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1. Introduction

I would like to thank the organizers of Kinosaki algebraic geometry
symposium 2017. This is the report of my talk on the symposium. In
this short note, I will summarize our recent results related to Silver-
man’s conjecture on height growth along the orbits of self-maps. Let
X be a smooth projective variety and f : X 99K X a rational self-map,
both defined over Q. Silverman introduced the notion of arithmetic
degree in [12], which measures the arithmetic complexity of f -orbits.

Definition 1.1.

(1) We write Xf (Q) the set of Q-valued points of X whose forward
f -orbits are well-defined:

Xf (Q) = {x ∈ X(Q) | fn(x) /∈ If for all n ≥ 0}.

(2) Fix a Weil height function hX associated with an ample divisor
on X. (A good references for height functions are [1, 6].) Let
x ∈ Xf (Q). The arithmetic degree of f at x is

αf (x) = lim
n→∞

max{hX(f
n(x)), 1}1/n

provided that the limit exists. Let αf (x) and αf (x) denote
the limit sup and limit inf respectively. It is easy to prove that
αf (x), αf (x), αf (x) do not depend on the choice of ample height
function hX .

In [7], Kawaguchi and Silverman proved that when f is a morphism,
the arithmetic degree αf (x) always exists and is equal to either 1 or
the absolute value of one of the eigenvalues of f ∗ : N1(X)⊗ZR −→
N1(X)⊗ZR, where N1(X) is the group of divisors modulo numerical
equivalence.

When f is a polarized endomorphism, i.e. there exists an ample
divisor H such that f ∗H is linearly equivalent to dH for some d > 1,
αf (x) = 1 or d and αf (x) = 1 if and only if the f -orbit of x is finite.

To formulate this type statement for general f , we need to introduce
the first dynamical degree of f . We define the pull-back homomorphism
f ∗ : N1(X) −→ N1(X) as follows. Take a resolution of indeterminacy
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g : Y −→ X of f with Y smooth. Then f ∗D = g∗((f ◦ g)∗D) for every
D ∈ N1(X). This is independent of the choice of the resolution.

Definition 1.2. The first dynamical degree δf of f is:

δf = lim
n→∞

∥(fn)∗ : N1(X)R −→ N1(X)R∥1/n

where ∥ ∥ is any norm on EndR(N
1(X)R). Note that δf ≥ 1 since f is

dominant and (fn)∗ is a homomorphism of the Z-module N1(X). We
refer, e.g., to [2, 3, 5, 14] for basic properties of dynamical degrees.

In the above polarized situation, the first dynamical degree δf of
f is d. For a dominant rational map f , Silverman and Kawaguchi
conjectured the following in [12], [8, Conjecture 6]:

Conjecture 1.3 (KSC). Let x ∈ Xf (Q).

(1) The limit defining αf (x) exists.
(2) The arithmetic degree αf (x) is an algebraic integer.

(3) The collections of arithmetic degrees {αf (x) | x ∈ Xf (Q)} is a
finite set.

(4) If the forward orbit Of (x) = {fn(x) | n = 0, 1, 2, . . . } is Zariski
dense in X, then αf (x) = δf .

This is the Kawaguchi-Silverman conjecture, and we abbreviate it as
KSC. When X is quasi-projective, arithmetic degrees and dynamical
degrees can be defined by taking a smooth compactification of X and
we can consider Conjecture 1.3 for quasi-projective X.

2. main theorems

2.1. Fundamental theorems on height growth along orbits. In
this subsection, X is a smooth projective variety and f : X 99K X a
dominant rational map, both defined overQ. Fix a Weil height function
hX associated with an ample divisor on X. Let h+

X denote max{1, hX}.
First theorem says that the arithmetic degrees are bounded above by
the first dynamical degrees.

Theorem 2.1 ([10, Theorem 1.4]). For any ϵ > 0, there exists C > 0
such that

h+
X(f

n(P )) ≤ C(δf + ϵ)nh+
X(P )

for all n ≥ 0 and P ∈ Xf (Q). In particular, for any P ∈ Xf (Q), we
have

αf (P ) ≤ δf .

If f is a morphism, we have the following slightly stronger inequali-
ties.

Theorem 2.2 (c.f. [10, Theorem 1.6]). Assume f : X −→ X is a
surjective morphism. Let r = dimN1(X)R be the Picard number of X.
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(1) When δf = 1, there exists a constant C > 0 such that

h+
X(f

n(P )) ≤ Cn2rh+
X(P )

for all n ≥ 1 and P ∈ X(Q).
(2) Assume that δf > 1. Then there exists a constant C > 0 such

that

h+
X(f

n(P )) ≤ Cnr−1δnfh
+
X(P )

for all n ≥ 1 and P ∈ X(Q).

As a corollary of Theorem 2.1, we can define so called dynamical
canonical height functions for self-rational maps having some nice prop-
erties.

Corollary 2.3 ([10, Proposition 1.10]). Assume δf > 1 and there exists
a nef R-divisor H on X such that f ∗H ≡ δfH. Fix a height function

hH associated with H. Then for any P ∈ Xf (Q), the limit

ĥX,f (P ) = lim
n→∞

hH(f
n(P ))

δnf

converges or diverges to −∞.

Proof. We take a resolution of indeterminacy p : Y −→ X of f so that
p is an isomorphism outside the indeterminacy locus If of f :

Y
p

~~~~
~~
~~
~~ g

  A
AA

AA
AA

A

X
f

//_______ X.

Write g = f ◦p. By negativity lemma, p∗p∗g
∗H−g∗H is a p-exceptional

effective divisor on Y . Then as in the proof of [8, Proposition 21], we
have hH ◦ f ≤ hf∗H + O(1) on X \ If where hH and hf∗H are height
functions associated with H and f ∗H. Fix an ample height hX on X.

Since f ∗H ≡ δfH, we have hf∗H − δfhH = O
(√

h+
X

)
. Thus, we have

hH ◦ f ≤ δfhH +O

(√
h+
X

)
on X \ If .

Write B = hH ◦ f − δfhH . Then, for any P ∈ Xf ,

hH(f
n(x)) =

n−1∑
k=0

δn−1−k
f

(
hH(f

k+1(P ))− δfhH(f
k(P ))

)
+ δnfhH(P )

=
n−1∑
k=0

δn−1−k
f B(fk(P )) + δnf hH(P ).
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Take ϵ > 0 so that
√

δf + ϵ < δf . By Theorem 2.1, there exists C > 0

such that B(fk(P )) ≤ C
√

δf + ϵ
k
for all k ≥ 0. Set

ak =
B(fk(P ))√
δf + ϵ

k
.

Note that ak is bounded above. Then

hH(f
n(P ))

δnf

= hH(P ) +
n−1∑
k=0

B(fk(P ))

δk+1
f

= hH(P ) +
1

δf

n−1∑
k=0

ak

(√
δf + ϵ

δf

)k

= hH(P ) +
1

δf


∑

0≤k≤n−1
ak≥0

ak

(√
δf + ϵ

δf

)k

−
∑

0≤k≤n−1
ak<0

(−ak)

(√
δf + ϵ

δf

)k

 .

The first summation in the bracket is convergent since ak is bounded
above and the second summation is monotonically increasing. Hence,
the claim follows.

□

I do not know whether the diverging to −∞ case actually happens
or not.

2.2. Some cases KSC holds. All materials in this subsection are
joint work with Kaoru Sano and Takahiro Shibata.

Theorem 2.4 ([11, Theorem 1.3, 1.4]).

(1) Let X a smooth projective surface over Q, and f : X −→ X a
surjective endomorphism on X. Then Conjecture 1.3 holds for
f .

(2) Let X be a smooth projective irrational surface over Q. Let
f : X 99K X be a birational automorphism on X. Then Con-
jecture 1.3 holds for f .

Remark 2.5. KSC for automorphisms of surfaces had already been
proven by Kawaguchi.

A dominant rational self-map might have no Zariski dense orbits.
For instance, all self-maps of varieties with positive Kodaira dimension
cannot have a Zariski dense orbit because they preserve the Iitaka fi-
bration. So asking whether a self-map has a point whose arithmetic
degree is equal to the dynamical degree is another question. We prove
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that such a point always exists for any surjective endomorphism on any
smooth projective variety.

Theorem 2.6 ([11, Theorem 1.6]). Let X be a smooth projective vari-
ety over Q, and f : X −→ X a surjective endomorphism on X. Then
there exists a point x ∈ X(Q) such that αf (x) = δf .

Proof. Since αf (x) ≤ δf , it is enough to prove δf ≤ αf (x). We may
assume δf > 1 since when δf = 1 there is nothing to prove. Since
f ∗ : N1(X)R −→ N1(X)R preserves the nef cone, by the theorem of
Perron-Frobenius-Birkhoff, there is a nef R-divisor D ̸≡ 0 such that
f ∗D ≡ δfD. We fix a height function hD associated with D. Fix an
ample divisor H on V and take a height function hH associated with
H with hH ≥ 1. Define

ĥD(Q) = lim
n→∞

hD(f
n(Q))

δnf

for any Q ∈ V (K). This limit exists and we have

ĥD = hD +O(
√
hH).

Since D ̸≡ 0, there exists a curve C ⊂ X such that (D · C) > 0.
Since

ĥD|C(K) = hD|C +O
(√

hH|C

)
and D|C is an ample R-divisor class, we have

ĥD|C(Q) ̸≤ 0.

Here we use the fact that an ample height is not bounded. Therefore,
there exists a point x ∈ C(Q) ⊂ V (Q) such that ĥD(x) > 0. By the

definition of ĥD, we have αf (x) ≥ δf . □

If f is an automorphism, we can construct a “large” collection of
points whose orbits have full arithmetic complexity.

Theorem 2.7 ([11, Theorem 1.7]). Let X be a smooth projective va-
riety over Q, and f : X −→ X an automorphism. Then there exists a
subset S ⊂ X(Q) that satisfies the following conditions.

(1) For every x ∈ S, αf (x) = δf .
(2) For x, y ∈ S with x ̸= y, Of (x) ∩ Of (y) = ∅.
(3) S is Zariski dense in X.

3. Do the arithmetic degrees are controled by
geometry?

Let us consider the following question:

What is the set A(f) = {αf (x) | x ∈ Xf (Q)} ?
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When X is smooth projective and f is a morphism, by a theorem
due to Kawaguchi-Silverman, we know that

A(f) ⊂ {1} ∪ {|α| | α is an eigenvalue of f ∗|N1(X)}.

By Theorem 2.6, we know δf ∈ A(f). To my knowledge, these are the
only things that we can say about A(f) so far. It is very interesting to
describe the set A(f) in terms of the geometry of f .

If we assume KSC for possibly singular varieties, the geometry of f
determines the set A(f). For a point x ∈ X, consider the closure of

the orbit Of (x). Take an irreducible component Z of Of (x) that is
f -periodic with period n. Then αf (x) = αfn|Z (f

l(x))1/n where l is a
positive integer such that f l(x) ∈ Z. If KSC holds for Z and fn|Z , we
have αf (x) = δ

1/n
fn|Z .

The next question is:

Which absolute values of eigenvalues of f ∗|N1(X) are realized as the
arithmetic degrees of a point?

We now gather examples to get insight on this question. Here is a
list of our achievement in this direction up to the present time.

(1) When X is a smooth projective surface and f is a surjective
morphism, I have calculated the set A(f) completely.

(2) When X is an algebraic torus (so possibly non-projective) and
f is an isogeny, Silverman determined the set A(f) in terms of
the minimal polynomial of f as an element of End(X) [12]. Lin
generalized Silverman’s result to toric varieties and monomial
maps case [9].

(3) More generally, when X is a semi-abelian variety and f is a
self-morphism, Kaoru Sano and I have determined the set A(f)
recently.
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