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Abstract. This article is an extended version of the author’s talk at
the Kinosaki Algebraic Geometry Symposium 2017. We discuss Weil–
Petersson geometry of the Kähler moduli space of a Calabi–Yau manifold
via the Bridgeland stability conditions.

1. Introduction

The purpose of the present article is to provide a step toward differential
geometric study of Kähler moduli spaces via Bridgeland stability conditions.
The motivation of our work comes from mirror symmetry. Mirror symmetry
is duality between complex geometry of a Calabi–Yau manifold X and sym-
plectic (Kähler) geometry of a mirror Calabi–Yau manifold Y . In light of the
fact that there exists a canonical Kähler metric, called the Weil–Petersson
metric, on the complex moduli space of a Calabi–Yau manifold, we would
like to propose the following question:

What is the canonical metric on the Kähler moduli space of a Calabi–Yau
manifold, which is mirror to the classical Weil–Petersson metric?

Our approach taken in the article [7] is to use the stability conditions on a
triangulated category introduced by Bridgeland [3]. Let StabN (DbCoh(X))
be the space of numerical stability conditions of the derived category DbCoh(X)
of a Calabi–Yau manifold X. Then it is conjectured that there exists an em-
bedding of the Kähler moduli space MKah(X) into

Aut(DbCoh(X))\StabN (DbCoh(X))/C.
On careful comparison of the two sides of Kontsevich’s homological mirror
symmetry conjecture [10]: DbCoh(X) ∼= DbFuk(Y ), we will give a provi-
sional definition of Weil–Petersson geometry of the above double quotient
space (not the Kähler moduli space MKah(X)). We warn the reader that,
since we do not directly work with MKah(X), our metric is in general degen-
erate. Nevertheless, we will see that the degeneracy turns out to be useful
in a sense (Conjecture 4.1).

We will provide some supporting evidence of our proposal by computing
a few basic examples. It will be observed that our Weil–Petersson metrics
coincide with classically well-knwon metrics in some cases. The most im-
portant example is the following (where the above conjectural embedding is
really an isomorphism).
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2 ATSUSHI KANAZAWA

Theorem 1.1 (Theorem 3.1). Let A be the self-product Eτ×Eτ of an elliptic
curve Eτ . Then there is an identification

AutCY(D
bCoh(A))\Stab+N (DbCoh(A))/C× ∼= Sp(4,Z)\H2.

Moreover, the Weil–Petersson metric on the LHS is identified with the
Bergman metric on the Siegel modular variety Sp(4,Z)\H2.

This result is compatible with the mirror duality between A and the
principally polarized abelian surface since the complex moduli space of the
latter is the Siegel modular variety Sp(4,Z)\H2.

It is worth mentioning Wilson and Trenner’s relevant work [21, 19]. They
studied the so-called asymptotic Weil–Petersson metrics on the complex-
ified Kähler cones, which are considered as approximations of the mirror
Weil–Petersson metrics near large volume limits. An advantage of our ap-
proach is the fact that our Weil–Petersson metric is inherently global and
makes perfect sense away from large volume limits, in contrast to Wilson
and Trenner’s local study. As a matter of fact, the global aspects of the
moduli space are of special importance in recent study of mirror symmetry.
A very little is known about global aspects of the Kähler moduli spaces and
we hope our work will provide a step forward in this research direction.

Acknowledgement. The author would like to thank the organizers of the
Kinosaki Algebraic Geometry Symposium 2017 for the kind invitation. He
is also grateful to Yu-Wie Fan and Shing-Tung Yau for useful collaboration
on which the present article is based on. This research was supported in part
by the Kyoto Hakubi Project and JSPS Grant-in-Aid Wakate(B)17K17817.

2. Bridgeland stability conditions

2.1. Bridgeland stability conditions. The notion of stability conditions
on a triangulated category was introduced by Bridgeland [3], inspired by
ideas of the Π-stabilities of D-branes [6]. In this article, a triangulated
category D is essentially small, linear over the complex numbers C, and of
finite type. We define the Euler form χ on the Grothendieck group K(D)
by the formula

χ(E,F ) :=
∑

i

(−1)i dimCHomD(E,F [i]).

The numerical Grothendieck group N (D) := K(D)/K(D)⊥χ is the quotient
of K(D) by the null space K(D)⊥χ of χ. We always assume that N (D) is
of finite rank.

Definition 2.1 ([3, 11]). A numerical stability condition σ = (Z,P) on a
triangulated category D consists of

• a group homomorphism Z : N (D) → C (central charge),
• a collection of full additive subcategories P = {P(φ)}φ∈R of D (semistable
objects)
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TOWARD WEIL–PETERSSON GEOMETRY OF KÄHLER MODULI SPACES 3

such that:

(1) If 0 ̸= E ∈ P(φ), then Z(E) ∈ R>0 · e
√
−1πφ.

(2) P(φ+ 1) = P(φ)[1].
(3) If φ1 > φ2 and Ai ∈ P(φi), then HomD(A1, A2) = 0.
(4) For every 0 ̸= E ∈ D, there exists a collection of exact triangles

0 = E0
!! E1

""

!! E2
!!

""

· · · !! Ek−1
!! E

""
A1

##●
●
●
●
●

A2

$$❆
❆
❆
❆

Ak

%%❊
❊
❊
❊

such that Ai ∈ P(φi) and φ1 > φ2 > · · · > φk.
(5) There exist a constant C > 0 and a norm || ∗ || on N (D)R such that

||E|| ≤ C|Z(E)| for any semistable object E.

We denote by StabN (D) the space of numerical stability conditions on D.
Bridgeland defined a nice topology on it such that the forgetful map

StabN (D) −→ Hom(N (D),C), σ = (Z,P) )→ Z

is a local homeomorphism [3, 11]. Thereby StabN (D) is naturally a complex
manifold, which is locally modelled on the C-vector space Hom(N (D),C).

Moreover, StabN (D) naturally carries a right action of the group ˜GL+(2,R),
the universal cover of the group GL+(2,R) of orientation-preserving linear
automorphism of R2, as well as a left action of the group Aut(D) of au-

toequivalences of D. The ˜GL+(2,R)-action is given by post-composition on
the central charge Z : N (D) → C ∼= R2 and a suitable relabelling of the

phases. We often restrict this action to the subgroup C ⊂ ˜GL+(2,R) which
acts freely.

2.2. Central charge via twisted Mukai pairing. Let X be a smooth
projective variety. Inspired by work of Mukai in the case of K3 surfaces [13],
Căldăraru defined the the Mukai pairing on H∗(X;C) [5]:

⟨v, v′⟩Muk :=

∫

X
ec1(X)/2 · v∨ · v′.

Here v =
∑

j vj ∈ ⊕jHj(X;C) and its Mukai dual v∨ =
∑

j

√
−1

j
vj . This

Mukai paring differs from Mukai’s original definition [13] for K3 surfaces by
the sign. We define a twisted Mukai vector of E ∈ DX = DbCoh(X) by

vΛ(E) := ch(E)
√
TdX exp(

√
−1Λ)

for any Λ ∈ H∗(X;C) such that Λ∨ = −Λ. By the Hirzebruch–Riemann–
Roch theorem, we observe that a twisted Mukai pairing is compatible with
the Euler pairing;

χ(E,F ) =

∫

X
ch(E∨)ch(F )TdX = ⟨vΛ(E), vΛ(F )⟩Muk.
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4 ATSUSHI KANAZAWA

A geometric twisting Λ compatible with the integral structure on the quan-
tum cohomology was first introduced by Iritani [8] and Katzarkov–Kontsevich–
Pantev [9]. A familiar identity from complex analysis reads

z

1− e−z
= ez/2

z/2

sinh(z/2)
= ez/2Γ(1 +

z

2π
√
−1

)Γ(1− z

2π
√
−1

),

where Γ(z) is the Gamma function. The power series in the LHS induces
the Todd class TdX . Then we consider a square root of the Todd class by
writing √

z

1− z
exp(

√
−1Λ(z)) = ez/4Γ(1 +

z

2π
√
−1

),

and solve it for Λ(z), where z is a real variable, as

Λ(z) = ℑ(logΓ(1 + z

2π
√
−1

))

=
γz

2π
+

∑

j≥1

(−1)j
ζ(2j + 1)

2j + 1

( z

2π

)2j

where γ is Euler’s constant. Since the constant term of Λ(z) is zero, we may
use it to define an additive characteristic class ΛX , called the log Gamma
class. In the Calabi–Yau case, we can explicitly write it as

ΛX = − ζ(3)

(2π)3
c3(X) +

ζ(5)

(2π)5
(c5(X)− c2(X)c3(X)) + . . .

For K3 and abelian surfaces, there is no effect of twisting as ΛX = 0. For
Calabi–Yau 3-folds, the modification is given by the leading term, which is
familiar in period computations in the B-model side. We define vX(E) to be
the twisted Muaki vector of an object E ∈ DX associated to the log Gamma
class ΛX :

vX(E) := ch(E)
√
TdX exp(

√
−1ΛX)

Now let X be a projective Calabi–Yau manifold equipped with a com-
plexified Kähler parameter

ω = B +
√
−1κ ∈ H2(X;C),

where κ is a Kähler class. Let also q = exp(2π
√
−1ω). We define the

quantum exponential exp∗(ω) by

exp∗(ω) := 1 + ω +
1

2!
ω ∗ ω +

1

3!
ω ∗ ω ∗ ω + · · · .

where ∗ denotes the quantum product, which implicitly depends on ω. It is
conjectured that near the large volume limit, which means that

∫
C ℑ(ω) ≫ 0

for all effective curve C ⊂ X, there exists a Bridgeland stability condition
on DX with central charge of the form

(1) Z(E) = −⟨exp∗(ω), vX(E)⟩Muk .
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TOWARD WEIL–PETERSSON GEOMETRY OF KÄHLER MODULI SPACES 5

The asymptotic behavior of the above central charge near the large volume
limit is given by

(2) Z(E) ∼ −
∫

X
e−ωvX(E) +O(q).

The existence of a Bridgeland stability condition with the asymptotic central
charge given by the leading term of the above expression has been proved for
various important examples including K3 and abelian surfaces [4], as well
as abelian threefolds [2, 12].

2.3. Weil–Petersson geometry on StabN (D). We shall propose a for-
mulation of Weil–Petersson geometry on a suitable quotient of the space of
Bridgeland stability conditions on a Calabi–Yau triangulated category D of
dimension n ∈ N, i.e. for every pair of objects E and F , there is a natural
isomorphism

Hom∗
D(E,F ) ∼= Hom∗

D(F,E[n])∨.

A prototypical example is the derived category of a Calabi–Yau n-fold. An
important consequence is that the Euler form on N (D) is (skew-)symmetric
if n is even (odd).

For a basis {Ei} ofN (D), we define a bilinear form b : Hom(N (D),C)⊗2 →
C by

Z1 ⊗ Z2 )→ b(Z1,Z2) :=
∑

i,j

χi,jZ1(Ei)Z2(Ej),

where (χi,j) := (χ(Ei, Ej))−1. It is an easy exercise to check that the bilinear
form b is independent of the choice of a basis.

Then we define the subset Stab+N (D) ⊂ StabN (D) by

Stab+N (D) := {σ = (Z,P) | b(Z,Z) = 0, (
√
−1)−nb(Z,Z) > 0}.

The first condition is vacuous when n is odd as the bilinear form b is skew-
symmetric. The natural free C-action on StabN (D) preserves the subset
Stab+N (D).

Definition 2.2. Let s = (Zσ̄,Pσ̄) be a local holomorphic section of the
C-torsor Stab+N (D) → Stab+N (D)/C, then

KWP(σ̄) := − log
(
(
√
−1)−nb(Zσ̄,Zσ̄)

)

defines a local smooth function on Stab+N (D)/C.

We call KWP the Weil–Petersson potential on Stab+N (D)/C. It is an
analogue of the Weil–Petersson potential of the complex moduli space of a
Calabi–Yau manifold (Hodge theoretic description due to Tian [17]).

Proposition 2.3 (Fan–K–Yau [7]). The complex Hessian
√
−1
2 ∂∂KWP of

the Weil–Petersson potential KWP does not depend on the choice of a local
section s. Moreover, it descends to the double quotient space

Aut(D)\Stab+N (D)/C
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6 ATSUSHI KANAZAWA

away from singular loci.

We would like to propose the above (possibly degenerate) metric
√
−1
2 ∂∂KWP

as the Weil–Petersson metric on the Kähler moduli space, which is mirror
to the classical Weil–Petersson metric on the complex moduli space under
the mirror identification.

3. Computation

The purpose of this section is to back up our proposal by computing a few
basic examples. We will observe that our Weil–Petersson metrics coincide
with the classical important metrics in these cases.

3.1. Elliptic curve. Let us consider DX = DbCoh(X) for an elliptic curve

X. Since the action of ˜GL+(2,R) on StabN (DX) is free and transitive [3,
Theorem 9.1], we have

Stab+N (DX) = StabN (DX) ∼= ˜GL+(2,R) ∼= C×H,

as a complex manifold. Moreover the double quotient becomes

Aut(DX)\Stab+N (DX)/C ∼= PSL(2,Z)\H.

This is indeed the Kähler moduli space of the elliptic curve X. The normal-
ized central charge at τ ∈ H is given by

Z(E) = − deg(E) + τ · rank(E).

Hence the Weil–Petersson potential is, via a symplectic basis {OX ,Op} of
N (DX),

KWP(τ) = − log
(
(
√
−1)−1(Z(Op)Z(OX)− Z(OX)Z(Op))

)

= − log(ℑ(τ))− log 2.

This is the Poincaré potential on H and it descends to the Kähler moduli
space PSL(2,Z)\H.

3.2. Self-product of elliptic curve. We consider the self-product A :=
Eτ × Eτ of an elliptic curve Eτ = C/(Z + τZ) for τ ∈ H. We denote by
NS(A) = H2(A,Z) ∩H1,1(A) the Néron–Severi lattice of A.

A result of Orlov [14, Proposition 3.5] shows that every autoequivalence of
DA = DbCoh(A) induces a Hodge isometry of the lattice H∗(A;Z) equipped
with the Mukai pairing. Hence there is a group homomorphism

δ : Aut(DA) −→ AutH∗(A;Z).
The kernel of the homomorphism will be denoted by Aut0(DA).

Let Ω ∈ H2(A;C) be the class of a holomorphic volume form on A. The
sublattice

N (A) := H∗(A;Z) ∩ Ω⊥ ⊂ H∗(A;C)
can be identified with N (DA) = H0(A;Z) ⊕ NS(A) ⊕ H4(A;Z). In fact,
if the complex moduli τ ∈ H is generic, N (DA) ∼= U⊕2 ⊕ ⟨2⟩. Here U is
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TOWARD WEIL–PETERSSON GEOMETRY OF KÄHLER MODULI SPACES 7

the hyperbolic lattice, and ⟨2⟩ denotes an integral lattice of rank 1 with the
Gram matrix (2).

We now recall the definition of Calabi–Yau autoequivalences following the
work of Bayer and Bridgeland [1]. Define

Aut+CYH
∗(A) ⊂ Aut+H∗(A)

to be the subgroup of Hodge isometries which preserve the class of holo-
morphic 2-form [Ω] ∈ PH∗(A;C). Any such isometry restricts to give an
isometry of N (DA). In fact,

Aut+CYH
∗(A) ⊂ AutN (DA)

is the subgroup of index 2 which do not exchange the two components of
P(A) ⊂ N (DA)C, the subset consisting of vectors " ∈ N (DA)C such that
Rℜ(")⊕ Rℑ(") is a negative definite 2-plane in N (DA)R.

An autoequivalence Φ ∈ Aut(DA) is said to be Calabi–Yau if the in-
duced Hodge isometry δ(Φ) lies in Aut+CYH

∗(A). We denote AutCY(DA) ⊂
Aut(DA) the group of Calabi–Yau autoequivalences. There exists a short
exact sequence

1 −→ Aut0(DA) −→ AutCY(DA) −→ Aut+CYH
∗(A) −→ 1.

We write Aut0tri(DA) ⊂ Aut0(DA) for the subgroup generated by twists by
elements of Pic0(A) and pullbacks by automorphisms of A acting trivially
on H∗(A;Z). Since Aut0tri(DA) acts trivially on Stab†(DA), it is useful to
define

AutCY(DA) := AutCY(DA)/Aut
0
tri(DA).

Then AutCY(DA) acts on Stab+N (DA), and there is a short exact sequence

1 −→ ⟨[2]⟩ −→ AutCY(DA) −→ Aut+CYH
∗(A) −→ 1.

The following is a main result of our article [7].

Theorem 3.1 (Fan–K–Yau [7]). There exists a canonical isomorphism

AutCY(DA)\Stab+N (DA)/C× ∼= Sp(4,Z)\H2

We shall call the LHS the Kähler moduli space of A.
Now let us take a close look at the differential geometric structures of

the above two space. First, there exists a canonical metric on the Siegel
modular variety Sp(4,Z)\H2, namely the Bergman metric. It is known to
be a complete Kähler–Einstein metric.

Proposition 3.2 ([16]). The Bergman kernel KBer : Hg × Hg → C of the
Siegel upper half-space Hg of degree g is given by

KBer(M,N) = −tr(log(−
√
−1(M −N))).

The Bergman metric is the complex Hessian of the Bergman potential

KBer(M) := KBer(M,M) = −tr(log(2ℑ(M))).
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8 ATSUSHI KANAZAWA

An important observation of the work [7] is the fact that the Bergman
metric coincides with our Weil–Petersson metric.

Theorem 3.3 (Fan–K–Yau [7]). The Weil–Petersson potential on Stab+N (DA)/C
coincides with the Bergman potential of the Siegel upper half-plane H2 up to
a constant.

Therefore the Weil–Petersson metric on the Kähler moduli space is iden-
tified with the Bergman metric on Sp(4,Z)\H2 via the isomorphism in The-
orem 3.1.

3.3. Split abelian surfaces. Let us next examine a variant of the above
example. Let A be a split abelian surface, that is, A ∼= Eτ1 ×Eτ2 for elliptic
curves Eτ1 and Eτ2 . Such a splitting is unique provided that Eτ1 and Eτ2
are generic, or equivalently NS(A) ∼= U . We have

Aut+CYH
∗(A) ∼= O+(U⊕2) ∼= P(SL(2,Z)× SL(2,Z))# Z2,

where P(SL(2,Z) × SL(2,Z)) represents the quotient group of SL(2,Z) ×
SL(2,Z) by the involution (A,B) )→ (−A,−B) and the semi-direct product
structure is given by the generator of Z2 acting on SL(2,Z) × SL(2,Z) by
exchanging the two factors.

Theorem 3.4 (Fan–K–Yau [7]). There exists a canonical identification

AutCY(DA)\Stab+N (DA)/C× ∼= P(SL(2,Z)× SL(2,Z))# Z2\(H×H)

Moreover, the Weil–Petersson metric on the LHS is identified with the
Bergman metric on the RHS.

It is worth mentioning that the computation in the above two examples
are compatible with mirror symmetry. The mirror of the self-product of an
elliptic curve is a principally polarized abelian surface, or equivalently ⟨2⟩-
polarized abelian surface. A split abelian surface is self-mirror symmetric.
A lattice polarized version of the global Torelli Theorem asserts that the
complex moduli space of such surfaces are given by the above Siegel modular
varieties.

3.4. Abelian variety. Let X be an abelian variety of dimension n. Since
there is no quantum corrections and the Chern classes are trivial, the ex-
pected central charge at the complexified Kähler moduli ω ∈ H2(X;C) is
given by

Zexp(ω)(E) = −⟨exp(ω), vX(E)⟩Muk = −
∫

X
e−ωch(E).

The existence of Bridgeland stability condition with this central charge is
known for n ≤ 3. Then the Weil–Petersson potential is

KWP(ω) = − log(ℑ(ω)n)− log
2n

n!
.

Fix a polarization H. We think of ω = τH for τ ∈ H as a slice of the
Kähler moduli space MKah(X). Then the Weil–Petersson metric on H is
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TOWARD WEIL–PETERSSON GEOMETRY OF KÄHLER MODULI SPACES 9

essentially the Poincaré metric. This observation is compatible with Wang’s
mirror result [20], which asserts that in the case of infinite distance, the
Weil–Petersson metric is asymptotic to a scaling of the Poincaré metric.

3.5. Quintic threefold. Although the existence of a Bridgeland stability
condition for a quintic threefold X ⊂ P4 has not yet been confirmed, we
can still compute the Weil–Petersson potential using the central charge in
Equation (1) near the large volume limit.

Let τH ∈ H2(X;C) be the complexified Kähler class, where H is the
hyperplane class and τ ∈ H. Let NX

d denote the genus 0 Gromov–Witten
invariant of X of degree d. We observe that

exp∗(τH) = 1 + τH +
τ2

2
(1 +

1

5

∑

d≥1

Ndd
3qd)H2 +

τ3

6
(1 +

1

5

∑

d≥1

Ndd
3qd)H3,

where q = e2π
√
−1τ and we use the quantum product

H ∗H = Φ(q)H2 =
1

5
(5 +

∑

d≥1

NX
d qdd3)H2.

Then the central charge computes to be

Z(E) = −⟨exp∗(τH), vX(E)⟩Muk

= −
∫

X
e−τHvX(E) +

ζ(3)χ(X)

(2π)3
(
τ2

10
H2ch1(E)− τ3

6
ch0(E))

∑

d≥1

NX
d d3qd,

where χ(X) is the topological Euler number of X. Near the large volume
limit, the Weil–Petersson potential is given by

KWP(τ) = − log
(
H3(Φ(q)(

τ̄3

6
+

τ τ̄2

2
)− Φ(q)(

τ3

6
+

τ2τ̄

2
)
)
− 2 log

(ζ(3)χ(X)

(2π)3

)

∼ − log(
4

3
H3ℑ(τ)3)− 2 log

(ζ(3)χ(X)

(2π)3

)
+O(q).

Therefore theWeil–Petersson metric is a quantum deformation of the Poincaré
metric on H. In particular, for sufficiently small q, it is non-degenerate and
the Weil–Petersson distance to the large volume limit is infinite. We remark
that if there is no B-field, the correction term O(q) is precisely given by
log(Φ(q)).

It is known that the complex moduli space Mcpx(Y ) of the mirror quintic
3-fold Y is the 3-punctured P1. The points corresponds to the large complex
structure limit, the conifold point and the Gepner point. Since our Weil–
Petersson metric is inherently global, an alluring research direction is to
examine the Weil–Petersson metric away from the large volume limit, where
central charges are not of the form (1). For instance, the Weil–Petersson
metric around the Gepner point may be studied via matrix factorization
categories via the Orlov equivalence [15]

DbCoh(X) ∼= HMF(W ),
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where HMF(W ) is the homotopy category of a graded matrix factorization
of the defining equation W of the quintic 3-fold X. Toda studied stability
conditions, called the Gepner type stability conditions, conjecturally corre-
sponding to the Gepner point [18].

4. Application

Lastly we would like to discuss potential application of our work. Let X
be a projective Calabi–Yau n-fold. Then StabN (DX) is considered as an
extension of the Kähler moduli space MKah(X). It is akin to the big quan-
tum cohomology rather than the small quantum cohomology in the sense
that the tangent space of MKah(X) is H1,1(X) while that of StabN (DX) is
⊕pHp,p(X).

Motivated by mirror symmetry and classical Weil–Petersson geometry, es-
pecially the fact that Weil–Petersson metric is non-degenerate on Mcpx(X),
we can now propose the following [7], which slightly refines Bridgeland con-
jecture.

Conjecture 4.1 (Fan–K–Yau [7]). There exists an embedding of the Kähler
moduli space

ι : MKah(X) ↪→ Aut(DX)\Stab+N (DX)/C.
The complex Hessian of the pullback ι∗KWP of the Weil–Petersson potential
KWP defines a Kähler metric on MKah(X), i.e. non-degenerate. Moreover,
it is identified with the Weil–Petersson metric on the complex moduli space
Mcpx(Y ) of a mirror manifold Y under the mirror map

MKah(X) ∼= Mcpx(Y ).

It is worth noting that the real difficulty lies in providing a mathematical
definition of the Kähler moduli space MKah(X). An implication of Conjec-
ture 4.1 is the potential of making use of the non-degeneracy condition on
the Weil–Petersson metric to characterize MKah(X).
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