<table>
<thead>
<tr>
<th>Title</th>
<th>Surface and interface sciences of Li-ion batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Minato, Taketoshi; Abe, Takeshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Progress in Surface Science (2017), 92(4): 240-280</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2017-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/229000</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license; The full-text file will be made open to the public on 01 December 2019 accordance with publisher’s ‘Terms and Conditions for Self-Archiving’.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>Author</td>
</tr>
<tr>
<td>HU</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Surface and Interface Sciences of Li-ion Batteries

-Research Progress in Electrode–Electrolyte Interface-

Taketoshi Minatoa,* and Takeshi Abeb

aOffice of Society-Academia Collaboration for Innovation, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan

bGraduate School of Global Environmental Studies, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan

*Corresponding author: Takeshi Minato

Email: minato.taketoshi.5x@kyoto-u.ac.jp
Abstract

The application potential of Li-ion batteries is growing as demand increases in different fields at various stages in energy systems, in addition to their conventional role as power sources for portable devices. In particular, applications in electric vehicles and renewable energy storage are increasing for Li-ion batteries. For these applications, improvements in battery performance are necessary. The Li-ion battery produces and stores electric power from the electrochemical redox reactions between the electrode materials. The interface between the electrodes and electrolyte strongly affects the battery performance because the charge transfer causing the electrode redox reaction begins at this interface. Understanding of the surface structure, electronic structure, and chemical reactions at the electrode–electrolyte interface is necessary to improve battery performance. However, the interface is located between the electrode and electrolyte materials, hindering the experimental analysis of the interface; thus, the physical properties and chemical processes have remained poorly understood until recently. Investigations of the physical properties and chemical processes at the interface have been performed using advanced surface science techniques. In this review, current knowledge and future research prospects regarding the electrode–electrolyte interface are described for the further development of Li-ion batteries.
Keywords

Lithium-ion battery, Surface Structure, Electronic Structure, Electrode-Electrolyte Interface
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABF</td>
<td>Annular Bright Field</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitude Modulation</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapor Deposition</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl Carbonate</td>
</tr>
<tr>
<td>DFT-MD</td>
<td>Density Functional Theory-Molecular Dynamics</td>
</tr>
<tr>
<td>DMC</td>
<td>Dimethyl Carbonate</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulfoxide</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of States</td>
</tr>
<tr>
<td>DR-XAS</td>
<td>Depth Resolved X-ray Absorption Spectroscopy</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray</td>
</tr>
<tr>
<td>EELS</td>
<td>Electron Energy Loss Spectroscopy</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical Impedance Spectroscopy</td>
</tr>
<tr>
<td>EMC</td>
<td>Ethyl Methyl Carbonate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Spray Deposition</td>
</tr>
<tr>
<td>FEC</td>
<td>Fluoroethylene Carbonate</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>HAADF</td>
<td>High-Angle Annular Dark-Field</td>
</tr>
<tr>
<td>HAX-PES</td>
<td>Hard X-ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>HOPG</td>
<td>Highly Oriented Pyrolytic Graphite</td>
</tr>
<tr>
<td>HREELS</td>
<td>High Resolution Electron Energy Loss Spectroscopy</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>LEED</td>
<td>Low Energy Electron Diffraction</td>
</tr>
<tr>
<td>LLT</td>
<td>La${0.55}$Li${0.35}$TiO$_3$</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular Dynamics</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>NR</td>
<td>Neutron Reflectivity</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylene Oxide</td>
</tr>
<tr>
<td>PES</td>
<td>Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>PLD</td>
<td>Pulsed Laser Deposition</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PM-FTIR</td>
<td>Polarization-modulation Fourier-transform infrared</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PVdF</td>
<td>Polyvinylidene Difluoride</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SEI</td>
<td>Solid Electrolyte Interphase</td>
</tr>
<tr>
<td>SEIRA</td>
<td>Surface Enhanced Infrared Absorption</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SERS</td>
<td>Surface Enhanced Raman Scattering</td>
</tr>
<tr>
<td>SFG</td>
<td>Sum Frequency Generation</td>
</tr>
<tr>
<td>SOC</td>
<td>State of Charge</td>
</tr>
<tr>
<td>SLD</td>
<td>Scattering Length Density</td>
</tr>
<tr>
<td>STEM</td>
<td>Scanning Transmission Electron Microscopy</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning Tunneling Microscopy</td>
</tr>
<tr>
<td>STO</td>
<td>SrTiO$_3$</td>
</tr>
<tr>
<td>STS</td>
<td>Scanning Tunneling Spectroscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>TERS</td>
<td>Tip Enhanced Raman Scattering</td>
</tr>
<tr>
<td>TRF-XAS</td>
<td>Total-reflection Fluorescence X-ray Absorption Spectroscopy</td>
</tr>
</tbody>
</table>
UHV	Ultra High Vacuum

VC	Vinylene carbonate

WKB	Wentzel-Kramers-Brillouin

XPS	X-ray Photoelectron Spectroscopy

XRD	X-ray Diffraction

XRR	X-ray Reflectivity
1. Introduction

Concerns regarding environmental pollution and the depletion of energy sources in our life are increasing. The most realistic and feasible strategy to solve these problems is the enhancement of the efficiency of energy use. Energy usage at a specific time and place by generating electricity using a rechargeable battery is one suitable method for improving efficiency. Currently, Li-ion batteries are the most common type of rechargeable batteries, with widespread use in portable electronic devices. Recently, the application of Li-ion batteries has expanded to electric vehicles, factories, and renewable energy storage [1-4]. To meet the demands of these new applications, Li-ion batteries require improvements in capacity, cycling, and high-rate performance. To improve battery performance, the interface between the electrodes and electrolyte must be both thoroughly understood and controllable. In this review, current knowledge and future research prospects regarding the electrode-electrolyte interface in Li-ion batteries are summarized.

The first Pb-acid rechargeable battery was invented in 1859 by Gaston Plante; the development of nickel–cadmium and nickel–hydrogen batteries followed, and finally led to rechargeable batteries using Li [1-4]. The high specific capacity (3860 A·h/g) of Li suggested its use as an electrode material; Li–TiS$_2$ and Li–MoS$_2$ batteries are examples of Li-ion battery systems. However, the low recharging performances and safety issues of Li negative electrodes induced the replacement of Li-negative electrodes with intercalated materials. In lithiated carbon (typically
graphite), the charge–discharge reaction in an appropriate organic electrolyte forms a stable surface film known as the solid electrolyte interphase (SEI) on the electrode [5]. The applicability of LiCoO$_2$ in positive electrode material was discovered by Goodenough et al. in 1980 [6]. Current Li-ion batteries use graphite negative electrodes and lithiated-metal layered compounds, typically LiCoO$_2$, as positive electrodes, in which the Li insertion and extraction processes occur during the charge and discharge reactions, respectively. In 1991, Li-ion batteries were commercialized by SONY for use in small electric devices because they offered high energy densities [7]. At present, Li-ion batteries are indispensable power sources for portable electronic devices in modern life [1-4, 9].

Modern industrial Li-ion batteries are typically composed of the following components (Fig. 1):

A. A current collector for the negative electrode

B. A composite negative electrode

C. A separator to prevent direct contact between the negative and positive electrodes immersed in an organic electrolyte

D. A composite positive electrode

E. A current collector for the positive electrode

Typically, Cu is used for A. B is prepared by mixing the active material with a binder. Carbon materials and F-containing resins like polyvinylidene difluoride (PVdF) are typically used as the
active and binder materials, respectively. When active materials with low electron conductivity are used, the conductive material, i.e. acetylene black is mixed with the composite electrode. For C, polyethylene (PE) or polypropylene (PP) microporous membranes are used as separators. The separator is immersed by the electrolyte, typically a Li salt such as LiPF$_6$, is dissolved in a carbonate-based organic solvent, often a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethyl methyl carbonate (EMC). Small amounts of additives such as vinylene carbonate (VC) are also dissolved in the electrolyte to improve the battery performance. For D, a mixture of the active material, binder, and conductive materials is prepared (Fig. 2) [8]. Layered metal oxides like LiCoO$_2$ and PVdF are typical active and binder materials, respectively. To improve the electron conductivity, carbon materials like acetylene black are used as the conductive material. For E, Al foil is typically used, with the composite positive electrode pasted onto the metallic current collector. During the charge–discharge reaction in a Li-ion battery, Li ions and electrons move by diffusion between the active materials in the negative and positive electrodes.

During the charging and discharging of a Li-ion battery, Li ions move between the positive and negative electrodes. Here, it is assumed that Li ions initially occupy the positive electrode (Fig. 3). To begin the discharging reaction, a lower electrochemical potential is applied to the positive electrode. To compensate for the difference in electrochemical potential between the positive and negative electrodes, an electric double layer forms at the electrolyte side of the electrode–electrolyte
interface. In this electric double layer, charge transfer and the solvation of Li ions occurs [10-11]. At the interface of the negative electrode, desolvation proceeds, while a space charge layer forms at the electrode side that distorts the crystal and local structures of the electrode [1-4, 12, 13]. In addition, the electrolyte often decomposes to form an interface layer [1-5, 10, 11, 14]. These physical properties and chemical reactions at the interface strongly influence the performance; i.e., the capacity, cyclic properties, and high-rate behaviors, of Li-ion batteries. However, the interface is buried within the electrode and electrolyte, which hinders its analysis. Electrochemical studies have provided important information regarding the interface, but much remains unknown.

In this review, the current understanding of the surface structures and electronic structures for typical electrode materials is summarized because these properties are the most fundamental in affecting the interfacial phenomena. In addition, the chemical reactions occurring at the electrode–electrolyte interface are described. These are useful in further understanding of the interface and in improving the performance of Li-ion batteries.

2. Preparation and growth of samples for experimental studies surface and interface study

Composite electrodes are used in industrial Li-ion batteries; these have complex structures because of their components (Fig. 2). The extraction of surface and interface properties from the active materials within such composite electrodes is difficult. In order to study the surface and
interface properties, model electrodes can be useful. In this section, several methods used to prepare model electrodes and investigate surface and interface phenomena are described.

2.1. Thin films

The most popular method used to investigate interface phenomena in Li-ion batteries is the use of thin-film samples of the active materials. Thermal vapor deposition, radio-frequency (RF) sputtering, RF magnetron sputtering, chemical vapor deposition (CVD), electrostatic spray deposition (ESD), sol-gel methods, and pulsed laser deposition (PLD) can be used to prepare thin-film samples [14, 15]. RF sputtering and RF magnetron sputtering are the most convenient ways to prepare thin films; however, obtaining flat samples using these methods is difficult, as they produce thin films of polycrystalline particles. Among the above preparation methods, PLD is the most precise technique for preparing thin-film samples; epitaxial LiCoO$_2$(104)/SrRuO$_3$(100)/Nb–SrTiO$_3$(100) is shown as an example in Fig. 4 [16]. PLD can induce epitaxial film growth on a crystalline substrate, meaning that this technique can prepare sufficiently high-quality samples [15-17]. However, determining the conditions necessary to prepare high-quality, highly crystalline, and flat thin films of the required composition is difficult, and doing so for compounds containing several elements is especially difficult. In addition, because the technique is so refined, obtaining thicker films requires long processing times.
2.2. Single crystals

The most ideal form in which to study the interface or surface properties of an electrode material is the bulk (millimeter-sized) single crystal. Single crystals are traditionally used in surface science work; they offer the best opportunities to precisely characterize details of the materials [18, 19]. However, the preparation of single-crystal electrode materials is difficult. For the typical active materials of Li-ion batteries, only highly oriented pyrolytic graphite (HOPG) [20], LiCoO$_2$ (Fig. 5) [21], and Li$_x$FePO$_4$ [22, 23] have been prepared as bulk single crystals for studying their interface and surface properties. Small-size (micrometer-scale) single crystals have been reported for LiMn$_2$O$_4$ and Li$_2$MnO$_3$ [24-27], but a detailed study requires further developments in preparing millimeter-scale single crystals. Single-crystalline Li$_4$Ti$_5$O$_{12}$ was successfully prepared by inserting Li into single-crystalline TiO$_2$ by calcining TiO$_2$ with a Li compound [28].

2.3. Others

Experiments using composite electrodes can also be used to study interface phenomena. By using scanning electron microscopy (SEM) or transmission electron microscopy (TEM), the interface can be directly observed, even with composite electrodes. As described above, composite electrodes are used in industrial Li-ion batteries; thus, the results are easily adapted for industrial
batteries.

3. Analytical methods

3.1. Surface and interface structure

To study the surface structure of an electrode, surface X-ray diffraction can be used [29]. In this method, high-flux X-rays irradiate the sample surface at an incident angle of less than the critical angle for the total reflection. The penetration depth of the X-ray is limited to several nanometers [30]. The diffraction therefore reflects the crystalline structure in the surface region of the several nanometers of the material. This method can be also used for the interface with the electrolyte.

Reflectivity measurements of X-rays and neutrons can be used to study the composition, roughness, and thickness of components at interfaces [31-36]. These measurements are performed by measuring the intensity of an X-ray or neutron beam reflection from the sample surface or interface after irradiation at a very small incident angle. Both X-ray reflectivity (XRR) and neutron reflectivity (NR) measurements can be used to analyze the composition, roughness, and thickness of a sample. XRR has advantageous signal intensity relative to NR, which is important for the detailed analysis of the reflectivity pattern. However, NR is highly sensitive to light elements, and the electrolytes of Li-ion batteries generally comprise the light elements of C, O, H, P, and F. Therefore,
NR has advantages in analyzing Li-ion battery systems. Because most materials have refractive indices $n < 1$, a neutron ray incident at an angle below the critical angle upon a flat sample experiences total optical reflection at the surface. The reflectivity intensity decreases in proportion to q^{-4}, where q is the scattering vector. For an incident angle exceeding the critical angle, the incident neutron beam is divided into reflected and transmitted beams. The transmitted beam also divides into reflected and transmitted beams at each interface (Fig. 6). The waves from each reflected neutron beam are added and their relative phases cause interference oscillations, or Kiessig fringes. These oscillations reflect the scattering lengths and thicknesses of the material. The reflectivity of the neutron $R(q)$ is expressed by the following equation:

$$R(q) = R_F(q) \exp(-q^2\sigma^2)$$ \hspace{1cm} (1)

where $R_F(q)$ and σ are the Frenkel reflection at a perfectly flat interface and the standard deviation of the composition distribution at the interface. Thus, the neutron reflectivity reflects the composition, thickness, and roughness of the interfaces.

Microscopic techniques can directly show surface and interface structures at the molecular or atomic level. TEM and electron diffraction are widely used to analyze surface and interface structures [23, 37]. With the recent development of scanning transmission electron microscopy (STEM) based on spherical aberration correction techniques, the positions, elements, and local electronic structures of each atomic column can be analyzed [38]. Although the concept of spherical
aberration correction was proposed long ago, electron lenses using spherical aberration correction techniques were first achieved in Germany in the 1990s [39]. The resolution of TEM imaging continued to improve with the refinement of spherical aberration correction techniques [40]. Today, resolutions of < 0.05 nm can be achieved [41]. The direct observation of transition metals in active electrode materials by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and the analysis of local electronic structures by STEM-electron energy loss spectroscopy (EELS) have been reported [42]. In addition, the observation of light elements such as Li, O, and H can be achieved by annular bright-field (ABF) STEM [43, 44]. TEM can be used to observe the surface structures of electrodes in cross-sectional imaging.

Scanning probe microscopic techniques are often used for direct observations of surface and interface structures. The first scanning probe microscopy technique, scanning tunneling microscopy (STM), was developed by Binning and Rohrer [45, 46]. The STM experimental system firstly reported by Binning et al. [45] is shown in Fig. 7. In STM, a bias voltage is applied between a sharp metallic probe tip and the conductive sample. By moving the tip toward the sample surface, a tunneling current is detected before contact is established. The tunneling current \(I \) is very sensitive to the tip–sample distance \(s \). While maintaining a constant tunneling current \(I \), the tip scans the sample surface. The trajectory of the tip during the scan reflects the surface structure and electronic structure with atomic resolution.
Here, the theoretical background of the dependence of the sensitivity of the tunneling current I on the tip–sample distance s is explained [46, 47]. With the assumption of no-inelasticity, the tunneling current I is expressed as:

$$I \propto \int_{0}^{eV} \rho_{s}(E)\rho_{t}(-eV + E)T(E, eV)\,dE \quad --- (2)$$

where e, V, $\rho_{s}(E)$, $\rho_{t}(E)$, and $T(E, eV)$ are the electron charge, applied bias voltage, the densities of states (DOS) at the surface of the sample and at the probe tip at the energy E, and the tunneling probability of an electron of energy E to another site, respectively (Fig. 8). Using the Wentzel–Kramers–Brillouin (WKB) approximation, $T(E, eV)$ is expressed by

$$T(E, eV) = \exp \left(-\frac{4\pi s\sqrt{2m}}{\hbar} \sqrt{(\Phi(z) + \frac{eV}{2} - E)} \right) \quad --- (3)$$

where s, m, \hbar, and $\Phi(z)$ are the tip–sample distance, electron mass, Planck constant, and the work function at position z. From equations (2) and (3), with the approximation of (A) a flat tip–sample potential Φ and (B) constant values for $\rho_{s}(E)$ and $\rho_{t}(E)$, the tunneling current I is expressed by

$$I \cong f(V)\exp \left(-2s \frac{4\pi \sqrt{2m}}{\hbar} \left(\Phi - \frac{e|V|}{2} \right) \right) \quad (4)$$

where $f(x)$ is a function that is almost constant with changes in V. Equation (4) indicates that the tunneling current I changes exponentially with the tip–sample distance s, providing the high resolution of STM imaging. STM can be operated in vacuum, ambient atmospheres, and liquids [47, 48]. In addition, spectroscopic measurements based on STM can be used to study the electronic [47-52], vibrational [53-55], and spin structures [56-58], as well as the chemical reaction dynamics, of
single molecules [59-65].

Based on the principles of operation, STM is applicable only to conductive samples. Atomic force microscopy (AFM) uses a cantilever probe similar to that in STM; however, AFM can be used to image insulators. In STM, the tunneling current is used to monitor the tip–sample distance. In AFM, the forces generated between the cantilever tip and the sample are used to control the tip–sample distance. These forces F_{ts} include both long- and short-range contributions. In the long range (typically exceeding 10 nm), the van der Waals, electrostatic, and magnetic forces have large contributions in vacuum, while electric double-layer forces have large contributions on the long-range interactions in liquids [66]. In the short range (typically less than 1 nm), chemical forces and Pauli repulsive forces are typically prevalent in vacuum. In liquid, solvation forces would have large contributions in the short range as well as van der Walls, electrostatic and magnetic forces. Other forces (such as chemical and Pauli repulsive forces) would also have contributions in the short range. For high-resolution imaging by AFM, the short-range forces are exploited.

Early AFM operation was performed in a static mode, in which the tip maintained contact with the sample surface under a constant force. This method was simple, but damage to the sample surface was unavoidable. Later, dynamic modes in which the cantilever oscillation was developed to solve the problem of surface damage. In the dynamic-mode AFM, the mode can be controlled by amplitude modulation (AM) or frequency modulation (FM); the amplitude and frequency are both
affected by the forces between the tip and sample. In AM mode, the amplitude of the cantilever oscillation is used as the feedback signal and is maintained at a constant value. The tip periodically makes contact with the sample surface; however, the force of the contact is much smaller than that in the static mode. In 1991, Albrecht et al. reported an application of the FM mode that improved the time scale of the change in frequency of the cantilever [67]. The application of FM mode AFM dramatically improved the imaging resolution to the atomic level [68]. AFM operation in FM-mode (FM-AFM) can be performed in vacuum, but was not used in liquids because of the extreme reduction of the Q factor of oscillation by hydrodynamic interactions with the cantilever. Yamada et al. developed a system using small amplitude and large noise reduction in the cantilever deflection sensor that permitted FM-AFM operation in liquids (Fig. 9) [69-71]. True atomic resolution in liquid was first achieved in imaging muscovite mica in water [69]. FM-AFM in liquid has the unique ability of imaging the density distribution of molecules in the liquid phase around solid–liquid interfaces by detecting frequency shifts as the probe moves relative to the interface [71].

3.2. Electronic structure

To study the electronic structure of solid surfaces, photoelectron spectroscopy (PES) is widely used in surface science as well as in battery research [72-74]. In Li-ion batteries, interface layers are often formed during the charge and discharge reaction processes on the electrodes by the
decomposition of the electrolyte. The interface layer is generally thick, typically measuring more than several tens of nanometers in scale [14, 74, 75], thus blocking the escape of photoelectrons from the electrode materials and impeding analysis of the interface electronic structure beneath the surface. To overcome this problem, hard X-ray photoelectron spectroscopy (HAX-PES) using synchrotron X-rays is used to analyze electronic structures beneath interface layers. By using high-energy X-rays, the escape depth of the photoelectrons is increased. For example, the escape depth of a photoelectron of 1.5 keV is estimated to be ~3 nm for carbon materials; however, this is increased to ~50 nm for a photoelectrons of 8.0 keV. The use of HAX-PES is spreading for battery systems [72, 74]. In addition, ambient-PES could potentially be used to study the electronic structure at the interface [76-78]. However, no work has yet reported such an analysis for a battery system.

In addition to PES, total-reflectance fluorescence X-ray absorption spectroscopy (TRF-XAS) (Fig. 10) is used to study the electronic structure of surfaces of electrodes [13, 79-82]. With the X-ray introduced at the angle of total reflectance, the fluorescence is limited to that from the surface region of the top several nanometers of the electrode [79]. By applying this technique, an electronic structure of the electrode can be analyzed during the charging and discharging processes.

STM and scanning tunneling spectroscopy (STS) can also be used to directly show the atomic-scale surface electronic structures of electrodes. From equation (3) with the approximation of the flat potential Φ between the tip and sample, the differential of equation (2) with respect to the potential
is expressed as:

\[
\frac{dl}{dv} = e \rho_s(E) \rho_r(0) \exp \left(-\frac{4\pi s \sqrt{2m}}{\hbar} \sqrt{\Phi + \frac{eV}{2} - E} \right) s \quad \cdots (5)
\]

If the applied bias \(V \) is sufficiently low, equation (6) changes to

\[
\frac{dl}{dv} = e \rho_s(E) \rho_r(0) \exp \left(\frac{-4\pi s \sqrt{2m}}{\hbar} \sqrt{\Phi} \right) s \quad \cdots (6)
\]

The derived equation (6) shows that \(dl/dV \) reflects \(\rho_s(E) \). Thus, the DOS at the surface can be determined by measuring \(dl/dV \).

3.3. Vibrational structure

To analyze the reaction mechanisms occurring at the surface and interface, vibrational techniques are useful. Infrared (IR), Raman, and sum frequency generation (SFG) spectroscopy have been reported for use in analyzing electrode interfaces in Li-ion batteries. IR and Raman spectroscopy are complementary methods. In situ polarization-modulation Fourier-transform IR (PM-FTIR) [83], surface-enhanced IR absorption (SEIRA) [84, 85], surface-enhanced Raman scattering (SERS) [86, 87], and tip-enhanced Raman scattering (TERS) [88] are advanced IR and Raman spectroscopic techniques used to investigate interfacial phenomena. While these techniques are useful, few reports on their use with battery systems have been published. SFG spectroscopy (Fig. 11) is an interface-selective vibrational spectroscopy method, ideal for investigating interface reactions [89-91].
3.4. Theoretical methods

In addition to experiments, theoretical methods can be used to investigate the surface and interface properties of Li-ion battery materials. Much of the interfacial character remains unknown through experimental analysis because of technical problems in existing measurement systems. First principles calculations are widely used to investigate the surface, electronic, vibrational, and spin structures at the surfaces and interfaces of battery materials. The combination of experimental results and first principles calculations can permit the deep interpretation of the experimental results [92, 93]. With knowledge from first principles calculations and predictions, classical molecular dynamics (MD) calculations can be used to understand the atomic natures of interface reactions in large-scale systems. In MD calculations, constructions of precise interatomic potentials should be used; however, such construction in complex systems is generally very difficult. Recently, density functional theory–molecular dynamics (DFT-MD) calculations have been applied to investigate the interface reactions in Li-ion batteries [94].

3.5. Other analytical methods

While publications have not yet been reported, other traditional surface science techniques could be used to analyze the interfaces in rechargeable batteries. Low-energy electron diffraction
(LEED) [95] could be used to analyze the surface structure, while high-resolution electron energy loss spectroscopy (HREELS) [96] could be used to study vibrational structures. However, these methods are disadvantageous in using electron beams. The electrode materials in rechargeable batteries have often low electronic conductivity and become negatively charged under electron beam irradiation. Thus, the application of these techniques is generally difficult. Measurements using ionic [97] and He [98] scattering could also provide useful information regarding the surface structures of battery systems.

4. Surface structures of electrode materials

Understanding the surface structures of electrode materials is necessary to understand the interfacial phenomena. Here, current knowledge regarding the surface structures of some electrode materials for Li-ion battery is described. LiCoO$_2$, LiFePO$_4$, LiMn$_2$O$_4$, carbon, Li$_4$Ti$_5$O$_{12}$, and LiTi$_2$O$_4$ are selected because they are common in Li-ion batteries and investigations of their surface and electronic structures are reported.

4.1. Positive electrode materials

4.1.1. Li$_x$CoO$_2$

LiCoO$_2$ [6] is one of the most widely used materials for positive electrode in Li-ion batteries.
The crystal structure of LiCoO$_2$ is layered rock salt in the $R\bar{3}m$ space group (Fig. 12). The surface structure of LiCoO$_2$ has been theoretically predicted by first-principles calculations by several groups. Kramar et al. investigated multiple low-index surfaces of LiCoO$_2$ [99]. The (001) and (104) (= (0001) and (10\bar{1}4), respectively, in the Miller–Bravais indices used in Fig. 13) surfaces were stable within a wide range of O chemical potentials, with relative surface stabilities depending on the atmosphere. In oxidizing atmospheres, the prevalence of (001) surfaces was higher than that of (104), while in reducing atmospheres it was opposite.

LiCoO$_2$ surfaces were experimentally prepared by PLD techniques [13, 16, 79]; however, their atomic structures was not investigated. A clean Li$_x$CoO$_2$ (001) surface can be prepared by the cleavage of a single crystal of Li$_x$CoO$_2$; by this procedure the surface structures are clearly observable by STM [21]. After cleavage, a clear hexagonal structure was observed at the sample voltage bias (V_s) of -1.0 V (Fig. 14) due to Li ions on the Li$_x$CoO$_2$(001) surface. As the tip approached the sample surface, noisier images were obtained, as shown in Fig. 15. The noise arose from the high mobility of Li ions on the surface. After removing the Li ions from the (001) surface, the CoO$_2$ layer in Li$_x$CoO$_2$ was observed with high resolution (Fig. 16). From the comparison with the surface DOS calculated by first principles calculations, it was concluded that the protrusions in the STM images obtained under positive sample bias were caused by O ions near the Co$^{4+}$, produced by the removal of Li ions. No significant reconstructions were observed on this surface.
LiCoO$_2$(104) is one of the most attractive surfaces for structure studies because the (104) surface is nearly parallel to the direction of Li diffusion in bulk LiCoO$_2$ [99]. LiCoO$_2$(104) can be prepared by the epitaxial growth of thin films on SrTiO$_3$ (STO) substrates [16, 31]. However, atomically flat surfaces cannot be obtained through this method. Thus, the atomic nature of the LiCoO$_2$(104) surface structure is incompletely understood. Theoretical analysis of the (104) surface structure is also incomplete; future work remains necessary to determine the precise surface structure of this material.

4.1.2. LiFePO$_4$

Olivine-type LiFePO$_4$ belongs to the orthorhombic space group $Pnma$ (Fig. 17) and shows better cyclic performance relative to LiCoO$_2$ as a positive electrode in Li-ion batteries [100]. In addition, the price of Fe is relatively low among the metals used in Li-ion battery electrode materials. In early research, the surface structure of LiFePO$_4$ was mainly investigated by theoretical calculations [101, 102]. The (010) surface of LiFePO$_4$ is of particular interest because the vector normal to the surface shows high Li-ion conductivity [103-105]. Wang and Fischer et al. revealed that the LiFePO$_4$(010) surface was highly stable via theoretical calculations [101, 102]. Wang et al. used first-principles calculations to study the surface energy and structure, while Fisher et al. used a classical force field (or empirical potential model) to describe the interatomic forces active in much
larger systems. In the second model, each of the ions was assigned a formal charge that remained fixed throughout the relaxation process; in reality, the electronic structure near a surface is altered or relaxed slightly, causing slight differences in the net effective charges on surface atoms relative to those in the crystal bulk. This means that the surface relaxation forces calculated by Fisher et al. tended to be stronger than those calculated by Wang et al. This effect is the most noticeable for the higher-energy surfaces where greater structural relaxation occurs because they are lower in stability. Although the two calculations used different approaches, the predictions of LiFePO$_4$(010) as the most stable surface structure were almost identical. The termination of the bulk structure at the position of Li ions achieves the most stability (Fig. 18). With this termination, the coordination numbers of Li–O and Fe–O are decreased, the bond distances of Li–O and Fe–O decrease slightly, and the surface shows Li vacancies. The calculated structure of LiFePO$_4$(010) reported by Fisher et al. is shown in Fig. 19.

Recently, the structure of LiFePO$_4$(010) was experimentally observed using cross-sectional TEM by Kobayashi et al [23]. They reported the surface reconstructions after the cleavage of this surface (Fig.20). The observed structure well matched with the structure predicted by the first principles calculations. It also clarified the changes in the surface structure induced by Li extraction from the surface.

Other surfaces of LiFePO$_4$, (100), (101), (201), and (301) were also determined to be stable by
first-principles calculations [101]. A calculation based on classical force fields also showed that (011), (201), and (221) surfaces are stable (Table 1) [102]. In fact, some of these surfaces have lower surface energies than (010), although Li diffusion is less efficient and the redox potential is more positive than those in (010) [101].

4.1.3. LiMn$_2$O$_4$

Spinel-type LiMn$_2$O$_4$ [106] has a cubic crystal structure in the $Fd\bar{3}m$ space group (Fig. 21) and the advantages of low cost, high voltage, and fast Li diffusion from the three-dimensional network of channels. Theoretical analyses of the surface structures have been reported [107, 108]. Benedek and Thackeray reported that Li-terminated (001) has the lowest surface energy [107]. However, an experiment showed that LiMn$_2$O$_4$ particles are predominantly terminated by (111) surfaces [109-114]. Karim et al. applied antiferromagnetic ordering along the [110] directions and found that LiMn$_2$O$_4$(111) with the inverse spinel structure was the most stable surface (Fig. 22) [108].

By using first principles calculations and a grand canonical thermodynamic formalism, Warburton et al. investigated the stability of the surface structures to compare the non-stoichiometric surfaces with previously reported stoichiometric surface terminations in variously oxidative and reductive environments [115]. Fig. 23 shows the surface energy of each surface for several chemical potentials of Li ($\Delta\mu_{\text{Li}}$) and O ($\Delta\mu_{\text{O}}$) [115]. In general, (111) is the most stable for a wide range of $\Delta\mu_{\text{Li}}$.
and $\Delta \mu_O$ values. This is consistent with the results previously reported by Karim. However, the observed surface structure was not inverse spinel; they suggested that the Li-terminated structure (Fig. 24) was the most stable. This structure reduced the dipole moment of the Mn$_x$O$_{4x}$ layers with an additional Li layer at the interface. Experimentally, the stability of LiMn$_2$O$_4$(111) against dissolution, which causes the capacity to decrease, has been observed [116].

4.2. Negative electrode materials

4.2.1. Carbon

Carbon materials are currently the most popular materials for negative electrodes in Li-ion batteries. Both graphitic and non-graphitic carbon materials are used in Li-ion batteries. In this review, only graphitic carbon is discussed because its crystalline nature is needed for analysis of the surface structure. The crystal structure of graphitic carbon, based on sp^2-hybridized carbon atoms forming a planar honeycomb structure known as graphene, is well known. Each graphene layer interacts with others by van der Waals forces; layered lattice structures of graphene form with the layer distance of 0.33 nm [2]. The perfect stacking of graphene layers via one of two stacking patterns produces graphite. The stacking pattern sequence of ABABAB forms hexagonal graphite, while that of ABCABC sequences forms a rhombohedral structure. In this work, we discuss research on hexagonal graphite because HOPG, a typical single-crystal graphite form, has a hexagonal
structure in the $P6_{3}/mmc$ space group (Fig. 25).

Graphite can have two surface structures (Fig. 25). One is the basal plane (Fig. 25), observation of which can be achieved by ultra-high-vacuum (UHV)-STM or AFM [47, 48, 66]. In aqueous solutions, the honeycomb basal plane surface structure can be observed by STM or AFM and is identical to the structure observed in UHV (Fig. 26) [117]. However, in the electrolyte of Li-ion batteries, the surface structures were not be directly observed by microscopic techniques.

The other possible graphite surface is the edge plane (Fig. 25), which can be zigzag or armchair in structure (Fig. 27). These surfaces are more active for Li insertion and extraction than the basal plane [1-3]. However, defects on the edge plane such as dangling bonds, C–H, C–OH, and C–OOH can influence Li insertion and extraction [2]. Investigation of the edge plane of HOPG has been reported [118, 119], but the surface structure has not yet been atomically analyzed because of the difficulty in preparing clean and flat edge-plane graphite surfaces.

4.2.2. Li$_4$Ti$_5$O$_{12}$ and LiTi$_2$O$_4$

Li$_4$Ti$_5$O$_{12}$ (Fig. 28) and LiTi$_2$O$_4$ (Fig. 29) are two Li–Ti oxide compounds that show good performance as negative electrodes in Li-ion batteries. Both compounds have spinel crystal-based structures in the $Fd\overline{3}m$ space group, although LiTi$_2$O$_4$ has a relatively distorted structure. The materials, particularly Li$_4$Ti$_5$O$_{12}$, offer the advantage of stable cyclic performance because the
volumetric changes accompanying Li insertion and extraction are almost negligible [120, 121]. In addition, the materials provide constant electrode potentials and sufficient electron conductivities [120, 121]. Calculations of Li₄Ti₅O₁₂ surfaces have not yet been reported. Experimentally, single-crystal layers of Li₄Ti₅O₁₂ can be prepared by the solid-state reaction of single-crystalline TiO₂ with LiOH·H₂O powder [28]. The surface structure of Li₄Ti₅O₁₂(111) can be imaged by UHV-STM (Fig. 30) [122] and by FM-AFM in aqueous solutions (Fig. 31) [123]. The Li₄Ti₅O₁₂(111) surface is comprised of Li and O atoms (Fig. 32) [123], with bright spots in the STM image assigned to surface Li ions. In liquid-FM-AFM image, it is suggested that the origin of the bright spots may be influenced by water molecules [123]. The surface structure of Li₄Ti₅O₁₂ can also be observed by TEM [124, 125]. The change of the surface structure to a rock-salt structure by immersion into an electrolyte (1 M LiPF₆ in PC) [124], as well as Li insertion to the surface caused by irradiation by an electron beam [125] are observed. The structures of other surfaces of Li₄Ti₅O₁₂ have not been observed experimentally.

For LiTi₂O₄, the thermodynamic stabilities of the surface structures have been calculated by first-principles calculations [126]. The stabilities of the five terminations of (100)-Ti₂O₄, (110)-Ti₂O₄, (210)-Ti₂O₄, (111)-LiTiO₄, and (310)-Ti₂O₈ were reported to depend on the chemical potentials of Ti and O [126]. In recent experiments, Okada et al. observed the surface structure of LiTi₂O₄(111) by STM after preparing thin-film LiTi₂O₄ on a flat STO substrate by PLD [17]. Using
first principles calculations, they clarified that the prepared LiTi$_2$O$_4$(111) surface was terminated by Ti.

5. Electronic structures of electrode materials

The electronic structures of electrode surfaces strongly influence interfacial phenomena in battery systems. The current status of investigations regarding the electronic structures of the surfaces of Li-ion battery electrode materials is described in this section.

5.1. Positive electrode materials

5.1.1. LiCoO$_2$

The electronic structures of LiCoO$_2$ surfaces have been theoretically calculated and reported by several groups. Hu et al. used first-principles calculations to investigate the electronic structure of LiCoO$_2$(003) [127] with both Li–O and Co–O terminations as well as the non-polar surface of LiCoO$_2$(003). The highest occupied state had mostly Co 3d with a small amount of O 2p character. In their reports, the (003) surfaces with Li–O and Co–O terminations showed metallic characteristics, despite the insulating nature of the bulk LiCoO$_2$. The contribution of Co 3d, Li 1s/2p, and O 2p and the expansion of the bandwidth of O 2p each cause the narrowing of the electronic bandgap, suggesting that the surface electronic structure is closely related to the surface termination.
The surface electronic structure is also strongly affected by the spin state of surface Co atoms. Qian et al. reported that the spin transition of Co from low to intermediate spin narrowed the bandgaps of both LiCoO$_2$(104) and (110) surfaces [128]. In addition, Huang et al. reported that the exchange of surface Li to H narrowed the bandgap of the LiCoO$_2$(001) surface [129]. These reports support the significant influence of small structural variations, such as defects, on the surface electronic structure.

Experimentally, the electronic structure of the Li$_{0.67}$CoO$_2$(001) surface prepared by the cleavage of a bulk single crystal was investigated [21]. On the Li-terminated Li$_{0.67}$CoO$_2$(001) surface, n-type semiconductive behavior was observed by STS (Fig. 3); the half-monolayer of Li ions should be present on the Li-terminated surface to satisfy the charge compensation needed to retain the Co$^{3+}$ oxidation state. For areas with higher Li ion coverage, the excess Li ions induce the reduction of subsurface Co ions to the Co$^{2+}$ oxidation state, causing the n-type semiconductive behavior of the surface.

When Li ions are removed from the surface, the CoO$_2$ layer can be observed by STM [21]. Two distinct areas of ordered (Fig 34) and disordered (Fig. 35) structure were observed. In the ordered area, protrusions form a 3×3 hexagonal lattice, attributed by first principles calculations to O ions coordinated with three Co$^{3+}$ and Co$^{4+}$ ions each for the occupied and unoccupied state images, respectively. Co$^{4+}$ is formed by the removal of Li ions. STS measurements in this region reveal
metallic features (Fig. 34d), which is different from the Li-terminated surface. Meanwhile, the disordered area shows further differences; Fig. 35d shows the STS from the disordered area, clearly depicting semiconductive behavior and a clear bandgap. These observations demonstrate the effects of Li ionic ordering on the electronic structure and local electron conductivity of the electrode surface. These effects arise from the scattering of conductive electrons by the random distribution of the electronic structure. During the charging and discharging processes of a Li-ion battery, Li ions diffuse between the positive and negative electrodes; generally, high Li-ion conductivity in the electrodes promotes better battery performance. In addition, electrons are transferred between the two electrodes during the charge and discharge processes to maintain electrode charge neutrality. Thus, both electronic and ionic conductivity are required for electrodes. These clearly confirm that electrodes with ordered structures provide better battery performance than those with disordered structures.

5.1.2. LiFePO₄

Based on optical measurements, the bandgap of LiFePO₄ is estimated to be ~3.8–4.0 eV [130]; this is confirmed by first-principles calculations, indicating that LiFePO₄ is electronically insulating in nature [130]. A smaller bandgap of ~2.0 eV on the LiFePO₄(010) surface was obtained by first-principles calculations [131, 132]. However, additional first-principles analyses predicted metallic
electronic structures for LiFePO$_4$(100) and LiFePO$_4$(001) [132]. It was also reported that the
oxidation of the LiFePO$_4$(010) surface (Fig. 36 and 37) or the formation of an Li$_2$S/oxidized
LiFePO$_4$(010) interface can change the surface electronic properties from insulating to metallic in
nature because of the formation of hybrid states [131]. These characteristic properties predicted
theoretically have not yet been experimentally studied.

5.1.3. LiMn$_2$O$_4$

The electronic structure of the most stable LiMn$_2$O$_4$(111) surface has not been yet reported, but
that of LiMn$_2$O$_4$(001) has been studied via calculation methods. Bulk LiMn$_2$O$_4$ contains Mn ions
with the oxidation state of +3.5 [133]. On the Li-terminated LiMn$_2$O$_4$(001) surface, the decreasing of
Mn coordination with O induces a decrease in the oxidation state of Mn to +3 [133]. The Mn 3d
projected DOS in Fig. 38e shows that t_{2g} and d_{z^2} (a component of e_g) are fully occupied. The electron
from the ionized Li fills the 3d_{z^2} state. This agrees with X-ray photoelectron spectroscopy (XPS)
observations of Mn$^{3+}$ in LiMn$_2$O$_4$ [134] and matches the features of MnO-terminated LiMn$_2$O$_4$(001),
which are almost the same as those of (010) and (100) [133].

Using first principles calculations, Warburton et al. reported that the charge of Mn ions on the
(001) surface is reduced from ∼3+ to ∼2+ with the removal of O [135]. The disproportion of Mn ions
may enhance the dissolution of Mn in the electrolyte [134, 135]. The formation of Mn$^{2+}$ is consistent
with the experimentally determined susceptibility of the (001) surface to corrosion and dissolution [136, 137].

5.2. Negative electrode materials

5.2.1. Carbon

The electronic structure of the basal plane of graphite can be experimentally observed by photoelectron and inverse photoelectron spectroscopy, as well as STS [138-141]. Fig. 39 shows the STS spectra obtained from the HOPG basal plane surface [139]. The DOS increases linearly depending on the energy. The bonding π and anti-bonding π^* states cross approximately at the Fermi energy level E_F, characteristic of a zero-gap semiconductor. Between the saddle points of the bonding and anti-bonding π and π^* states, an energy difference of ~ 4 eV is observed, matching previous theoretical results (Fig. 40) [142]. In the STS, a surface state at approximately +3.0 V is observed. The electronic structure of the basal plane of graphite is affected by surface modification. For example, it is reported that the adsorption of metal on the graphite causes the formation of a charge transfer state below E_F [143].

The electronic structures of both armchair- and zigzag-conformation graphite edge sites have been widely investigated. As shown in the STS obtained from an armchair-conformation HOPG edge sites, the electronic structure is similar to that of the HOPG basal plane (Fig. 41a) [144]. This
matches both experimental and theoretical results showing the energetic stability of the armchair-structured edge [145-157]. Meanwhile, the electronic structure of the zigzag edge is distinct, as shown by STS in Fig. 41b [144]. A clear peak spanning −100 to −20 mV is observed, arising from the non-bonding π electronic structures localized at the carbon atoms comprising the zigzag edge. This state is half-filled, forming a localized spin that contrasts with the diamagnetic properties of bulk graphite.

All these reports concern the electronic structure of the edge “sites.” Still, no experimental investigations on the electronic structure of the edge “plane” of graphite have been reported owing to the difficulty in preparation.

5.2.2. Li₄Ti₅O₁₂ and Li₂TiO₄

Neither theoretical nor experimental investigations of the electronic structure of Li₄Ti₅O₁₂ surfaces have been reported, although the electronic structure of the interface between Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂ formed during charging and discharging has been investigated by first-principles calculations [158, 159]. The insertion of Li ions into Li₄Ti₅O₁₂ causes two phase separations between Li₆Ti₅O₁₂ and Li₇Ti₅O₁₂ [160]. Bulk Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂ are both insulators; however, the interface at the phase boundary between Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂ for [111] is metallic. At this interface, one Li atom is extracted from a 16c site in Li₇Ti₅O₁₂, causing the DOS around E_F to ensure
the metallic nature of the interface. The electronic structures of the (100), (110), (111), (210), and (310) surfaces for different configurations of LiTi$_2$O$_4$ were calculated by first-principles calculations (Fig. 42) [126]. Non-zero DOS in the bandgap was observed by the contribution from Ti in many of the termination cases. Some of these states are partially occupied, and high electron conductivities are predicted at the surfaces. For LiTi$_2$O$_4$(111), Okada et al. observed that the pseudogap opening at E_F modified the surface to show superconductivity, unlike the bulk [17].

6. Chemical reactions at the interface

As described in the introduction, the chemical reactions at the electrode–electrolyte interface strongly affect the performance of the Li-ion battery. In this section, current knowledge relating to the interface layer formed by electrolyte decomposition, the formation of the space charge layer, and the desolvation processes is described.

6.1. Interface layer formation

One major topic in studying interface reactions is the formation of interface layers by electrolyte decomposition. Many experimental results have shown that the formation of the interface layer affects the battery performance [14, 75]. For graphite electrodes, the interface layer or SEI [5] has been particularly widely investigated [14]. PES, SEM, TEM, energy-dispersive X-ray (EDX)
spectroscopy, and EELS have been used to analyze the composition, thickness, and structure of the SEI, mainly based on ex-situ analysis performed by opening batteries at different states of charge (SOC) [14]. Ex-situ analysis is helpful, but the opening of the battery can affect the state of the interface layer and dynamic processes such as non-equilibrium states cannot be detected by ex-situ analysis. To solve these problems, in-situ analysis of the interface layer has been reported recently [14]. Because the interface is located between the organic electrolyte and solid electrolyte, the analysis method must be able to approach the buried interface; in addition, the interface layer is mainly composed of light elements such as C, O, and H, so the analytical method must be sensitive to light elements.

NR measurements fulfill these analytical requirements. NR measurements were performed to analyze the composition, thickness, and roughness of an LiCoO$_2$–electrolyte interface [16]. For NR analysis, a flat sample is necessary; an epitaxial film of LiCoO$_2$(104) on SrRuO$_3$(100)/Nb–SrTiO$_3$(100) was prepared (Fig. 4). Fig 43 shows the results of NR and analyzed scattering length density for the pristine, electrolyte-immersed (1 M LiClO$_4$ in deuterated EC:DMC vol. 1:2), fully charged (+4.2 V vs. Li/Li$^+$), and fully discharged (3.3 V vs. Li/Li$^+$) LiCoO$_2$(104)/SrRuO$_3$(100)/Nb-SrTiO$_3$ (100). After the immersion of LiCoO$_2$(104) in the electrolyte, an interface layer forms ((ii) in Fig. 43a and 43b). From the analysis of scattering length density (SLD), it is determined that the interface layer mainly comprises polyethylene oxide (PEO). In electrolytes using mixed EC/DMC
solvents, the accumulation of EC on LiCoO$_2$ electrodes because of the high polarization of EC has been observed [90]. At the interface of LiCoO$_2$(104) and the electrolyte, EC molecules should contact with the LiCoO$_2$(104) surface. With this contact with LiCoO$_2$(104), Co ions are reduced, as observed in polycrystalline LiCoO$_2$ [13]. PEO formation is caused by the oxidative polymerization of the EC molecules. According to previous first principles calculations [161], the EC molecular oxidation produces the unstable radical species 1 as follows:

$$[\text{EC-ClO}_4^-] - \text{e}^- \rightarrow \text{O=CH-CH}_2 + \text{CO}_2 + \text{HClO}_4$$

1

Based on the reactions, the reaction of species 1 with additional EC molecules forms the radical species 2 and 3.

$$\text{O=CH-CH}_2 + \text{EC} \rightarrow \text{CO}_2 + \text{O=CH-CH}_2\text{-O-CH}_2\text{-CH}_2$$

1 2

$$\text{O=CH-CH}_2\text{-O-CH}_2\text{-CH}_2 + \text{EC} \rightarrow \text{CO}_2 + \text{O=CH-CH}_2\text{-O-C}_2\text{H}_4\text{-O-CH}_2\text{-CH}_2$$

2 3

From the reactions, a general expression of the product of the polymerization is given as 4.

$$\text{O=CH-CH}_2\text{-[O-CH}_2\text{-CH}_2^n\text{-O-CH}_2\text{-CH}_2}$$

4
Product 4 mainly comprises the PEO group ([O-CH₂CH₂]ₙ⁻); thus, a PEO layer is formed at the electrolyte–LiCoO₂(104) interface. During charging ((iii) in Fig. 43a and 43b), the thickness of the interface layer is increased from 30.6 nm to 48.8 nm and insertion of Li into the layer is observed. These changes are caused by the additional decomposition of the electrolyte via oxidative reaction and the trapping of Li ions extracted from LiCoO₂(104). For the composition of the interface layer, the addition of inorganic species such as Li₂CO₃, LiCl, LiO₂CD₃, and (LiCO₂CD₂)₂ is suggested. In the discharge process, the thickness of the interface is decreased from 48.8 nm to 35.6 nm, although the composition remains mostly unchanged ((vi) in Fig. 43a and 43b). These changes are attributed to the simple stripping of the interface layer by the insertion and diffusion of Li in the discharge process. This suggests that interactions in the interface layer are not strong. These NR analyses clearly show the dynamic changes in the interface layer during the charge and discharge processes.

On graphite electrodes, SEI formation has been detected by FT-IR [162-171], XPS [172-175], gas chromatography (GC) [176], and TEM [177-179] and directly observed by in-situ AFM [20]. Fig. 44 shows the in-situ AFM of basal HOPG in 1 M LiClO₄ in EC-DMC (vol. 1:1) during potential scan between 2.9 and 0.05 V (vs. Li/Li⁺). The insertion of solvated Li into the basal plane of HOPG is observed from the step below 1.0 V (vs. Li/Li⁺) in EC-based electrolytes at room temperature. At ~0.95–0.80 V (vs. Li/Li⁺), the terrace structure is changed (Fig. 44c) by the intercalation of the
solvated Li from the step. In addition, the formation of a blister with a height of ~15–20 nm (white circle in Fig. 44c) from the accumulation of decomposition products of the solvated Li in the graphite layers is observed (Fig. 44d). At potentials more negative than 0.65 V (vs. Li/Li\(^+\)), particle-like precipitates are observed on HOPG. From pyrolysis/GC/mass spectroscopy (MS) analysis, the precipitates contain longer polymerized compounds with repeated oxyethylene units similar to PEO. The number of the precipitates increases as the potential decreases to 0.05 V (vs. Li/Li\(^+\)), as shown in Fig. 44e, but they disappear at 2.9 V (vs. Li/Li\(^+\)) after the reverse sweep as shown in Fig. 44f, probably because of scratching by the AFM tip. The surface morphology changes and the number of precipitates observed in the second cycle of Li intercalation are very small. This is an important finding because it suggests that effective SEI exists even after the removal of the surface by the AFM tip. The SEI formation is affected by impurities in the electrolyte. The formation of pits and the interface layer triggered by the electrochemical decomposition of POF\(_2\)OH in the electrolyte are observed on the basal plane of HOPG [180, 181].

For SEI formation on the edge plane of a graphite electrode, Domi et al. used a polished edge plane-oriented HOPG sample to observe the surface morphology changes by in-situ AFM [118, 119]. The formation of fine particles smaller than 0.1 μm was observed in the range of 1.0–0.6 V (vs. Li/Li\(^+\)). These are remnants of the blisters observed on the basal plane. With further sweeping of the potential into the negative region, the formation of precipitates by electrolyte decomposition was
observed, similar to that on the basal plane. The thickness of the layer formed on the edge plane was ~55 nm, slightly thicker than that on the basal plane (~44 nm). The formation of the thicker layer was caused by the higher activity of the edge plane compared to that of the basal plane. After the second cycle, the layer thickness was estimated as 66 and 77 nm on the edge and basal planes, respectively; indicating a suppressed increase in thickness on the edge plane. This implies that the layer formed on the edge plane in the first cycle works as an effective passivation layer, and suppresses the decomposition of the electrolyte than that on the basal plane.

6.2. Space charge layer

On the electrode surfaces of a working battery, space charge layers with properties differing from those of the bulk are formed by the electric field [12]. The effects of space charge layer formation on the battery performance have been suggested by studies on Li-ion batteries using solid electrolytes [12]. The electrochemical performance of the electrode and the interfacial resistance are both affected by electrode coatings; the effects are interpreted to arise from the space charge layer. The space charge layer formation on an Li$_x$CoO$_2$ electrode in organic electrolyte was observed by TRF-XAS [13, 79-82]. On the LiCoO$_2$ surface, differences in the electronic structural behavior were observed relative to that of the bulk [13, 79]. When the electrode was in contact with the electrolyte, the reduction of Co ions on the electrode surface was observed (Fig. 45a). This reduction was caused
by the compensation of the electrochemical potential between the positive and negative electrodes. On the LiCoO$_2$ surface, the compensation of the electrochemical potential is achieved by the formation of the space charge layer because the electronic structure features a conduction band minimum at a relatively low energy [182]. The crystal structure of the LiCoO$_2$ surface is distorted by the formation of the space charge layer, causing the irreversible deterioration of the surface of the electrode during the first charging process (Fig. 46a, 46b) and the subsequent capacity fading in later charge–discharge cycling (Fig.47).

On the surface of LiFePO$_4$, another typical material for positive electrode in Li-ion batteries, different surface electronic structure features were observed [77]. The electronic structure of Fe at the surface of the LiFePO$_4$ electrode does not change upon contact with the electrolyte (Fig. 45b). In addition, during charging process, the irreversible change of the surface structure observed in LiCoO$_2$ is absent in LiFePO$_4$ (Figs. 46c, 46d). Because of the reversible surface changes, the charge and discharge capacity of LiFePO$_4$ remains stable during cycling. The observed stability of the LiFePO$_4$ surface arises from the suppression of the formation of the space charge layer. Because the conduction band minimum of LiFePO$_4$ is relatively higher in energy [128], compensation for the electrochemical potential difference between the working and counter electrodes is less easily achieved by the formation of a space charge layer on the LiFePO$_4$ surface (Fig. 47). Instead of a space charge layer, an electric double layer formed on the electrolyte side compensates for the
difference in electrochemical potential. Thus, the LiFePO$_4$ electrode shows reversible surface changes during the charge process and improved cyclic performance during charge–discharge cycling.

The effects of surface coatings on the space charge layer formed on electrodes can be analyzed by TRF–XAS and depth-resolved XAS (DR-XAS) spectroscopy [81]. MgO coatings on LiCoO$_2$ can improve the Coulombic efficiency of the charge and discharge capacity at high potentials of ~4.3–4.4 V (vs. Li/Li$^+$). TRF-XAS shows that the reduction of Co ions during the soaking of the electrolyte and the structural deterioration of the LiCoO$_2$ surface are suppressed by the MgO coating. This is explained by the formation of a solid solution of Mg on the LiCoO$_2$ surface (Fig. 48); the solution phase stabilizes the layered structure of LiCoO$_2$ and thus prevents structural deterioration caused by the space charge layer.

By adding VC to the electrolyte, space charge layer formation at the LiCoO$_2$ surface is suppressed [82]. Battery performance improvements by the addition of VC are well known for negative electrode reactions, particularly with carbon negative electrodes. Similar to the negative electrode coating, the VC improves the cyclic charge–discharge capacity of LiCoO$_2$. TRF-XAS analysis revealed that VC in the electrolyte suppressed the reduction of Co ions and the structural deterioration of the LiCoO$_2$ surface. These demonstrate the suppression of space charge layer formation, similar to the effects of an MgO coating on LiCoO$_2$. However, the VC additive does not
form solid solutions as the MgO coating does. A different mechanism suppresses the formation of the space charge layer. Because of the high dielectric constant of VC of 127 [14], many VC molecules are expected to accumulate at the LiCoO$_2$ surface. VC is more easily oxidized than EC, and the oxidized VC molecules initiate polymerization on the LiCoO$_2$ surface. Thus, the surface of LiCoO$_2$ becomes covered by an interface layer formed by the oxidative decomposition of VC. This layer physically separates the LiCoO$_2$ from the electrolyte, thereby suppressing further oxidation of the solvent molecules, and reduction of the Co ions. The formation of an irreversible structural change at the LiCoO$_2$ surface due to the formation of the space charge layer was not observed (Fig. 49). These improve the cyclic performance of LiCoO$_2$.

So far, analysis of the space charge layer has been performed by spectroscopic measurements. In future, the changes described above should be directly observed by microscopic techniques. The most suitable equipment to analyze the surface structure changes are STM and AFM because they can operate during the charge and discharge processes.

6.3. Desolvation process

Li ions in the electrolytes of Li-ion battery systems are coordinated with organic solvents [10, 11]. When the Li ions are transferred from the electrolyte to the electrode, the ions must release the coordinated solvent molecules via desolvation processes. Electrochemical analysis has concluded
that the desolvation process has a high energy barrier and is necessary in understanding the interfacial processes.

We begin the discussion with Li transfer between a solid and liquid electrolyte because the chemical reactions at the solid–liquid interface do not include electrolyte decomposition, a redox reaction that affects the resistance. In the experiments, the main contribution of the interfacial resistance is assigned to Li transfer between the solid and liquid electrolytes. Electrochemical impedance spectroscopy (EIS) can be used to estimate the resistance to ion transfer between the electrode and electrolyte. Fig. 50 shows an example of the Nyquist plot for a four-probe system used in the experiments consisting of Li/electrolyte/La_{0.53}Li_{0.35}TiO_3 (LLT)/electrolyte/Li [10]. The electrolyte is 1 M LiCF_3SO_3 in PC. The low-frequency semicircle is assigned to the LLT–electrolyte Li-transfer resistance. From the temperature dependence of the resistance and Arrhenius plotting, the activation barrier energy was estimated; the activation barrier clearly depended on the solvents used in the electrolyte. The activation barrier for the system using dimethyl sulfoxide (DMSO) as the solvent is 69.9 kJ/mol, higher than that using PC (57.3 kJ/mol) or fluoroethylene carbonate (FEC, 31.5 kJ/mol) (Fig. 51). First principles calculations show similar tendencies: the desorption energy of a solvent molecule from a single Li ion decreases in the order of DMSO, PC, and FEC [10]. The activation barriers for interfacial Li transfer in EC-DMC and DMC solvents were also estimated; those in DMC-only electrolytes were ~16–21 kJ/mol smaller than those in EC-DMC. As explained
previously, the interfacial resistance mainly arises from Li ion transfer in these experiments. Thus, it is shown that Li ion transfer at the interface is influenced by the desorption of solvents coordinated with Li ions.

The activation barrier to Li transfer between an LiCoO$_2$ thin-film electrode and a liquid electrolyte (1 M LiClO$_4$ in PC) was also estimated by EIS measurements to be 61.0 kJ/mol (Fig. 52) [183]. This value is similar to that obtained at the LLT/electrolyte interface in PC solvent (57.3 kJ/mol). This similarity supports the strong correlation of the interfacial resistance with the desolvation process, even at the electrode–electrolyte interface in Li-ion batteries.

The influence of the desolvation process is also observed with graphite electrodes [184]. From EIS measurements, the activation barriers to Li ion transfer in dimethoxyethane (DME) and EC-DEC electrolytes with HOPG electrodes are estimated as 25 and ~53–60 kJ/mol (Fig. 53), respectively. From X-ray diffraction (XRD) measurements of the HOPG electrode after lithiation, the Li ions in graphite in the EC-DEC-based electrolyte are desolvated; however, those in the DME-based electrolyte remain coordinated with solvent molecules in graphite. This originates from differences of the interactions between Li and the different solvents. In the EC-DMC-based electrolyte, EC molecules are coordinated with Li ions. The interaction strength of DME and Li ions is higher than that of EC and Li ions. Thus, the DME molecules cannot desorb at the interface. In the EC-DEC-based electrolyte, EC decomposes and forms an efficient SEI on the graphite electrode.
because the Li ions are efficiently desorbed from EC solvent molecules at the interface.

The above results demonstrate that the desolvation process strongly affects Li ion transfer at the electrode–electrolyte interface. Desolvation (and solvation) occur in the electric double layer formed on the interface. To understand the molecular actions during the desolvation process, the electric double layer must be carefully investigated using advanced spectroscopic or microscopic analyses. Methods to observe the desolvation and solvation processes and thereby clarify the mechanism of the electronic double layer include interface-sensitive vibrational spectroscopic techniques, such as SEIRA [84, 85] and SFG [89-91]. With analysis of the coordination structures of Li ions at the interface by vibrational spectroscopy, the desolvation and solvation steps can be clarified. Recently, several studies analyzing the interface have been reported [89-91]. Microscopic techniques such as STM [185] and AFM [69, 70, 186, 187] can directly visualize the desolvation and solvation processes. We recently used FM-AFM in liquid to analyze the interface structures formed by tetruglyme, a organic solvent investigated for use in Li-ion batteries, and graphite [188]. The adsorbed tetruglyme molecules are clearly observed to form a linear superstructure with a molecular distance of ~0.65 nm on HOPG (Fig. 54). From vertical scanning, the formation of a layered structure of the exiting probability of tetruglyme at the interface with the distance of 0.60 nm is observed (Fig. 55). This demonstrated that the liquid-phase molecular distribution at the electrode–electrolyte interface can be directly visualized by FM-AFM. This technique can therefore be applied
to interfacial analysis in working batteries. Observations of electrode–electrolyte interface structures in electrochemical conditions were reported [187]; the application of these techniques to Li-ion batteries can be expected to provide new insights on the interface reactions.

7. Concluding remarks

In this review, current knowledge regarding the geometric and electronic structures at the surfaces of various electrode materials, as well as that regarding the chemical processes at the electrode–electrolyte interfaces, are summarized for Li-ion batteries. The break in crystalline periodicity at the interface strongly influences the interfacial physical properties. The stability of the surface structure of the electrode material strongly depends on the plane orientation and the atmosphere. In addition, the electronic structure is significantly influenced by the termination structure. These induce complexities in the investigation of the physical properties of the electrode surfaces in Li-ion batteries. So far, experimental investigations have been limited to the surface structures of LiCoO$_2$(001), LiFePO$_4$(010), Li$_4$Ti$_5$O$_{12}$(111), LiTi$_2$O$_4$(111), and the basal plane of graphite and the electronic structures of LiCoO$_2$(001), graphite (basal planes and edge sites but not on the plane), and LiTi$_2$O$_4$(111). Other systems have only been investigated by theoretical calculations. Obviously, more surfaces should be widely investigated, in addition to these reported
systems. The physical properties of the surfaces of electrode materials with high activity for Li insertion and extraction, such as LiCoO$_2$(104) and the edge plane of graphite, remain uncharacterized at present. As described above, this is because of the difficulty in preparing high-quality samples having atomically flat surfaces. Breakthroughs to prepare such surfaces are necessary for progress in the experimental investigation of the surface and electronic structures of these materials.

Regarding the chemical processes at the electrode–electrolyte interface, the thickness, composition, and roughness of interface layers have been analyzed by NR and AFM, allowing clarification of the dynamical changes and real SEI formation at the electrode–electrolyte interfaces. Also, the effects of space charge layers on battery performance have been investigated by TRF-XAS. It is clarified that the control of the space charge layer is important in improving battery performance. In addition, EIS analysis provided the desolvation processes have a strong influence on the interface reactions that gives new information to improve the battery performance by controlling the interface. For further improvements in battery performance, the atomic and molecular natures of the materials should be carefully studied. Much work remains regarding the electrode–electrolyte interface in Li-ion batteries that can be accomplished using surface science techniques; both advanced and traditional techniques can be applied. We believe that both surface and interfacial characterization can elucidate new aspects of the electrode–electrolyte interface in Li-ion batteries,
thus driving innovative improvements in battery performance to contribute to future energy and environmental solutions.

Acknowledgements

A part of research described in this review was supported by the Research and Development Initiative for Scientific Innovation of New Generation Batteries (RISING) and Research and Development Initiative for Scientific Innovation of New Generation Batteries 2 (RISING2) projects of the New Energy and Industrial Technology Development Organization (NEDO), Japan.
References

[26] Y. Takahashi, N. Kijima, J. Akimoto, Crystal Growth and Structural Properties of the Spinel-type Li$_{1+x}$Mn$_{2-x}$O$_4$ ($x = 0.10, 0.14$), Solid State Ionics 177 (2006) 691 – 695.

Changes on LiNi$_{0.8}$Co$_{0.2}$O$_2$ Particles during Testing of High-power Lithium-ion Cells, Electrochem. Comm. 4 (2002) 620 – 625.

[58] H. Gonzalez-Herrero, J. M. Gomez-Rodriguez, P. Mallet, M. Moaied, J. J. Palacios, C. Salgado,

(2009).

[74] K. Shimoda, T. Minato, K. Nakanishi, H. Komatsu, T. Matsunaga, H. Tanida, H. Arai, Y. Ukyo,

[85] J. P. Vivek, N. Berry, G. Papageorgiou, R. J. Nichols, L. J. Hardwick, Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ

[100] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-Olivines as Positive-

[121] K. Ariyoshi, R. Yamato, and T. Ohzuku, Zero-strain Insertion Mechanism of Li[Li$_{1/3}$Ti$_{5/3}$]O$_4$

[158] S. Tanaka, M. Kitta, T. Tamura, Y. Maeda, T. Akita, M. Kohyama, Atomic and Electronic Structures of \(\text{Li}_4\text{Ti}_5\text{O}_{12}/\text{Li}_7\text{Ti}_5\text{O}_{12}(001) \) Interfaces by First-principles Calculations, J. Mater. Sci. 49 (2014) 4032 – 4037.

Figure 1. Schematic model of typical structure of an industrial Li-ion battery.
Figure 2. An example of cross-sectional SEM image of LiCoO$_2$ composite electrode prepared by 94.5% LiCoO$_2$, 2.0% carbon black, and 3.5% polyvinylidene fluoride (PVdF) by the weight. The horizontal dark band near bottom of image is aluminum current collector. The composite electrode is located on the aluminum current collector. In the composite electrode, bright, gray and dark regions are observed. The bright regions are the active material (LiCoO$_2$). The gray regions are mixtures of conductive material (carbon black) and binder (PVdF). The dark regions are pore domains. The pore domains are occupied by electrolyte in Li-ion battery. Reprinted with permission from Ref. 8. 2011, The Electrochemical Society.
Figure 3. Schematic model of the structure of the interface between electrode and electrolyte. Green and white balls are Li ions and anions, respectively. Yellow ellipses are solvent molecules. Positive and negative electrodes having layered structures are shown as examples.
Figure 4. Cross sectional TEM image of an epitaxial LiCoO\textsubscript{2} thin film grown on SrRuO\textsubscript{3}/Nb-SrTiO\textsubscript{3}.

Reprinted with permission from Ref. 16. Copyright 2016 American Chemical Society.
Figure 5. A photograph of the prepared single crystal of LiCoO$_2$.
Figure 6. Schematic model of reflection of X-ray or neutron at interface between layers.
Figure 7. First schematic model of scanning tunneling microscope shown in Ref. 45. Reprinted figure with permission from Ref. 45. Copyright 1982 by the American Physical Society.
Figure 8. Potential model of tunneling junction in scanning tunneling microscopy.
Figure 9. Schematic model of frequency-modulation atomic force microscopy in liquid.
Figure 10. Schematic model of measurement system of total reflection fluorescence X-ray absorption spectroscopy in electrochemical condition.
Figure 11. Schematic model of sum frequency generation due to irradiation of IR and visible (wavelength = ω_{IR} and ω_{vis}) light.
Figure 12. Crystal structure of LiCoO$_2$. Green and red balls show Li and O, respectively. Blue octahedrons show CoO$_6$ units.
Figure 13. Selected equilibrium shapes of LiCoO$_2$ and relative contribution of each surface as a function of the oxygen chemical potential in a Li deficient environment calculated by first principles calculation. Reprinted with permission from Ref. 99. Copyright 2016 American Chemical Society.
Figure 14. (a) Surface structure of LiCoO$_2$(001) and (b) corresponding constant current STM image of a Li$_{0.66}$CoO$_2$(001) surface measured at ~5 K, showing hexagonal lattice of Li ions at the surface 4.8×4.8 nm2, sample bias voltage (V_s) = -1.0 V, and tunneling current (I_t) = 0.2 nA. Reprinted figure with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 15. Noisy features observed in STM images of $\text{Li}_{0.66}\text{CoO}_2(001)$ surface obtained at ~5 K. The noisy features are probably due to unstable Li on the surface. Reprinted figure in the supplemental material with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 16. STM images of CoO$_2$ layer on Li$_{0.66}$CoO$_2$(001) surface, (a) and (b) $V_s = -0.6$ and $+0.6$ V, respectively (6×6 nm2, $I_t = 0.3$ nA). The autocorrelation image of (b) is shown in the inset. Reprinted figure with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 17. Crystal structure of olivine type LiFePO$_4$. Green and red balls show Li and O, respectively. Dark purple octahedrons and pink tetrahedrons show FeO$_6$ and PO$_4$ units, respectively.
Figure 18. Li migration pathway directed to (010) in LiFePO$_4$ crystal. Small and large spheres show the Li and Fe ions. The tetrahedral structures show PO$_4$ units. Reproduced from Ref. 102 with permission of The Royal Society of Chemistry.
Figure 19. Surface structure of LiFePO₄(010) determined by calculation used a classical force field model (empirical potential model). Green, blue, purple and red balls show Li, Fe, P and O ions.

Reproduced from Ref. 102 with permission of The Royal Society of Chemistry.
Figure 20. A image obtained by annular bright field (ABF) imaging in aberration-corrected scanning transmission electron microscopy (STEM) of the LiFePO$_4$(010) surface taken down the [001] zone axis, (a) cleavage surface and (b) the surface after 3000 h from chemical deithiation. The white arrows in (a) and (c) indicate the directions of shift of P and Fe atom columns from the bulk position. (b) Cross-section of the reconstructed (010) surface model of LiFePO$_4$ obtained from first-principles calculations. Reprinted with permission from Ref. 23. Copyright 2016 American Chemical Society.
Figure 21. Crystal structure of spinel type LiMn$_2$O$_4$. Green and red balls show Li and O, respectively. Light purple octahedrons show MnO$_6$ units.
Figure 22. The surface structure of Li-terminated LiMn$_2$O$_4$(111) with inverse spinel structure obtained by first principles calculations. Blue, magenta and red circles show Li, Mn and O atomic species, respectively. The reconstruction between the undercoordinated surface Mn and bulk fully tetrahedrally coordinated Li is indicated by the circles. Reprinted figure with permission from Ref. 108. Copyright 2013 by the American Physical Society.
Figure 23. Surface energies of the most stable surface terminations for the low- and high-index surfaces of LiMn$_2$O$_4$. Each phase diagram is plotted for a fixed value of $\Delta \mu_{Li}$, whereas $\Delta \mu_{O}$ is considered as a variable parameter. Reprinted with permission from Ref. 115. Copyright 2016 American Chemical Society.
Figure 24. Li-terminated LiMn$_2$O$_4$(111) structure which is obtained by first principles calculation as the most stable structure. Reprinted with permission from Ref. 115. Copyright 2016 American Chemical Society.
Figure 25. Crystal structure of graphite. Basal and edge planes are shown in the figure.
Figure 26. (a) Frequency modulation atomic force microscopic image of graphite(001) in water. The image was obtained in the constant height (variable frequency shift) mode. (b) Cross-sectional profile (upper curve) measured on A–B line in Fig. 26(a) and force profile (lower curve). Reprinted from Ref. 117 with permission. Copyright 2011 The Japan Society of Applied Physics
Figure 27. Structure of zigzag and armchair edges in a graphite layer (graphene).
Figure 28. Crystal structure of Li$_4$Ti$_5$O$_{12}$. Green and red balls show Li and O, respectively. Gray octahedrons show TiO$_6$ units.
Figure 29. Crystal structure of LiTi$_2$O$_4$. Green and red balls show Li and O, respectively. Gray octahedrons show TiO$_6$ units.
Figure 30. Atom resolved image of Li$_4$Ti$_5$O$_{12}$(111) surface obtained by scanning tunneling microscopy in ultra-high vacuum. Reprinted from Ref. 122, Copyright 2014, with permission from Elsevier.
Figure 31. Atom resolved image of Li$_4$Ti$_5$O$_{12}$(111) surface obtained by frequency-modulation atomic force microscopy in aqueous solution. Reprinted from Ref. 123, with the permission of AIP Publishing.
Figure 32. The proposed surface structure of Li$_4$Ti$_5$O$_{12}$(111) surface. Reprinted from Ref. 123, with the permission of AIP Publishing.
Figure 33. dI/dV spectrum of Li-Li$_{0.66}$CoO$_2$(001) obtained at ~5 K in ultra-high vacuum. The tip position was $V_s = -0.8$ V and $I_t = 0.3$ nA. Reprinted figure with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 34. (a) and (b) ordering images obtained by scanning tunneling microscopy on CoO$_2$ layers on Li$_{0.66}$CoO$_2$(001) at $V_s = -0.6$ and +0.6 V, respectively. 6×6 nm2, $I_t = 0.3$ nA. The autocorrelation image of (b) is shown in the inset. (c) Comparison of line profile of the image at -0.6 and +0.6 V in (a) and (b). (d) Averaged dI/dV spectrum taken in (a). Set point: $I_t = 0.3$ nA, $V_s = -0.8$ V. Reprinted figure with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 35. (a) and (b) disordering images obtained by scanning tunneling microscopy on CoO$_2$ layers of Li$_{0.66}$CoO$_2$(001) at $V_s = -1.0$ and $+0.8$ V, respectively. Both images were taken at the same position; 7×7 nm2, $I_t = 0.3$ nA. (c) Autocorrelation image of (a). (d) Averaged dI/dV spectrum taken in (a). Set point: $I_t = 0.2$ nA, $V_s = -1.0$ V. Reprinted figure with permission from Ref. 21. Copyright 2013 by the American Physical Society.
Figure 36. Surface structure of LiFePO₄(010) and oxygenated LiFePO₄(010) obtained by first principles calculation. Reprinted with permission from Ref. 131. Copyright 2015 American Chemical Society.
Figure 37. Projected density of electronic states of the clean (a) and oxygenated (b) LiFePO$_4$(010) surfaces. The contribution of top two Fe layers, as well as O atoms between them, is shown. Reprinted with permission from Ref. 131. Copyright 2015 American Chemical Society.
Figure 38. Mn-3d projected density of states of (a) bulk λ-MnO$_2$, (b) the λ-MnO$_2$(001) surface, (c) Mn$^{3+}$ in bulk LiMn$_2$O$_4$, (d) Mn$^{4+}$ in bulk LiMn$_2$O$_4$, (e) the Li-terminated LiMn$_2$O$_4$(001) surface, and (f) the Al$_2$O$_3$/LiMn$_2$O$_4$ (001) surface. Reprinted with permission from Ref. 133. Copyright 2010 American Chemical Society.
Figure 39. Scanning tunneling spectroscopy obtained on basal plane of graphite surface. Reprinted figure with permission from Ref. 139. Copyright 1985 by the American Physical Society.
Figure 40. Density of state of graphite calculated by using the full zone π-band Johnson-Dresselhaus model. Reprinted figure with permission from Ref. 142. Copyright 1982 by the American Physical Society.
Figure 41. dI/dV curves obtained armchair (a) and zigzag (b) edges on HOPG. Reprinted figure with permission from Ref. 144. Copyright 2006 by the American Physical Society.
Figure 42. Density of states of surfaces of Li$_4$Ti$_5$O$_{12}$ calculated by first principles calculation.

Reprinted from Ref. 126, 2016, with permission from Elsevier.
Figure 43. (a) Neutron reflectivity and (b) analyzed scattering length density determined for (i) as-prepared sample, (ii) sample after immersion in electrolyte (1 M LiClO$_4$ in deuterated EC:DMC (vol. 1:2)), (iii) sample after Li extraction at 4.2 V (vs Li$^+/Li$), and (iv) sample after Li$^{+}$ insertion at 3.3 V (vs Li$^+/Li$) of LiCoO$_2$(104) layer/SrRuO$_3$(100) layer/Nb–SrTiO$_3$(100) layer. The blue dots and red curves in (a) correspond to experimental and fitted data, respectively. The neutron reflectivity in (ii),
(iii), and (iv) and SLD values in (i), (ii), and (iii) are shifted for offsets. Reprinted with permission from Ref. 16. Copyright 2016 American Chemical Society.
Figure 44. *in-situ* atomic force microscopy images obtained on the basal plane of HOPG (a) 2.9 V (vs. Li/Li⁺) before starting potential scan, (b) 1.10 - 0.95 V (vs. Li/Li⁺), (c) 0.95 - 0.80 V (vs. Li/Li⁺), (d) 0.65 - 0.50 V (vs. Li/Li⁺), (e) 0.20 - 0.05 V (vs. Li/Li⁺) during the first cycle at 0.5 mV s⁻¹, and (f) 2.9 after the first cycle in 1 M LiClO₄/EC + DEC (vol. 1 : 1). Reprinted with permission from Ref. 20. 2001, The Electrochemical Society.
Figure 45. (a) Co K-edge XANES spectra on LiCoO$_2$ surface and (b) Fe K-edge XANES spectra on LiFePO$_4$ surface before (black line) and after (red line) electrolyte immersion, obtained via \textit{in situ} total reflection fluorescence-X-ray absorption spectroscopy. Reprinted with permission from Ref. 13. Copyright 2014 American Chemical Society.
Figure 46. Co K-edge XANES spectra of the LiCoO₂ surface during (a) Li ion extraction and (b) insertion (R3.8 V is the voltage applied during Li-ion insertion). Fe K-edge XANES spectra on LiFePO₄ surface during (c) Li ion extraction and (d) insertion (R3.0 V is the voltage applied during Li-ion insertion). Reprinted with permission from Ref. 13. Copyright 2014 American Chemical Society.
Figure 47. Schematic illustrations of the changes in the electronic structure at the (a,c) LiCoO$_2$/electrolyte and (b,d) LiFePO$_4$/electrolyte interfaces upon electrolyte immersion and during Li ion extraction/insertion. (Φ_S and Φ_L are the inner potentials of the electrode and electrolyte, respectively. Reprinted with permission from Ref. 13. Copyright 2014 American Chemical Society.
Figure 48. Schematic view of the surface structure of (a) LiCoO$_2$ and (b) MgO coated LiCoO$_2$ during lithium ion extraction. Reprinted from Ref. 81 with permission from the Wiley publication.
Figure 49. Schematic illustration of the electronic structure at the LiCoO\textsubscript{2}/electrolyte interface for (a, b) the VC-free and (c, d) the VC-added electrolytes. \(\phi_E\) and \(\phi_L\) are electrochemical potentials of an electron in the electrode and the electrolyte, respectively. The blue and green pentagons represent EC and VC molecules, respectively. Reprinted with permission from Ref. 82. Copyright 2015 American Chemical Society.
Figure 50. A example of Nyquist plot for a four-probe system consisting of Li/electrolyte/LLT/electrolyte/Li. The electrolyte was 1 M LiCF$_3$SO$_4$ in PC. Reprinted with permission from Ref. 10. 2005, The Electrochemical Society.
Figure 51. Temperature dependencies of Li ion transfer resistances at the interface between glass electrolyte and liquid electrolytes of PC, DMSO, and FEC containing 1 M LiCF$_3$SO$_3$. Reprinted with permission from Ref. 10. 2005, The Electrochemical Society.
Figure 52. Temperature dependence of Li ion transfer through Li$_x$CoO$_2$/PC interface. Closed and open circles show the data obtained from bare and an MgO coated LiCoO$_2$ thin film electrodes at 4.0 V (vs. Li/Li$^+$). Reprinted from Ref. 183, 2004, with permission from Elsevier.
Figure 53. Schematic illustration of Li ion and solvated Li transfers at graphite electrodes. The activation energies for solvated Li ion transfer are much lower than those for Li ion transfer.

Figure 54. Observation of the first layer of adsorbed tetracycline on HOPG obtained by frequency modulation atomic force microscopy in liquid. The frequency and amplitude of the cantilever oscillation are 92 kHz and 0.3 nm, respectively. Reprinted from Ref. 188, with the permission of AIP Publishing.
Figure 55. Cross-sectional distribution of frequency shift that reflect the molecular density in liquid phase at the tetraklyme/HOPG interface. The amplitude of the cantilever oscillation is 0.3 nm. The cantilever approached the surface until the frequency shift reached 1000 Hz. Reprinted from Ref. 188, with the permission of AIP Publishing.
Table 1. Physical parameters of LiFePO$_4$ surfaces calculated by classical force field model (empirical potential model). All data are from Ref. 102.

<table>
<thead>
<tr>
<th>Plane</th>
<th>Tasker surface type</th>
<th>d-spacing, d_{ad}/Å</th>
<th>Surface energy, $E_{surface}$/J m$^{-2}$</th>
<th>Attachment energy, E_{attach}/J m$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(001)</td>
<td>III</td>
<td>2.33</td>
<td>2.40</td>
<td>1.11</td>
</tr>
<tr>
<td>(010)</td>
<td>III</td>
<td>3.01</td>
<td>1.64</td>
<td>0.72</td>
</tr>
<tr>
<td>(100)</td>
<td>III</td>
<td>5.19</td>
<td>2.12</td>
<td>0.87</td>
</tr>
<tr>
<td>(011)</td>
<td>III</td>
<td>3.69</td>
<td>2.55</td>
<td>0.75</td>
</tr>
<tr>
<td>(012)</td>
<td>II</td>
<td>1.09</td>
<td>4.50</td>
<td>1.02</td>
</tr>
<tr>
<td>(021)</td>
<td>II</td>
<td>1.27</td>
<td>2.41</td>
<td>0.82</td>
</tr>
<tr>
<td>(101)</td>
<td>III</td>
<td>4.26</td>
<td>1.65</td>
<td>0.88</td>
</tr>
<tr>
<td>(102)</td>
<td>II</td>
<td>2.28</td>
<td>3.29</td>
<td>1.15</td>
</tr>
<tr>
<td>(110)</td>
<td>II</td>
<td>2.60</td>
<td>3.62</td>
<td>0.92</td>
</tr>
<tr>
<td>(111)</td>
<td>III</td>
<td>3.48</td>
<td>2.94</td>
<td>0.89</td>
</tr>
<tr>
<td>(112)</td>
<td>III</td>
<td>2.13</td>
<td>2.57</td>
<td>0.88</td>
</tr>
<tr>
<td>(120)</td>
<td>III</td>
<td>1.45</td>
<td>3.53</td>
<td>0.86</td>
</tr>
<tr>
<td>(121)</td>
<td>II</td>
<td>2.46</td>
<td>2.44</td>
<td>0.94</td>
</tr>
<tr>
<td>(122)</td>
<td>III</td>
<td>1.82</td>
<td>2.65</td>
<td>0.80</td>
</tr>
<tr>
<td>(201)</td>
<td>III</td>
<td>3.47</td>
<td>1.37</td>
<td>0.71</td>
</tr>
<tr>
<td>(210)</td>
<td>III</td>
<td>3.93</td>
<td>2.61</td>
<td>0.90</td>
</tr>
<tr>
<td>(211)</td>
<td>III</td>
<td>3.01</td>
<td>2.51</td>
<td>0.80</td>
</tr>
<tr>
<td>(212)</td>
<td>III</td>
<td>2.01</td>
<td>2.26</td>
<td>0.86</td>
</tr>
<tr>
<td>(221)</td>
<td>II</td>
<td>2.27</td>
<td>2.52</td>
<td>0.79</td>
</tr>
</tbody>
</table>