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Abstract This paper describes a method based on new combined features with mel-frequency cepstrum coefficients

(MFCCs) and rahmonic in order to robustly detect a shouted speech in noisy environments. MFCCs collectively

make up mel-frequency cepstrum, and rahmonic shows a subharmonic of fundamental frequency in the cepstrum

domain. In our previous method, Gaussian mixture models (GMM) is constructed with the proposed features ex-

tracted from training data which includes a lot of normal and shouted speech samples. In this paper, evaluation

experiments of noisy shouted speech detection were conducted using not only GMM but also hidden Markov models

(HMM) and deep neural network (DNN). The results show that MFCCs and rahmonic were effective for represent-

ing an utterance mechanism including both vocal tract and vocal cords. In addition, DNN could achieve higher

performance in noisy environments than GMM and HMM.
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1

Training data Female speaker: 400 samples

Male speaker: 400 samples

Testing data Female speaker: 100 samples

Male speaker: 100 samples

Sampling 16 kHz / 16 bit

Acoustic 12 orders MFCC

feature 12 orders ΔMFCC

1 order Rahmonic

Acoustic 1. GMM

model 2. HMM ( states)

3. DNN

Noise White noise, Speech bubble [18]

SNR 0, 10, 20, ∞ dB

Frame length 25 ms (Hamming window)

Frame shift 10 ms
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2 [%] ( DNN)

Number of SNR=∞ dB SNR=20 dB SNR=10 dB SNR=0 dB

input frames M R M+R M R M+R M R M+R M R M+R

1 frame 92.3 69.5 90.5 94.4 59.4 93.7 92.5 68.4 91.6 90.8 87.4 92.2

7 frames 95.3 68.0 95.6 96.4 65.9 96.9 95.3 75.7 95.7 94.2 93.4 95.7

11 frames 95.1 68.6 95.7 96.5 66.6 96.8 95.5 75.7 95.8 96.4 94.9 95.5

*M: MFCCs, R: Rahmonic, M+R: MFCCs and Rahmonic

3 [%] ( DNN)

Number of SNR=∞ dB SNR=20 dB SNR=10 dB SNR=0 dB

input frames M R M+R M R M+R M R M+R M R M+R

1 frame 84.9 73.7 93.4 90.5 70.4 94.8 90.3 73.8 94.3 82.7 61.7 87.1

7 frames 89.4 80.7 95.1 93.8 79.1 96.1 93.3 80.9 95.7 87.5 54.9 92.2

11 frames 91.2 81.3 94.5 94.5 80.1 96.0 94.1 80.7 96.1 88.6 53.4 91.5

*M: MFCCs, R: Rahmonic, M+R: MFCCs and Rahmonic
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