPCA1-/-/- cells and 
that of hZnT2(hZnT10Cter) failed to reverse Zn 
resistance in ZnT1-/-MT-/-ZnT4-/- cells (Fig. 7, 
C and F). In contrast, expression of 
hZnT10(hZnT2Cter) did not confer Zn resistance 
in ZnT1-/-MT-/-ZnT4-/- cells, whereas that of 
hZnT2(hZnT10Cter) did not confer Mn resistance 
in SPCA1-/-/- cells (Fig. 7, D and E). These 
results suggest that the cytosolic C-terminal 
region is not compatible between hZnT10 and 
hZnT2 in their Mn or Zn transport activity.  

We then investigated this 
incompatibility using complex domain 
swapping/substitution mutants between 
hZnT10 and hZnT2 in which all of the three 
aforementioned features were swapped and 
substituted. As observed for each mutant 
between hZnT10 and hZnT2, expression of 
hZnT10(N43H-hZnT2Loop-hZnT2Cter) lost the ability 
to confer Mn resistance in SPCA1-/-/- cells, 
whereas that of hZnT2(H106N-hZnT10Loop-hZnT10Cter) 
lost the ability to confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 8, A and D). 
Moreover, these swapping/substitutions did 
not have any effects on the metal substrate 
specificity between hZnT10 and hZnT2. 
Expression of hZnT10(N43H-hZnT2Loop-hZnT2Cter) 
did not confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells, and expression of 
hZnT2(H106N-hZnT10Loop-hZnT10Cter) did not confer 
Mn resistance in SPCA1-/-/- cells (Fig. 8, B 
and C). Taken together, unlike the case of 
hZnT1 and hZnT10, the abovementioned 
featured domains are incompatible between 
hZnT10 and hZnT2. The lower similarity of 
hZnT2 to hZnT10 than hZnT1 to hZnT10 
may endow incompatibility with domain 
swapping/substitutions between hZnT10 and 
hZnT2. The results of Figs. 7 and 8 are 
summarized in Table 2.  

Residues C52 and L242 in the TMDs 
II and V of hZnT10 are Involved in the 
Control of Metal Substrate Specificity in 
hZnT10−Expression of hZnT10(N43H) failed to 
reverse Zn resistance in ZnT1-/-MT-/-ZnT4-/- 
cells despite the fact that reverse substitution 
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of hZnT1 (hZnT1(H43N)) conferred Mn 
resistance to hZnT1 in the Mn detoxification 
assay using SPCA1-/-/- cells. This observation 
indicates that hZnT10 may have a specific 
mechanism to reduce Zn transport. Finally, 
we tried to identify specific residues in 
hZnT10 that are involved in this mechanism. 
We found that residue C52 in TMD II and 
L242 in TMD V are present in hZnT10 but 
not in other hZnT transporters (Fig. 4), and 
that both residues are thought to be located on 
the cytosolic side of the putative 
intramembranous tetrahedral metal 
coordination site, based on the structure of a 
bacterial homolog YiiP (42-46). In other 
hZnT transporters, these positions are 
predominantly composed of Val, Ile, and Met 
in TMD II, and Phe in TMD V (Fig. 4). We 
expressed hZnT10 mutants in 
ZnT1-/-MT-/-ZnT4-/- cells, in which the Cys 
and/or Leu residues were substituted with Val 
and Phe, respectively, in addition to the 
N43H substitution (hZnT10(N43H, C52V), 
hZnT10(N43H, L242F) and hZnT10(N43H, C52V, 

L242F)) (Fig. 9, A–C). Expression of neither 
hZnT10(N43H, C52V) nor hZnT10(N43H, L242F) 
reversed Zn resistance in ZnT1-/-MT-/-ZnT4-/- 
cells (Fig. 9, A and B). However, expression 
of hZnT10(N43H, C52V, L242F) moderately restored 
the ability to confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 9C). The cells 
grew in the presence of 60 µM ZnSO4 but 
failed to grow in the presence of 80 µM 
ZnSO4. Moreover, we investigated whether 
the conferment of Zn resistance by 
hZnT10(N43H, C52V, L242F) was facilitated by 
domain swapping of the cytosolic C-terminal 
region of hZnT1 with the corresponding 
region (hZnT10(N43H, C52V, L242F-hZnT1Cter)). 
Swapping of the cytosolic C-terminal region 
did not lead to significant effects (Fig. 9C). 
Consistent with this, expression of 
hZnT10(N43H-hZnT1Cter) did not significantly 
reverse Zn-sensitive phenotypes of 
ZnT1-/-MT-/-ZnT4-/- cells (Fig. 9D). Last, we 
examined whether substitution of C52 and 
L242 with Val and Phe in hZnT10 
(hZnT10(C52V, L242F)) may confer Zn resistance 
in ZnT1-/-MT-/-ZnT4-/- cells or impair Mn 
resistance in SPCA1-/-/- cells. However, these 
mutations did not confer Zn resistance or 
impair Mn resistance in the respective cell 
types (Fig. 9, E and F). These results indicate 

that, in addition to the primary role of N43, 
both C52 in TMD II and L242 in TMD V of 
hZnT10 are involved in the regulation of 
metal substrate specificity in hZnT10.  
 
DISCUSSION 

Genetic studies using S. cerevisiae 
have contributed significantly to our 
understanding of Mn metabolism in cells; 
however, several differences exist between S. 
cerevisiae and vertebrate cells. For example, 
Ccc1p functions as a major transporter of iron 
and Mn that is sequestered into vacuoles and 
thus detoxifies Mn in S. cerevisiae (52) but is 
not identified in vertebrate cells. In contrast, 
Fpn and ZnT10 are expressed in vertebrate 
cells but are not present in S. cerevisiae. 
Moreover, in an Mn resistance assay using a 
pmr1 mutant of S. cerevisiae, extremely high 
Mn concentrations were required to 
discriminate Mn resistance (53,54) when 
compared with those in vertebrate cells. Thus, 
Mn metabolism should be studied in 
vertebrate cells. In this study, we compared 
six human proteins that are involved in Mn 
detoxification/efflux by using genetically 
engineered vertebrate cells, SPCA1-/-/- cells, 
whose extreme sensitivity to high Mn 
concentrations enabled us to evaluate their 
contribution to Mn toxicity without directly 
measuring Mn mobilization. 

The Mn detoxification/efflux 
functions of the evaluated six proteins were 
examined in different evaluation cell systems 
and thus their contributions have not yet been 
directly compared with each other. The 
present study is important in this aspect 
because we evaluated the contribution of each 
protein in the same cell system using 
SPCA1-/-/- cells. ATP13A proteins, including 
ATP13A2, are postulated to contribute to Mn 
detoxification/efflux in both yeast and 
vertebrate cells when overexpressed (18-20). 
However, our results indicate that ATP13A 
proteins have almost no contribution to Mn 
detoxification/efflux under high Mn 
conditions. ATP13A2 is suggested to be 
involved in intracellular Zn homeostasis 
(55,56), but our re-experiments revealed no 
contribution of hATP13A2 to conferring Zn 
resistance in ZnT1-/-MT-/-ZnT4-/- cells under 
high Zn concentrations (Nishito, Tsuji and 
Kambe, unpublished data). Fpn is also 
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reported to be involved in Mn mobilization 
(38,39). However, our results indicate that 
hFpn does not contribute to Mn 
detoxification/efflux in SPCA1-/-/- cells under 
high Mn concentrations. In contrast to these 
proteins, SPCA1 and ZnT10 operate to 
detoxify/efflux Mn via exporting Mn to an 
extracellular site in vertebrate cells. Our 
results indicate that ZnT10 is a primary 
contributor in the detoxification/efflux of Mn, 
which may reflect that only mutations to the 
ZnT10 gene have been identified as 
parkinsonism, while mutations of the SPCA1 
gene results in Hailey–Hailey diseases (MIM 
No. 169600), which is thought to be related to 
Ca levels and not to disturbances in Mn 
metabolism (57).  

ZnT10 has received much attention 
because loss of ZnT10 function results in 
parkinsonism with hypermanganesemia 
(22,23), despite belonging to ZnT zinc 
transporters. However, the molecular basis of 
this condition is missing as well as how 
ZnT10 recognizes and mobilizes Mn as a 
transport substrate. Among several 
characteristic amino acid residues and 
sequences, we clearly showed that N43 in 
TMD II plays a critical role for ZnT10 
function. Interestingly, hZnT1(H43N) converted 
hZnT1 from Zn mobilization to Mn 
mobilization. These results confirmed that the 
position in TMD II is important for 
determining the transport metal specificity 
(42,51), as previously reported using hZnT5 
and hZnT8, in which substitution of the His 
residue with an Asp residue conferred Cd 
transport activity in addition to Zn (58). The 
plant MTP8, which transports Mn but not Zn, 
has an Asp amino acid at this position. MTP8 
has four Asp residues, including the Asp 
residue in TMDs II and V, which are thought 
to form an intramembranous tetrahedral metal 
coordination site (59,60). Thus, the finding 
that the Asn residue at this position of TMD 
II regulates Mn transport ability is unique, 
and thus clarification of its specific 
importance should provide insight into 
understanding the metal coordination 
properties in TMDs of ZnT transporters and 
their homologs. The CDF family of proteins 
are generally divided into three groups based 
on their phylogenetic relationships: Zn-CDF, 
Zn/Fe-CDF, and Mn-CDF (51,61). In this 

grouping, CDF proteins with the ability to 
transport Mn, such as MTP8, are classified 
into the Mn-CDF group, while all of the ZnT 
transporters are divided into the Zn-CDF 
family (51,61,62). Thus, careful re-grouping 
should be performed.  

The present study also revealed that 
the cytosolic loop between TMDs III and IV 
and the cytosolic C-terminal region are 
compatible between hZnT1 and hZnT10. This 
observation is intriguing because the 
cytosolic C-terminal portion and the cytosolic 
loop between TMDs III and IV are thought to 
form a binuclear zinc-binding site 
allosterically operating for Zn transport 
activity in a zinc-regulated fashion (43) and 
likely contribute to a metal substrate 
determinant (63,64). In contrast to the 
compatibility between hZnT1 and hZnT10, 
the domain swapping between hZnT10 and 
hZnT2 was found to be incompatible. This 
observation suggests that these regions may 
be functionally and structurally different 
among ZnT transporters. However, 
incompatibility between hZnT10 and hZnT2 
may result from their different subcellular 
localization. Studying and comparing 
three-dimensional structures of these regions 
of hZnT10 with those of other hZnT 
transporters will undoubtedly facilitate 
answers to this issue.  

ZnT10 plays a role in Zn metabolism, 
locating the early/recycling endosomes or the 
Golgi apparatus (26,27,65). However, we 
have no data to show that hZnT10 is involved 
in the detoxification of high Zn 
concentrations. Importantly, this study does 
not completely exclude the possibility that 
ZnT10 has Zn transport activity and 
contributes to Zn metabolism because this 
study was performed under conditions of 
detoxification/efflux against high Zn 
concentrations (over 60 µM ZnSO4) using 
ZnT1-/-MT-/-ZnT4-/- cells. In support of this 
idea, overexpression of hZnT5 and hZnT6 
failed to confer resistance to 
ZnT1-/-MT-/-ZnT4-/- cells in the presence of 60 
µM ZnSO4 (Nishito and Kambe, unpublished 
data). A recent report that the Zn transport 
function of ZnT10 was accelerated by 
heterodimer formation with other ZnT 
transporters, such as ZnT3 (65), suggests that 
the absence of ZnT transporters in 
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ZnT1-/-MT-/-ZnT4-/- cells may mask the ability 
of hZnT10 to exert robust Zn transport 
activity in our evaluation. Because C52 and 
L242 residues in the TMDs II and V were 
found to be involved in the regulation of 
metal substrate specificity in hZnT10, 
heterodimer formation may affect the 
conformation of both residues and 
accessibility of Zn to the intramembranous 
metal coordination site, which may also 
change the affinity of N43 towards Zn. 
Further investigation is required to clarify 
how ZnT10 contributes to Zn metabolism at 
the molecular level, as well as its primary 
function in Mn metabolism.  

Because Mn levels are reported to 
increase in patients of several 
neurodegenerative diseases (8,14), Mn 
detoxification/efflux proteins have potential 
therapeutic functions owing to their ability to 
decrease Mn accumulation. Thus, the robust 
Mn detoxification/efflux function of ZnT10 
may be important against these pathologies. 
The present results contribute to providing 
clues that should facilitate Mn transport 
activity of ZnT10 in a specific manner, as 
well as information that aids our 
understanding of the relationship between Mn 
and Zn metabolic systems.  
 
EXPERIMENTAL PROCEDURES 

Cell Culture and 
Transfection−Chicken B lymphocyte-derived 
DT40 cells were maintained in RPMI 1640 
(Nacalai Tesque, Kyoto, Japan) supplemented 
with 10% heat-inactivated fetal calf serum 
(Multiser, Trace Scientific, Melbourne, 
Australia), 1% chicken serum (Invitrogen, 
Carlsbad, CA) and 50 µM 2-mercaptoethanol 
(Sigma, St. Louis, MO) at 39.5 °C, as 
described previously (31). DNA transfection 
into DT40 cells was carried out using 
electroporation, as described previously (31). 
DT40 cells deficient in the SPCA1 gene 
(SPCA1-/-/- cells) were established using three 
KO vectors shown in Fig. 1A. Southern and 
northern blot analysis was performed as 
described previously (32). Genomic DNA (20 
µg) prepared from DT40 cells or 20 µg total 
RNA extracted from the cells using Sepasol I 
(Nacalai Tesque) was used. Radioimages 
were obtained using a FLA5000 Bio imaging 

analyzer (Fujifilm, Tokyo, Japan). More than 
three independent clones were established per 
disruptants and transfectants. 
ZnT1-/-MT-/-ZnT4-/- cells have been established 
and reported previously (33). 

Plasmid Construction−Plasmids used 
for the expression of C-terminally 
GFP-tagged hSPCA1 (hSPCA1-GFP) (15), 
N-terminally FLAG-tagged hATP13A1 
(FLAG-hATP13A1), C-terminally 
HA-tagged hATP13A2 (hATP13A2-HA), 
N-terminally HA-tagged hATP13A3 
(HA-hATP13A3), C-terminally HA tagged 
hZnT10 (hZnT10-HA), N-terminally 
Myc-tagged hZnT10 (Myc-hZnT10), 
N-terminally FLAG-tagged hZnT1 
(FLAG-hZnT1), or C-terminally HA tagged 
hZnT2 (hZnT2-HA) were constructed by 
inserting each cDNA into pA-Puro or 
pA-Zeocin vectors (34). The truncated forms 
of hATP13A1 and hATP13A3 cDNAs were 
purchased from DNAFORM 
(http://www.dnaform.jp/ja/) and their 
full-length forms were prepared by ligating 
them with the lacking fragments of 
RT-PCR-amplified hATP13A1 or hATP13A3 
cDNA. The hATP13A2-HA was constructed 
by replacing a V5-His tag (21) with the HA 
tag, or the hZnT10-HA was constructed by 
fusing hZnT10 (23) with the HA tag. The 
hFpn gene, which is fused with the 
C-terminally V5 tag, was described 
previously (35). All cDNAs constructed here 
were sequenced in both directions. The KO 
vectors used for disruption of the SPCA1 
gene were constructed using the amplified 
genomic DNA fragments with gene-specific 
primers by KOD-FX polymerase (Toyobo, 
Osaka Japan), as described previously (31). 
All plasmids were linearized with appropriate 
restriction enzymes prior to electroporation. 

Cytotoxicity Assay Against High Mn 
or Zn Concentrations−DT40 cells were 
inoculated at a density of 10 × 104 cells/mL in 
96-well plates and treated with MnSO4 or 
ZnSO4 at the indicated concentrations for 2 d. 
Alamar Blue reagent (AbD Serotec, Ltd., 
Oxford, UK) was then added to the culture 
media and incubated for 3−4 h. The 
absorbance in the medium was measured at 
570 and 600 nm using PowerScan 4 (DS 
Pharma Biomedical, Osaka, Japan), according 
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to the protocol of the manufacturer. 
Measurement of Mn Transport 

Activity−DT40 cells were cultured in 6-well 
plates and 1 µM [54Mn]-labeled MnCl2 
(PerkinElmer, Boston, MA) was added to the 
culture media in all wells. After 24 h, the 
cells were washed twice with ice-cold culture 
medium and suspended in phosphate-buffered 
saline (PBS) containing 0.05% EDTA. The 
radioactivity of 54Mn was measured using an 
auto-well gamma counter (Wizard2; 
PerkinElmer Japan, Kanagawa, Japan) and 
data normalized by the total cellular protein. 
Data are depicted as mean ± SD. Statistical 
significance was determined by the Student’s 
t test and accepted at p < 0.01. 

Generation of Anti-hZnT10 and 
Anti-hZnT1 Monoclonal Antibodies−Fused 
proteins consisting of the cytosolic carboxyl 
terminal portion of hZnT10 (95 residues from 
Leu391 to stop codon) and maltose binding 
protein, or the cytosolic carboxyl terminal 
portion of hZnT1 (167 residues from Leu341 
to stop codon) and maltose binding protein 
were used as antigens. The anti-hZnT10 or 
anti-hZnT1 monoclonal antibody was 
produced as described previously (36,37). An 
ascites was generated by injection of 1 × 107 
hybridoma cells into pristine-primed mice. 

Immunoblotting−Immunoblotting was 
performed as described previously (30). 
Briefly, the blotted PVDF membrane 
(Immobilon-P, Millipore Corp., Bedford, 
MA) was blocked with a solution of 5% 
skimmed milk and 0.1% Tween-20 in PBS 
prior to incubation with anti-FLAG M2 
(1:3,000, Sigma, F3165), anti-HA HA-11 
(1:3,000, Covance, Emeryville, CA, 
MMS-101P), anti-Myc (1:3,000, Santa Cruz 
Biotechnology Inc., sc-40) anti-V5 (1:3,000, 
Nacalai Tesque, 04434-94), anti-ZnT10 
(1:3,000), anti-ZnT1 (1:3,000), anti-GFP 
(1:1,000, Invitrogen, G10362), anti-tubulin, 
(1:10,000, Sigma, T7816), anti-calnexin 
(1:10,000, Enzo Life Sciences, 

ADI-SPA-860), or anti-chicken IgM M4 
(1:3,000, Southern Biotech, 8300-01) 
antibodies in blocking solution. Horseradish 
peroxidase-conjugated anti-mouse or rabbit 
secondary antibodies (GE Healthcare, 
Waukesha, WI, NA931 or NA934) were 
added at a 1:3,000 dilution for detection. The 
fluoro-image was obtained using a LAS1000 
plus (Fujifilm, Tokyo, Japan) or a LAS 500 
(GE Healthcare). 

Cell Surface Biotinylation 
Assay−Cells stably expressing WT or mutant 
hZnT10 or hZnT1 were washed twice with 
ice-cold PBS and then EZ-Link, a 
sulfo-NHS-SS-biotin reagent (Pierce Protein 
Biology, ThermoFisher Scientific) was used 
to biotinylate lysine residues exposed on the 
extracellular surface. Biotinylated proteins 
were recovered from streptavidin-coupled 
beads in 6× SDS sample buffer and then 
immunoblotted. 

Immunofluorescence 
Staining−Double immunostaining for tagged 
proteins used in this study and GM130 was 
performed as described previously (30). 
Briefly, the cells were stained with an 
anti-HA tag polyclonal antibody (1:500, 
MBL, 561), an anti-FLAG tag polyclonal 
antibody (anti-DDDDK; 1:500, MBL, 
PM020), anti-GFP (1:50, Invitrogen, 
G10362) or anti-GM130 (1:100, BD 
Transduction Laboratories, G65120), 
followed by goat anti-mouse IgG conjugated 
to Alexa 594 (Molecular Probes, A11032) or 
donkey anti-rabbit IgG conjugated to Alexa 
488 (Molecular Probes, A21206) as the 
secondary antibodies. The stained cells were 
observed using a Zeiss Axioplan 2 
microscope equipped with an Olympus digital 
camera (Metamorph, Olympus, Tokyo, 
Japan) or a fluorescent microscope FSX100 
(Olympus). Images were analyzed using 
Adobe Photoshop Elements (Adobe Systems 
Inc., San Jose, CA).
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FIGURE LEGENDS 
 
Figure 1. SPCA1-/-/- cells show significantly reduced resistance to high Mn concentrations. 
A, targeted disruption of the cSPCA1 gene. Three targeting constructs were designed to disrupt 
the exon encoding actuator domain. The HisD, Bsr, or Puro drug-resistant marker cassettes 
were flanked by mutated loxP sites indicated by gray arrowheads. Gray boxes indicate the 
position of 5′ and 3′ probes. Southern blot (right upper panels) and northern blot (right 
bottom panel) analyses confirmed the disruption of the SPCA1 gene. B, SPCA1-/-/- cells were 
significantly sensitive to high Mn concentrations. Cells were grown in the presence of the 
indicated concentrations of MnSO4 for 2 d and the number of living cells was counted (left 
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graph), and evaluated by the Alamar Blue assay (right graph). Relative values are plotted as a 
percentage of living cells without MnSO4 for each group of cells. The growth curves of 
wild-type (WT), SPCA1-/-/-, and SPCA1-/-/- stably expressing hSPCA1-GFP are shown. Each 
experiment was performed at least three times. Note that hSPCA1-GFP expression reversed the 
phenotypes of SPCA1-/-/- cells. C, SPCA1-/-/- cells accumulated high Mn concentrations in the 
cells. Amounts of Mn in the cells were evaluated by measuring 54Mn accumulated in the cells 
cultured for 24 h in the presence of 10 µM 54MnCl2. Each value is the mean ± SD of three 
independent experiments (*P < 0.01). Note that hSPCA1-GFP expression decreased the 
accumulation of 54Mn in SPCA1-/-/- cells, although the level of accumulated 54Mn in the cells at 
24 h does not necessarily reflect steady state levels of cellular Mn. D, the subcellular 
localization of hSPCA1 expressed in SPCA1-/-/- cells. hSPCA1-GFP (green), GM130 (red), and 
the merged images are shown. Confirmation of stable hSPCA1-GFP expression in SPCA1-/-/- 
cells by immunoblotting. Ten micrograms of total cellular protein was loaded onto each lane, 
and the same membrane was used for detection of both hSPCA1 and tubulin. Tubulin is shown 
as a loading control.  
 
Figure 2. Evaluation of the conferment of Mn detoxification using SPCA1-/-/- cells. A, hFpn 
failed to reverse the phenotypes of SPCA1-/-/- cells. The growth curves of wild-type (WT), 
SPCA1-/-/-, SPCA1-/-/- stably expressing hSPCA1-GFP, and SPCA1-/-/- stably expressing hFpn-V5 
are shown. Confirmation of stable hFpn and hSPCA1 expression in SPCA1−

/
−
/
− cells by 

immunoblotting (lower panels). B, hATP13A1, hATP13A2, and hATP13A3 had almost no 
effects on Mn resistance in SPCA1−

/
−
/
− cells. The growth curves of wild-type (WT), SPCA1−

/
−
/
−, 

SPCA1-/-/- stably expressing FLAG-hATP13A1, hATP13A2-HA, or HA-hATP13A3 are shown. 
Confirmation of stable expression of hATP13A1, hATP13A2, and hATP13A3 in SPCA1-/-/- 
cells by immunoblotting (lower panels). C, hZnT10 completely reversed the phenotypes of 
SPCA1-/-/- cells. The growth curves of wild-type (WT), SPCA1-/-/-, and SPCA1-/-/- stably 
expressing hZnT10-HA are shown. Confirmation of stable hZnT10 expression in SPCA1-/-/- 
cells by immunoblotting (lower panels). D, hZnT10 decreased accumulated 54Mn in SPCA1-/-/- 
cells. Amounts of accumulated 54Mn in the cells at 24 h were evaluated as in Fig. 1C. Each 
value is the mean ± SD of three independent experiments (*P < 0.01). E, co-expression of 
hZnT10 with hSPCA1 conferred more resistance to high Mn concentrations than that of single 
expression of hSPCA1. The growth curves of wild-type (WT), SPCA1-/-/-, SPCA1-/-/- stably 
expressing hZnT10, SPCA1-/-/- stably expressing hSPCA1, and SPCA1-/-/-

− stably expressing both 
hZnT10 and hSPCA1 are shown. Confirmation of stable hZnT10 and hSPCA1 expression in 
SPCA1-/-/- cells by immunoblotting (lower panels). Note that co-expression of hZnT10 with 
hSPCA1 conferred greater resistance to high Mn concentrations compared with that of only 
hSPCA1 expression. F, immunofluorescence staining of hZnT10 expressed in SPCA1-/-/- cells. 
hZnT10 (green), GM130 (red), and the merged images are shown. G, the cell surface 
localization of hZnT10 evaluated by the surface biotinylation assay. Cells treated with the 
biotinylation reagent (sulfo-NHS-SS-biotin) were solubilized and the biotinylated protein was 
then captured using streptavidin beads and analyzed by immunoblot analysis. Input refers to 
aliquots of the biotinylated proteins before avidin capture (i.e., total cell lysate), while 
biotinylation refers to avidin-captured proteins. Tubulin and IgM were used as loading controls 
for input and biotinylation, respectively. The representative results of three independent 
experiments are displayed. In (A)−(C) and (E), cells were grown in the presence of the indicated 
concentrations of MnSO4 for 2 d and the numbers of living cells were evaluated by the Alamar 
Blue assay at least three times. Tubulin and calnexin are shown as the loading controls.  

 
Figure 3. ZnT10 is involved in Mn transport rather than Zn transport. A, expression of 
hZnT10 did not restore Zn resistance of ZnT1-/-MT-/-ZnT4-/- cells. Cells stably expressing 
hZnT10 or hZnT1 were grown in the presence of the indicated concentrations of ZnSO4 for 2 d 
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and the numbers of living cells were evaluated by the Alamar Blue assay. Confirmation of 
stable hZnT10 or hZnT1 expression in ZnT1-/-MT-/-ZnT4-/- cells by immunoblotting (lower 
panels). B, expression of hZnT1 failed to confer Mn resistance of SPCA1-/-/- cells. Cells stably 
expressing hZnT1 or hZnT10 were grown in the presence of the indicated concentrations of 
MnSO4 for 2 d and the number of living cells were evaluated by the Alamar Blue assay. 
Confirmation of stable hZnT10 or hZnT1 expression in SPCA1-/-/- cells by immunoblotting 
(lower panels). In (A) and (B), the Alamar Blue assay was performed at least three times. 
Calnexin is shown as the loading controls. C, the plasma membrane localization of hZnT1 and 
hZnT10 expressed in SPCA1-/-/-cells are shown. Immunofluorescence staining of both proteins 
was performed as presented Fig. 2F (left part). The biotinylation assay was performed as in Fig. 
2G (right part). D, the plasma membrane localization of hZnT1 and hZnT10 expressed in 
ZnT1-/-MT-/-ZnT4-/- cells are shown. Immunofluorescence staining of both proteins was 
performed as in Fig. 2F (left part). The biotinylation assay was performed as in Fig. 2G (right 
part). In (C) and (D), tubulin and IgM were used as loading controls for input and biotinylation, 
respectively. The representative results of three independent experiments are presented. 
 
Figure 4. Multiple sequence alignment of TMDs II and V among hZnT transporters. The 
sequences of TMDs II and V of hZnT transporters were aligned. The sequence order is 
according to their sequence similarity (41). The conserved His and Asp residues postulated as 
the Zn-binding site in TMDs II and V are highlighted in orange and blue. Residue N43 in TMD 
II of hZnT10 is highlighted in green. C52 and L242 residues of hZnT10 that were investigated 
in Fig. 9 are shown in red. The indicated TMDs of hZnT5 correspond to TMDs XI and XIV.  
 
Figure 5. Asn residue in TMD II of hZnT10 is essential for Mn transport activity. A, 
expression of hZnT10(hZnT1Cter) did not alter Mn resistance in SPCA1-/-/- cells. B, expression of 
hZnT10(hZnT1Cter) did not confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. C, expression of 
hZnT10(hZnT1Loop) did not alter Mn resistance in SPCA1-/-/- cells. D, expression of 
hZnT10(hZnT1Loop) did not confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. E, expression of 
hZnT10(N43H) significantly decreased Mn resistance in SPCA1-/-/- cells. F, expression of 
hZnT10(N43H) did not confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. In (A), (C), and (E), or in 
(B), (D), and (F), cells were grown as in Fig. 3A and B, and the numbers of living cells were 
evaluated by the Alamar Blue assay. In (A)–(F), the Alamar Blue assay was performed at least 
three times. Confirmation of stable expression of WT and mutants of hZnT10 in SPCA1-/-/- cells 
or ZnT1-/-MT-/-ZnT4-/- cells by immunoblotting (lower panels). Tubulin is shown as a loading 
control. G, the cell surface localization of hZnT10 mutants in SPCA1-/-/- cells was evaluated by 
the surface biotinylation assay. H, the cell surface localization of hZnT10 mutants in 
ZnT1-/-MT-/-ZnT4-/- cells was evaluated by the surface biotinylation assay. In (G) and (H), the 
biotinylation assay was performed as in Fig. 2G. The representative results of three independent 
experiments are presented. 
 
Figure 6. Substitution of Asn residue for His residue in TMD II confers the activity to 
transport Mn with hZnT1. A, expression of hZnT1(hZnT10Cter) did not confer Mn resistance in 
SPCA1-/-/- cells. B, expression of hZnT1(hZnT10Cter) did not alter Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells. C, expression of hZnT1(hZnT10Loop) did not confer Mn resistance in 
SPCA1-/-/- cells. D, expression of hZnT1(hZnT10Loop) did not alter Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells. E, expression of hZnT1(H43N) did confer Mn resistance in SPCA1-/-/- 
cells. F, expression of hZnT1(H43N) lost the ability to confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- 
cells. In (A), (C), and (E), or in (B), (D), and (F), cells were grown as in Fig. 3A and B, and the 
numbers of living cells were evaluated by the Alamar Blue assay. In (A)–(F), the Alamar Blue 
assay was performed at least three times. Confirmation of stable WT and mutants of hZnT1 
expression in SPCA1-/-/- cells or ZnT1-/-MT-/-ZnT4-/- cells by immunoblotting (lower panels). 
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Tubulin and calnexin are shown as the loading controls. G, the cell surface localization of 
hZnT1 mutants in SPCA1-/-/- cells was evaluated by the surface biotinylation assay. H, the cell 
surface localization of hZnT1 mutants in ZnT1-/-MT-/-ZnT4-/- cells was evaluated by the surface 
biotinylation assay. In (G) and (H), hZnT1(hZnT10Cter) was detected by an anti-hZnT10 antibody, 
whereas WT ZnT1 and other hZnT1 mutants were detected by an anti-hZnT1 antibody. The 
biotinylation assay was performed as in Fig. 2G. The representative results of three independent 
experiments are displayed. 
 
Figure 7. Domain swapping and substitution analysis between hZnT10 and hZnT2. A, 
expression of hZnT2(H106N) failed to confer Mn resistance in SPCA1-/-/- cells. B, expression of 
hZnT2(H106N) lost the ability to confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. C, expression of 
hZnT10(hZnT2Cter) lost the ability to confer Mn resistance in SPCA1-/-/- cells. D, expression of 
hZnT10(hZnT2Cter) did not confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. E, expression of 
hZnT2(hZnT10Cter) did not confer Mn resistance in SPCA1-/-/- cells. F, expression of 
hZnT2(hZnT10Cter) lost the ability to confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. In (A), (C), 
and (E), or in (B), (D), and (F), cells were grown as presented in Fig. 3A and B, and the 
numbers of living cells were evaluated by the Alamar Blue assay. In (A)–(F), the Alamar Blue 
assay was performed at least three times. Confirmation of stable expression of WT and mutants 
of hZnT2 and hZnT10 in SPCA1-/-/- cells or ZnT1-/-MT-/-ZnT4-/- cells by immunoblotting (lower 
panels). Tubulin is shown as the loading control.  
 
Figure 8. Domain swapping and substitution of specific sequences failed to be compatible 
between hZnT10 and hZnT2. A, expression of hZnT10(N43H-hZnT2Loop-hZnT2Cter) lost the ability to 
confer Mn resistance in SPCA1-/-/- cells. B, expression of hZnT10(N43H-hZnT2Loop-hZnT2Cter) did not 
confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. C, expression of hZnT2(H106N-hZnT10Loop-hZnT10Cter) 
did not confer Mn resistance in SPCA1-/-/- cells. D, expression of hZnT2(H106N-hZnT10Loop-hZnT10Cter) 
lost the ability to Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. In (A) and (C), or in (B) and (D), 
cells were grown as presented in Fig. 3A and B, and the numbers of living cells were evaluated 
by the Alamar Blue assay. In (A)–(F), Alamar Blue assay was performed at least three times. 
Confirmation of stable expression of WT and mutants of hZnT2 and hZnT10 in SPCA1-/-/-cells 
or ZnT1-/-MT-/-ZnT4-/- cells by immunoblotting (lower panels). Tubulin is shown as the loading 
control.  
 
Figure 9. Residues C52 and L242 in the TMDs II and IV of hZnT10 are involved in the 
control of metal substrate specificity in hZnT10. A, expression of hZnT10(N43H, C52V) did not 
confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. B, expression of hZnT10(N43H, L242F) did not 
confer Zn resistance in ZnT1-/-MT-/-ZnT4-/- cells. C, expression of hZnT10(N43H, C52V, L242F) and 
hZnT10(N43H, C52V, L242F-hZnT1Cter) partially restored the ability to confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells. D, expression of hZnT10(N43H-hZnT1Cter) did not confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells. E, expression of hZnT10(C52V, L242F) did not confer Zn resistance in 
ZnT1-/-MT-/-ZnT4-/- cells. F, expression of hZnT10(C52V, L242F) did not impair Mn resistance in 
SPCA1-/-/- cells. In (A)−(E), or in (F), cells were grown as presented in Fig. 3A and B, and the 
numbers of living cells were evaluated by the Alamar Blue assay. The Alamar Blue assay was 
performed at least three times in (A), (B), and (D)–(F), and four times in (C). Confirmation of 
stable expression of hZnT10 mutants in SPCA1-/-/- cells or ZnT1-/-MT-/-ZnT4-/- cells by 
immunoblotting (lower panels). Tubulin is shown as the loading control.  
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Table 1. Conferment of Mn and Zn resistance by hZnT10 or hZnT1 and their domain 

swapped/substituted mutants in SPCA1-/-/- and ZnT1-/-MT-/-ZnT4-/- cells 

Expressed gene Mn resistance in 

SPCA1-/-/- cells 

Zn resistance in 

ZnT1-/-MT-/-ZnT4-/- cells 

hZnT10 +++  −* 

hZnT1 − +++ 

hZnT10(N43H)  −* − 

hZnT1(H43N) +++ − 

hZnT10(hZnT1Cter) +++ − 

hZnT1(hZnT10Cter) − ++ 

hZnT10(hZnT1Loop) +++ − 

hZnT1(hZnT10Loop) − +++ 

Relative values presented are evaluations of the results shown in Figures 3, 5, and 6 as follows. 

+++: >75% viability compared with that of WT in SPCA1-/-/- cells at 40 µM MnSO4 or that of 

WT in ZnT1-/-MT-/-ZnT4-/- cells at 60 µM ZnSO4; ++, +: less growth (25–75%, or ≤ 25% relative 

to the viability of each WT); −: no growth; * a small fraction of the cells appeared 

morphologically normal by visual observation. 

 

Table 2. Conferment of Mn and Zn resistance by hZnT10 or hZnT2 and their domain 

swapped/substituted mutants in SPCA1-/-/- and ZnT1-/-MT-/-ZnT4-/- cells 

Expressed gene Mn resistance in 

SPCA1-/-/- cells 

Zn resistance in 

ZnT1-/-MT-/-ZnT4-/- 

cells 

hZnT10 +++  −* 

hZnT2 − +++ 

hZnT10(N43H) − − 

hZnT2(H106N) − − 

hZnT10(hZnT2Cter) − − 

hZnT2(hZnT10Cter) −  −* 

hZnT10(N43H-hZnT2Loop-hZnT2Cter)  − − 

hZnT2(H106N-hZnT10Loop-hZnT10Cter)  − − 
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Relative values presented are evaluations of the results shown in Figures 7 and 8, as described 

in Table 1. 
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