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ABSTRACT. Let f be a rational self-map on a projective manifold. In general, the set of
periodic points of f may have a positive dimension. We will discuss some estimates for
the number of isolated periodic points. Although the question is of algebraic nature, the
techniques we used are based on some recent progress in complex analysis of several
variables. In this report, we will present the main results and approaches in this direction
and try to give a guide for non-experts in the reading of the original articles.
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1. INTRODUCTION

Let X be a compact Kähler manifold of dimension k. Let f : X → X be a domi-
nant holomorphic/meromorphic map or correspondence. By correspondences, we mean
multi-valued maps. Define fn := f ◦ · · · ◦ f (n times) the iterate of order n of f . Let
Qn be the set of isolated periodic points of period n of f , i.e. isolated fixed points of fn,
counting multiplicity. Here are the main questions we will discuss in this report. They
are fundamental problems in complex dynamics in higher dimension.

Problem 1.1 (sub-problem of Problem 1.3). Compute or estimate the cardinality of Qn.

Problem 1.2 (sub-problem of Problem 1.1). Find a good upper bound for the cardinality
of Qn.

Problem 1.3. Study the distribution of Qn when n goes to infinity.

The current strategy used in complex dynamics is the following one.

Strategy for Problem 1.3 :

(1) Get a good upper bound for the cardinality Qn (Problem 1.2).

(2) Construct a good family of periodic points using tools from dynamics or complex
analysis.

These two steps together will give us a good lower bound for the cardinality of Qn and
then an equidistribution property for Qn as n goes to infinity. We see that by using this
strategy, a direct study for the lower bound of the cardinality of Qn is not a priority.

Remark 1.4. Problem 1.2 is not completely solved even in dimension 2. Problem 1.3 is
even open for holomorphic automorphisms on non-projective surfaces.

Our main contribution in this research direction can be summarized in the following
statement that will be presented later in more details.
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Theorem 1.5 (Dinh-Sibony, Dinh-Nguyen-Truong/-Vu). Let f be a dominant meromorphic
correspondence on a compact Kähler manifoldX of dimension k. LetQn be the set of isolated
periodic points of period n of f , counting multiplicity. Then

• #Qn grows at most exponentially fast;
• The exponential growth of #Qn is bounded by the algebraic entropy of f which is a

finite non-negative number.
• In many cases, Qn is asymptotically equidistributed with respect to a canonical in-

variant probability measure, as n goes to infinity.

Note that in the setting of real smooth dynamical systems, #Qn can grow arbitrarily
fast, see e.g. the work by Kaloshin [19]. Meromorphic maps are more rigid but may have
singularities and these maps are not continuous in general.

For the reader’s convenience, we recall now briefly some notions related to meromor-
phic maps and correspondences that we use. Let π1, π2 : X × X → X be the canonical
projections. Let Γ ⊂ X ×X be an analytic subset of dimension k = dimX. If πi : Γ→ X
are surjective (hence generically finite) for both i = 1 and 2, then Γ defines a dominant
meromorphic correspondence f on X with graph Γ. More precisely, we have for x ∈ X

f(x) := π2
(
π−11 (x) ∩ Γ

)
and f−1(x) := π1

(
π−12 (x) ∩ Γ

)
.

This can be seen as a ”multivalued meromorphic map”. If moreover, π1 : Γ → X is
generically 1:1, then f is a dominant meromorphic map; and if π1 : Γ→ X is 1:1, then f
is a dominant holomorphic map.

Recall that the iterate of order n of f is defined by fn := f ◦ · · · ◦ f (n times) in
a suitable Zariski open set where the map/correspondence is finite, and then we com-
pactify the graph of the obtained map/correspondence in order to get a meromorphic
map/correspondence on X. Periodic points of period n correspond to the intersection of
the graph Γn of fn with the diagonal ∆ of X ×X. It may have a positive dimension. Let
Qn denote the set of isolated periodic points of period n, counting multiplicity. Recall
also that when dim Γn ∩ ∆ = 0 one can compute #Qn using the cohomology classes of
Γn and ∆ by the formula

#Qn = {Γn} ` {∆}.
According to the classical Lefschetz fixed point theorem, the last cup-intersection can

be computed using the action of the map/correspondence on the cohomology of X.
Therefore, we can get an estimate on #Qn. The main difficulty for counting the points
in Qn in the general setting is the contribution of the positive dimension components of
the set of periodic points Γn∩∆. It is not difficult to construct correspondences such that
Γn ∩∆ has a positive dimension. It is more delicate to get such examples for maps, see
e.g. the recent work by Oguiso on Dolgachev’s problem [20] and also [21].

2. UPPER BOUND FOR THE NUMBER OF ISOLATED PERIODIC POINTS

In this section, we will discuss Probblem 1.2. We need to introduce the fundamental
notion of algebraic stability/unstability due to Fornæss-Sibony and the basic dynamical
invariants such as the dynamical degrees and algebraic entropy.

Let f : X → X be a correspondence of graph Γ ⊂ X × X as above. If φ is a smooth
(p, q)-form on X, we can define f ∗(φ) by

f ∗(φ) := (π1)∗
(
π∗2(φ) ∧ [Γ]

)
.
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This is an L1 (p, q)-form on X, not continuous in general. Therefore, we cannot iter-
ate this operation. However, since the Hodge cohomology groups can be defined using
smooth or singular differential forms, the operator f ∗ induces a linear map on Hodge
cohomology f ∗ : Hp,q(X)→ Hp,q(X); we can iterate this one. Fornaess-Sibony observed
that we don’t have the algebraic stability : (fn)∗ = (f ∗)n on Hp,q(X) in general and such
a property may be checked using some geometric criterium, see [16]. Nevertheless, we
have the following general result.

Theorem 2.1 (Dinh-Sibony [8]). For 0 ≤ p ≤ k, the limit

dp := lim
n→∞

∥∥(fn)∗ : Hp,p(X)→ Hp,p(X)
∥∥1/n

exists, is finite and is a bi-meromorphic invariant, independent of the choice of ‖ ‖. The
topological entropy of f satisfies ht(f) ≤ max log dp<∞.

Remarks 2.2. • If f is algebraically stable, then (fn)∗ = (f ∗)n and therefore dp is
the spectral radius of f ∗ : Hp,p(X)→ Hp,p(X).
• The proof uses tool from complex analysis : the regularization of positive closed

(p, p)-currents (Demailly p = 1, Dinh-Sibony p ≥ 1).
• More general version with invariant fibrations are obtained in [3, 4].

Definition 2.3. The limit dp is the dynamical degree of order p of f and ha := max log dp
is the algebraic entropy of f . They are bi-meromorphic invariants.

The following general statement shows that the number of isolated periodic points
grows at most exponentially fast.

Theorem 2.4 (Dinh-Nguyen-Truong [6]). Let f : X → X be a dominant meromorphic
correspondence/map as above and Qn the set of isolated periodic points of period n, counting
multiplicity. Then we have

lim sup
n→∞

1

n
log #Qn ≤ ha := max log dp <∞.

Remarks 2.5. • The map f is an Artin-Mazur map, that is, the number of isolated
periodic points grows at most exponentially fast.
• The dynamical ζ-function ζf associated with f is always analytic near 0, where

ζf (z) :=
∑
n≥1

1

n
(#Qn)zn.

The following questions are open in general.

Problem 2.6. Is the function ζf always rational ?

Problem 2.7. Define L(f) := {Γ} ` {∆} the Lefschetz number of f . Do we always have

#Qn ≤ L(fn) + o(L(fn)) as n→∞ ?

In the following result, the second assertion is related to the works by Favre, Iwasaki-
Uehara, Jonsson-Reschke, Saito and Xie [15, 17, 18, 22, 24].

Theorem 2.8 (Dinh-Nguyen-Truong/-Vu [5, 7]). We use the notations introduced above.
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(1) Assume that the last dynamical degree dk is strictly larger than the other dynamical
degrees. Then

L(fn) = dnk + o(dnk) and #Qn = dnk + o(dnk).

(2) Assume that dimX = 2 and that f is algebraically stable in the sense of Fornaess-
Sibony. Assume also that d1 > d2. Then we have

L(fn) = dn1 + o(dn1 ) and #Qn ≤ dn1 + o(dn1 ).

(3) Let f be a holomorphic map or finite correspondence whose action on cohomology
is simple. Let d be the maximal dynamical degree. Then

L(fn) = dn + o(dn) and #Qn ≤ dn + o(dn).

Our strategy of the proof is as follows (the notation is different from the references).
• Consider the graph Γn of fn as a positive closed current in X ×X.
• Consider the limits Γ∞ in the sense of currents of Γn, properly normalized. So

Γ∞ is a positive closed current.
• Study the intersection of Γ∞ with the diagonal ∆.
• Deduce properties of Qn ⊂ Γn ∩∆.

In the general setting, the intersection of two varieties of dimension k in X × X is
expected to be a finite set. However, it may have a positive dimension. The dimension
excess of the intersection Γn ∩ ∆ is exactly the main difficulty in our study. The ideal
situation is that the ”dimension” of Γ∞ ∩ ∆ is 0. Then using a upper semi-continuity
for the intersection of currents, due to Siu and Dinh-Sibony, we get a control of the
dimension excess for Γn ∩∆ when n goes to infinity.

3. EQUIDISTRIBUTION OF PERIODIC POINTS

In this section, we will present some results related to Problem 1.3. We have the com-
plete answer to this question for large classes of maps/correspondences. The following
results are valid for maps/correspondences with dominant topological degree.

Theorem 3.1 (Dinh-Sibony, Dinh-Nguyen-Truong [5, 10]). Let f : X → X be a meromor-
phic map/correspondence such that the last topological degree dk is strictly larger than the
other ones. There is an invariant probability measure µ such that for x outside an explicit
countable union E of analytic sets the fiber f−n(x) is equidistributed with respect to µ. More
precisely, for x 6∈ E

lim
n→∞

1

dnk

∑
a∈f−n(x)

δa = µ,

where δa is the Dirac mass at a.

Theorem 3.2 (Lyubich, Briend-Duval for holomorphic maps on Pk [2], Dinh-Nguyen-Truong
[5]). Under the hypothesis of the last theorem, the isolated periodic points of period n are
equidistributed with respect to µ. More precisely, we have

lim
n→∞

1

dnk

∑
a∈Qn

δa = µ.

Furthermore, most of these points are repelling.
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Consider now another family of maps. Let f : Ck → Ck be a polynomial automorphism.
We extend it to a birational map f : Pk → Pk. Let I+ and I− be the indeterminacy sets of
f and f−1 at infinity.

Definition 3.3 (Sibony [23]). We say that f is of Hénon-type if

I+ ∩ I− = ∅.

Note that a result by Friedland-Milnor says that in dimension k = 2 every automor-
phism is conjugated to a Hénon-type map or an elementary one.

Theorem 3.4 (Bedford-Lyubich-Smillie for k = 2 [1], Dinh-Sibony for k ≥ 2 [13]). There
is a canonical invariant probability measure µ such that periodic points are equidistributed
with respect to µ. More precisely,

lim
n→∞

1

dn

∑
a∈Qn

δa = µ,

where d is the largest dynamical degree. Moreover, most of these points are saddles.

In the proof of this theorem, we introduced a new method to get the equidistribution
of periodic points. Let Γn be the graph of fn in X ×X. Roughly, we need to show that

lim
n→∞

(Γn ∩∆) =
(

lim
n→∞

Γn

)
∩∆.

Here, a normalization in the sense of currents is needed before taking the limits.
The main difficulty to get the last identity is that Γn does not intersect ∆ (uniformly)

transversally. In our approach, we prove and use an asymptotic transversality for the
intersection between Γn and ∆. The idea is as follows. If F : X×X → X×X is given by

F
(
x1, x2) := (f(x1), f

−1(x2)
)

then
Γn = F−n/2(∆).

We lift F,Γn,∆ to suitable jet bundles over X ×X and obtain F̂ , Γ̂n, ∆̃. Using dynamics
of F̂ , we prove the convergence of Γ̂n to some Γ̂∞ and

Γ̂∞ ∩ ∆̃ = ∅.
The last property is exactly the asymptotic transversality for Γn ∩ ∆. Indeed, the above
construction is so that Γn intersects ∆ transversally if and only if Γ̂n ∩ ∆̃ = ∅. We
don’t have this property in general but a similar property for Γ∞ shows that the non-
transversality of Γn ∩∆ is, in some sense, negligible when n tends to infinity.

4. POSITIVE CLOSED CURRENTS AND INTERSECTION THEORY

In this last section, we will briefly present the notion of positive closed currents to
non-experts. The theory was introduced by Oka and Lelong. We will consider here some
geometric point of view rather than formal definitions in complex analysis that can be
found in several references. We only consider currents on a compact Kähler manifold X
of dimension k. Positive closed currents can be seen as natural objects to compactify the
space of effective analytic cycles (effective algebraic cycles when X is algebraic).

Consider first the case of maximal bi-degree : positive closed (p, p)-currents with p = k.
In this case, a positive closed (k, k)-current of mass 1 is just a probability measure. The
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following diagram shows that we can embed the space of effective 0-cycles of degree 1
into the space of probability measures. The last one is a compact subset of the space of
distributions which is, by definition, the dual space of the space of smooth functions.

{
effective 0-cycles of degree 1

}
↪→

{
probability measures on X

}
which is a compact space

⊂
{

continuous functions on X
}?

⊂
{

smooth functions on X
}?

=:
{

distributions on X
}
.

Concretely, if
∑
λiai is an effective 0-cycle of degree 1, i.e. the ai’s are points in X

and the λi’s are positive numbers of total 1, then it can be associated with a probability
measure by ∑

λiai ←→
∑

λiδai .

Here, δai denotes the Dirac mass at ai.
For the general case of bi-degree (p, p), we can embed the space of effective cycles of

degree 1 and codimension p into the compact space of positive closed (p, p)-currents of
mass 1. We will not give here the formal definition of positive closed current. A general
(p, p)-current, not necessarily positive and closed, is a continuous linear form on the
space of smooth differential (k − p, k − p)-forms. We have the following diagram :{

effective cycles of degree 1 and codimension p of X
}

↪→
{

positive closed (p, p)-currents of mass 1 on X
}

which is a compact space

⊂
{

continuous differential (k − p, k − p)-forms ϕ on X
}?

⊂
{

smooth differential (k − p, k − p)-forms ϕ on X
}?

=:
{

(p, p)-currents on X
}
.

∑
λiVi ←→

∑
λi

∫
z∈Vi

ϕ 7→
∑

λi

∫
z∈Vi

ϕ(z).

So for currents, we need to test differential forms instead of functions for measures.
Positive closed currents are global objects and can be seen as generalized submanifolds.
In order to use these currents, we need to develop a calculus, in particular, the theory of
intersections which is an analytic counter-part of the intersection of cycles in algebraic
geometry.

The theory of intersection of currents is well developed in the case of co-dimension
1, i.e. p = 1, which corresponds to hypersurfaces in the algebraic setting, thanks to the
works by Chern-Levine-Nirenberg, Bedford-Taylor, Demailly, Fornaess-Sibony among oth-
ers. For applications in dynamics, we need currents of any dimension. For this purpose,
we developed a theory of intersection without dimension excess using super-potentials
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and also a theory of intersection with dimension excess using densities and tangent cur-
rents. Both of them are quite technical and give several applications in complex analysis,
dynamics and foliations. We refer the reader to [9, 11, 12, 14] for more details.

Finally, we give below some selected references. The reader will find there a more ex-
haustive list of references for both pluripotential theory and complex dynamical systems.
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