ARITHMETIC DEGREES AND DYNAMICAL DEGREES OF SELF-MAPS OF ALGEBRAIC VARIETIES

YOHSUKE MATSUZAWA

1. Introduction

I would like to thank the organizers of Kinosaki algebraic geometry symposium 2017. This is the report of my talk on the symposium. In this short note, I will summarize our recent results related to Silverman's conjecture on height growth along the orbits of self-maps. Let X be a smooth projective variety and $f: X \rightarrow X$ a rational self-map, both defined over $\overline{\mathbb{Q}}$. Silverman introduced the notion of arithmetic degree in [[2], which measures the arithmetic complexity of f-orbits.

Definition 1.1.

(1) We write $X_{f}(\overline{\mathbb{Q}})$ the set of $\overline{\mathbb{Q}}$-valued points of X whose forward f-orbits are well-defined:

$$
X_{f}(\overline{\mathbb{Q}})=\left\{x \in X(\overline{\mathbb{Q}}) \mid f^{n}(x) \notin I_{f} \text { for all } n \geq 0\right\}
$$

(2) Fix a Weil height function h_{X} associated with an ample divisor on X. (A good references for height functions are [$[1,6]$.) Let $x \in X_{f}(\overline{\mathbb{Q}})$. The arithmetic degree of f at x is

$$
\alpha_{f}(x)=\lim _{n \rightarrow \infty} \max \left\{h_{X}\left(f^{n}(x)\right), 1\right\}^{1 / n}
$$

provided that the limit exists. Let $\bar{\alpha}_{f}(x)$ and $\underline{\alpha}_{f}(x)$ denote the limit sup and limit inf respectively. It is easy to prove that $\alpha_{f}(x), \bar{\alpha}_{f}(x), \underline{\alpha}_{f}(x)$ do not depend on the choice of ample height function h_{X}.

In [r], Kawaguchi and Silverman proved that when f is a morphism, the arithmetic degree $\alpha_{f}(x)$ always exists and is equal to either 1 or the absolute value of one of the eigenvalues of $f^{*}: N^{1}(X) \otimes_{\mathbb{Z}} \mathbb{R} \longrightarrow$ $N^{1}(X) \otimes_{\mathbb{Z}} \mathbb{R}$, where $N^{1}(X)$ is the group of divisors modulo numerical equivalence.

When f is a polarized endomorphism, i.e. there exists an ample divisor H such that $f^{*} H$ is linearly equivalent to $d H$ for some $d>1$, $\alpha_{f}(x)=1$ or d and $\alpha_{f}(x)=1$ if and only if the f-orbit of x is finite.

To formulate this type statement for general f, we need to introduce the first dynamical degree of f. We define the pull-back homomorphism $f^{*}: N^{1}(X) \longrightarrow N^{1}(X)$ as follows. Take a resolution of indeterminacy
$g: Y \longrightarrow X$ of f with Y smooth. Then $f^{*} D=g_{*}\left((f \circ g)^{*} D\right)$ for every $D \in N^{1}(X)$. This is independent of the choice of the resolution.

Definition 1.2. The first dynamical degree δ_{f} of f is:

$$
\delta_{f}=\lim _{n \rightarrow \infty}\left\|\left(f^{n}\right)^{*}: N^{1}(X)_{\mathbb{R}} \longrightarrow N^{1}(X)_{\mathbb{R}}\right\|^{1 / n}
$$

where $\left\|\|\right.$ is any norm on $\operatorname{End}_{\mathbb{R}}\left(N^{1}(X)_{\mathbb{R}}\right)$. Note that $\delta_{f} \geq 1$ since f is dominant and $\left(f^{n}\right)^{*}$ is a homomorphism of the \mathbb{Z}-module $N^{1}(X)$. We refer, e.g., to [2, [3, [5, [1]] for basic properties of dynamical degrees.

In the above polarized situation, the first dynamical degree δ_{f} of f is d. For a dominant rational map f, Silverman and Kawaguchi conjectured the following in [[2]], [8 , Conjecture 6]:

Conjecture 1.3 (KSC). Let $x \in X_{f}(\overline{\mathbb{Q}})$.
(1) The limit defining $\alpha_{f}(x)$ exists.
(2) The arithmetic degree $\alpha_{f}(x)$ is an algebraic integer.
(3) The collections of arithmetic degrees $\left\{\alpha_{f}(x) \mid x \in X_{f}(\overline{\mathbb{Q}})\right\}$ is a finite set.
(4) If the forward orbit $\mathcal{O}_{f}(x)=\left\{f^{n}(x) \mid n=0,1,2, \ldots\right\}$ is Zariski dense in X, then $\alpha_{f}(x)=\delta_{f}$.

This is the Kawaguchi-Silverman conjecture, and we abbreviate it as KSC. When X is quasi-projective, arithmetic degrees and dynamical degrees can be defined by taking a smooth compactification of X and we can consider Conjecture $\mathbb{L} .3$ for quasi-projective X.

2. MAIN THEOREMS

2.1. Fundamental theorems on height growth along orbits. In this subsection, X is a smooth projective variety and $f: X \rightarrow X$ a dominant rational map, both defined over $\overline{\mathbb{Q}}$. Fix a Weil height function h_{X} associated with an ample divisor on X. Let h_{X}^{+}denote $\max \left\{1, h_{X}\right\}$. First theorem says that the arithmetic degrees are bounded above by the first dynamical degrees.

Theorem 2.1 ([[]T, Theorem 1.4]). For any $\epsilon>0$, there exists $C>0$ such that

$$
h_{X}^{+}\left(f^{n}(P)\right) \leq C\left(\delta_{f}+\epsilon\right)^{n} h_{X}^{+}(P)
$$

for all $n \geq 0$ and $P \in X_{f}(\overline{\mathbb{Q}})$. In particular, for any $P \in X_{f}(\overline{\mathbb{Q}})$, we have

$$
\bar{\alpha}_{f}(P) \leq \delta_{f} .
$$

If f is a morphism, we have the following slightly stronger inequalities.

Theorem 2.2 (c.f. [10, Theorem 1.6]). Assume $f: X \longrightarrow X$ is a surjective morphism. Let $r=\operatorname{dim} N^{1}(X)_{\mathbb{R}}$ be the Picard number of X.
(1) When $\delta_{f}=1$, there exists a constant $C>0$ such that

$$
h_{X}^{+}\left(f^{n}(P)\right) \leq C n^{2 r} h_{X}^{+}(P)
$$

for all $n \geq 1$ and $P \in X(\overline{\mathbb{Q}})$.
(2) Assume that $\delta_{f}>1$. Then there exists a constant $C>0$ such that

$$
h_{X}^{+}\left(f^{n}(P)\right) \leq C n^{r-1} \delta_{f}^{n} h_{X}^{+}(P)
$$

for all $n \geq 1$ and $P \in X(\overline{\mathbb{Q}})$.
As a corollary of Theorem [..], we can define so called dynamical canonical height functions for self-rational maps having some nice properties.

Corollary 2.3 ([10, Proposition 1.10]). Assume $\delta_{f}>1$ and there exists a nef \mathbb{R}-divisor H on X such that $f^{*} H \equiv \delta_{f} H$. Fix a height function h_{H} associated with H. Then for any $P \in X_{f}(\overline{\mathbb{Q}})$, the limit

$$
\hat{h}_{X, f}(P)=\lim _{n \rightarrow \infty} \frac{h_{H}\left(f^{n}(P)\right)}{\delta_{f}^{n}}
$$

converges or diverges to $-\infty$.
Proof. We take a resolution of indeterminacy $p: Y \longrightarrow X$ of f so that p is an isomorphism outside the indeterminacy locus I_{f} of f :

Write $g=f \circ p$. By negativity lemma, $p^{*} p_{*} g^{*} H-g^{*} H$ is a p-exceptional effective divisor on Y. Then as in the proof of [8 , Proposition 21], we have $h_{H} \circ f \leq h_{f^{*} H}+O(1)$ on $X \backslash I_{f}$ where h_{H} and $h_{f^{*} H}$ are height functions associated with H and $f^{*} H$. Fix an ample height h_{X} on X. Since $f^{*} H \equiv \delta_{f} H$, we have $h_{f^{*} H}-\delta_{f} h_{H}=O\left(\sqrt{h_{X}^{+}}\right)$. Thus, we have

$$
h_{H} \circ f \leq \delta_{f} h_{H}+O\left(\sqrt{h_{X}^{+}}\right) \quad \text { on } X \backslash I_{f} .
$$

Write $B=h_{H} \circ f-\delta_{f} h_{H}$. Then, for any $P \in X_{f}$,

$$
\begin{aligned}
h_{H}\left(f^{n}(x)\right) & =\sum_{k=0}^{n-1} \delta_{f}^{n-1-k}\left(h_{H}\left(f^{k+1}(P)\right)-\delta_{f} h_{H}\left(f^{k}(P)\right)\right)+\delta_{f}^{n} h_{H}(P) \\
& =\sum_{k=0}^{n-1} \delta_{f}^{n-1-k} B\left(f^{k}(P)\right)+\delta_{f}^{n} h_{H}(P) .
\end{aligned}
$$

Take $\epsilon>0$ so that $\sqrt{\delta_{f}+\epsilon}<\delta_{f}$. By Theorem [2.1, there exists $C>0$ such that $B\left(f^{k}(P)\right) \leq C{\sqrt{\delta_{f}+\epsilon}}^{k}$ for all $k \geq 0$. Set

$$
a_{k}=\frac{B\left(f^{k}(P)\right)}{{\sqrt{\delta_{f}+\epsilon^{k}}}^{k}}
$$

Note that a_{k} is bounded above. Then

$$
\begin{aligned}
& \frac{h_{H}\left(f^{n}(P)\right)}{\delta_{f}^{n}} \\
& =h_{H}(P)+\sum_{k=0}^{n-1} \frac{B\left(f^{k}(P)\right)}{\delta_{f}^{k+1}} \\
& =h_{H}(P)+\frac{1}{\delta_{f}} \sum_{k=0}^{n-1} a_{k}\left(\frac{\sqrt{\delta_{f}+\epsilon}}{\delta_{f}}\right)^{k} \\
& =h_{H}(P)+\frac{1}{\delta_{f}}\left\{\sum_{\substack{0 \leq k \leq n-1 \\
a_{k} \geq 0}} a_{k}\left(\frac{\sqrt{\delta_{f}+\epsilon}}{\delta_{f}}\right)^{k}-\sum_{\substack{0 \leq k \leq n-1 \\
a_{k}<0}}\left(-a_{k}\right)\left(\frac{\sqrt{\delta_{f}+\epsilon}}{\delta_{f}}\right)^{k}\right\} .
\end{aligned}
$$

The first summation in the bracket is convergent since a_{k} is bounded above and the second summation is monotonically increasing. Hence, the claim follows.

I do not know whether the diverging to $-\infty$ case actually happens or not.
2.2. Some cases KSC holds. All materials in this subsection are joint work with Kaoru Sano and Takahiro Shibata.

Theorem 2.4 ([\amalg, Theorem 1.3, 1.4]).
(1) Let X a smooth projective surface over $\overline{\mathbb{Q}}$, and $f: X \longrightarrow X a$ surjective endomorphism on X. Then Conjecture $1 . .$. f.
(2) Let X be a smooth projective irrational surface over $\overline{\mathbb{Q}}$. Let $f: X \rightarrow X$ be a birational automorphism on X. Then Conjecture

Remark 2.5. KSC for automorphisms of surfaces had already been proven by Kawaguchi.

A dominant rational self-map might have no Zariski dense orbits. For instance, all self-maps of varieties with positive Kodaira dimension cannot have a Zariski dense orbit because they preserve the Iitaka fibration. So asking whether a self-map has a point whose arithmetic degree is equal to the dynamical degree is another question. We prove
that such a point always exists for any surjective endomorphism on any smooth projective variety.

Theorem 2.6 ([T], Theorem 1.6]). Let X be a smooth projective variety over $\overline{\mathbb{Q}}$, and $f: X \longrightarrow X$ a surjective endomorphism on X. Then there exists a point $x \in X(\overline{\mathbb{Q}})$ such that $\alpha_{f}(x)=\delta_{f}$.

Proof. Since $\bar{\alpha}_{f}(x) \leq \delta_{f}$, it is enough to prove $\delta_{f} \leq \underline{\alpha}_{f}(x)$. We may assume $\delta_{f}>1$ since when $\delta_{f}=1$ there is nothing to prove. Since $f^{*}: N^{1}(X)_{\mathbb{R}} \longrightarrow N^{1}(X)_{\mathbb{R}}$ preserves the nef cone, by the theorem of Perron-Frobenius-Birkhoff, there is a nef \mathbb{R}-divisor $D \not \equiv 0$ such that $f^{*} D \equiv \delta_{f} D$. We fix a height function h_{D} associated with D. Fix an ample divisor H on V and take a height function h_{H} associated with H with $h_{H} \geq 1$. Define

$$
\hat{h}_{D}(Q)=\lim _{n \rightarrow \infty} \frac{h_{D}\left(f^{n}(Q)\right)}{\delta_{f}^{n}}
$$

for any $Q \in V(K)$. This limit exists and we have

$$
\hat{h}_{D}=h_{D}+O\left(\sqrt{h_{H}}\right) .
$$

Since $D \not \equiv 0$, there exists a curve $C \subset X$ such that $(D \cdot C)>0$. Since

$$
\left.\hat{h}_{D}\right|_{C(K)}=h_{\left.D\right|_{C}}+O\left(\sqrt{h_{\left.H\right|_{C}}}\right)
$$

and $\left.D\right|_{C}$ is an ample \mathbb{R}-divisor class, we have

$$
\left.\hat{h}_{D}\right|_{C(\overline{\mathbb{Q}})} \not \leq 0 .
$$

Here we use the fact that an ample height is not bounded. Therefore, there exists a point $x \in C(\overline{\mathbb{Q}}) \subset V(\overline{\mathbb{Q}})$ such that $\hat{h}_{D}(x)>0$. By the definition of \hat{h}_{D}, we have $\underline{\alpha}_{f}(x) \geq \delta_{f}$.

If f is an automorphism, we can construct a "large" collection of points whose orbits have full arithmetic complexity.

Theorem 2.7 ([II, Theorem 1.7]). Let X be a smooth projective variety over $\overline{\mathbb{Q}}$, and $f: X \longrightarrow X$ an automorphism. Then there exists a subset $S \subset X(\overline{\mathbb{Q}})$ that satisfies the following conditions.
(1) For every $x \in S, \alpha_{f}(x)=\delta_{f}$.
(2) For $x, y \in S$ with $x \neq y, \mathcal{O}_{f}(x) \cap \mathcal{O}_{f}(y)=\emptyset$.
(3) S is Zariski dense in X.

3. Do the arithmetic degrees are controled by GEOMETRY?

Let us consider the following question:
What is the set $A(f)=\left\{\alpha_{f}(x) \mid x \in X_{f}(\overline{\mathbb{Q}})\right\}$?

When X is smooth projective and f is a morphism, by a theorem due to Kawaguchi-Silverman, we know that

$$
A(f) \subset\{1\} \cup\left\{|\alpha| \mid \alpha \text { is an eigenvalue of }\left.f^{*}\right|_{N^{1}(X)}\right\} .
$$

By Theorem [2.6], we know $\delta_{f} \in A(f)$. To my knowledge, these are the only things that we can say about $A(f)$ so far. It is very interesting to describe the set $A(f)$ in terms of the geometry of f.

If we assume KSC for possibly singular varieties, the geometry of f determines the set $A(f)$. For a point $x \in X$, consider the closure of the orbit $\overline{O_{f}(x)}$. Take an irreducible component Z of $\overline{O_{f}(x)}$ that is f-periodic with period n. Then $\alpha_{f}(x)=\alpha_{\left.f^{n}\right|_{Z}}\left(f^{l}(x)\right)^{1 / n}$ where l is a positive integer such that $f^{l}(x) \in Z$. If KSC holds for Z and $\left.f^{n}\right|_{Z}$, we have $\alpha_{f}(x)=\delta_{f^{n} \mid Z}^{1 / n}$.

The next question is:
Which absolute values of eigenvalues of $\left.f^{*}\right|_{N^{1}(X)}$ are realized as the arithmetic degrees of a point?
We now gather examples to get insight on this question. Here is a list of our achievement in this direction up to the present time.
(1) When X is a smooth projective surface and f is a surjective morphism, I have calculated the set $A(f)$ completely.
(2) When X is an algebraic torus (so possibly non-projective) and f is an isogeny, Silverman determined the set $A(f)$ in terms of the minimal polynomial of f as an element of $\operatorname{End}(X)$ [[12]. Lin generalized Silverman's result to toric varieties and monomial maps case [9].
(3) More generally, when X is a semi-abelian variety and f is a self-morphism, Kaoru Sano and I have determined the set $A(f)$ recently.

References

[1] Bombieri, E., Gubler, W., Heights in Diophantine geometry, Cambridge university press, 2007.
[2] Dang, N-B., Degrees of iterates of rational maps on normal projective varieties, arXiv:1701.07760.
[3] Diller, J., Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 no. 6, 1135-1169, (2001).
[4] Dinh, T-C., Nguyên, V-A., Comparison of dynamical degrees for semiconjugate meromorphic maps, Comment. Math. Helv. 86 (2011), no. 4, 817840.
[5] Dinh, T-C., Sibony, N., Equidistribution problems in complex dynamics of higher dimension, Internat. J. Math. 28, 1750057 (2007).
[6] Hindry, M., Silverman, J. H., Diophantine geometry. An introduction, Graduate Text in Mathematics, no. 20, Springer-Verlag, New York, 2000.
[7] Kawaguchi, S., Silverman, J. H., Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), 5009-5035.
[8] Kawaguchi, S., Silverman, J. H., On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21-48.
[9] Lin, J-L., On the arithmetic dynamics of monomial maps, arXiv:1704.02661.
[10] Matsuzawa, Y., On upper bounds of arithmetic degrees, arXiv:1606.00598v2.
[11] Matsuzawa, Y., Sano, K., Shibata, T., Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, arXiv:1701.04369v2.
[12] Silverman, J. H., Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647-678.
[13] Silverman, J. H., Arithmetic and dynamical degrees on abelian varieties, preprint, 2015, http://arxiv.org/abs/1501.04205
[14] Truong, T. T., (Relative) dynamical degrees of rational maps over an algebraic closed field, arXiv:1501.01523v1.

Graduate school of Mathematical Sciences, the University of Tokyo, Komaba, Tokyo, 153-8914, Japan

E-mail address: myohsuke@ms.u-tokyo.ac.jp

