FROBENIUS MAPS AND ALGEBRAIC VARIETIES

AKIYOSHI SANNAI

ABSTRACT. Many characterization of abelian varieties in positive characteristic is given by several authors. In this article, we give a characterization of abelian varieties by the language of $F_*\mathcal{O}_X$ and its Poincare bundles.

Let k be an algebraically closed field of characteristic p > 0. Let X be a smooth proper variety over k. When does X satisfy the following property (*)?

(*) $F_*\mathcal{O}_X \simeq \bigoplus_j M_j$ where $F : X \to X$ is the absolute Frobenius morphism and each M_j is a line bundle.

For example, an arbitrary smooth proper toric variety satisfies this property (*) (cf. [Achinger][Thomsen]). Thus there are many varieties which satisfy (*). But every toric variety has negative Kodaira dimension. On the other hand, In [ST] we show that ordinary abelian varieties satisfy (*) and this property gives the characterization of the ordinary abelian varieties.

Theorem 0.1. Let k be an algebraically closed field of characteristic p > 0. Let X be a smooth projective variety over k. Assume the following conditions.

- For infinitely many $e \in \mathbb{Z}_{>0}$, $F^e_* \mathcal{O}_X \simeq \bigoplus_j M_j$ where each M_j is an invertible sheaf.
- $\kappa(X) \ge 0$ where $\kappa(X)$ is the Kodaira dimension of X.

Then X is an ordinary abelian variety.

By the Theorem above, it is natural to ask the same criterion holds only for F_*O_X . But in [ES], we gave the counter example for that problem.

²⁰¹⁰ Mathematics Subject Classification. 14K05.

AKIYOSHI SANNAI

Theorem 0.2. Let X be a non-abelian smooth projective surface. Then X satisfies the following conditions if and only if X is an F-split Igusa surface:

- $F_*\mathcal{O}_X$ is isomorphic to direct sum of line bundles.
- K_X is pseudo-effective.

 $\mathbf{2}$

We also showed that if we consider e > 1, then the same characterization holds.

Theorem 0.3. Let X be a smooth projective variety over k of characteristic p > 2 (resp. p > 0). X is an ordinary abelian variety if and only if the following conditions hold:

- $F_*\mathcal{O}_X$ (resp. $F_*^2\mathcal{O}_X$) is isomorphic to a direct sum of line bundles.
- K_X is pseudo-effective.

Another natural question is how can we characterize non ordinary abelian varieties by the language of $F_*\mathcal{O}_X$. In this article we give the characterization by using Poincare bundle on albanese varieties. For details of Poincare bundles and albanese maps, see [FGAex, Section 9].

Theorem 0.4. Let X be a smooth projective variety over k of characteristic p. There is a canonical map $\Phi : \tilde{\mathcal{P}}_X \to F_*\mathcal{O}_X$ with the following properties:

- $\mathcal{P}_X \simeq p_{1*} \mathcal{P}_{X \times kerV}$ where \mathcal{P} is the Poincare bundle on $X \times Pic^0 X$ and V is the Verschiebung map on $Pic^0 X$.
- Φ is isomorphic if and only if X is an abelian variety.
- Φ is generically isomorphic if and only if X has maximal albanese dimension.

We overview the proof of Theorem 0.4. At first, we construct the map $\Phi : \tilde{\mathcal{P}}_X \to F_*\mathcal{O}_X$.

Lemma 0.5. Let X be a smooth projective variety over k of characteristic p and $\alpha_X : X \to Alb(X)$ be the albanese map of X. Then we have

$$\alpha^* \widetilde{\mathcal{P}}_{\mathrm{Alb}(X)} \simeq \widetilde{\mathcal{P}}_X$$

Proof. $\alpha_X : X \to Alb(X)$ induces the following map;

$$\alpha_X^*$$
: Pic⁰Pic⁰Pic⁰Pic⁰(X) \simeq Pic⁰(X)

Here we can see that the kernel of the Verschiebung maps corresponds each other. Hence, we have

$$\alpha_X^* \operatorname{KerV}_{\operatorname{Pic}^0(X)} \simeq \operatorname{KerV}_{\operatorname{Pic}^0 \operatorname{Pic}^0 \operatorname{Pic}^0_{red}(X)}$$

. By considering the universal bundles on them, we get the assersion. $\hfill \Box$

Lemma 0.6. Let X be a smooth projective variety over k of characteristic p. There is a canonical map $\Phi : \tilde{\mathcal{P}}_X \to F_*\mathcal{O}_X$.

Proof. We use the following theorem.

Theorem 0.7 (Oda). Let $f : X \to Y$ be an isogeny of abelian varieties over k. Set $\hat{f} : \hat{Y} \to \hat{X}$ to be the dual of f. Let $L \in \text{Pic}^{0}(X)$. Then, f

$$f_*L \simeq \operatorname{pr}_{1*}(\mathcal{P}_Y|_{Y \times \hat{f}^{-1}([L])})$$

where \mathcal{P}_{Y} is the normalized Poincare line bundle of (Y, 0).

By applying this theorem to f = F and $L = \mathcal{O}_X$, we have $\Phi : \widetilde{\mathcal{P}}_X \to F_*\mathcal{O}_X$ for any abelian varieties X. (Note that Verschiebung map is defined by the dual of relative Frobenius map.)

In general, we have the base change map $\alpha^* F_* \mathcal{O}_{Alb(X)} \to F_* \mathcal{O}_X$. Then by the discussion above and lem 0.6,

$$\alpha^* F_* \mathcal{O}_{\mathrm{Alb}(X)} \simeq \alpha^* \mathcal{P}_{\mathrm{Alb}(X)} \simeq \mathcal{P}_X$$

Hence, by composing them, we get the assersion.

Claim 0.8. If Φ_X is isomorphism, then X has maximal albanese dimension, namely dim $X = \dim \alpha(X)$

Proof. By Stein factrizaton theorem, we have the following decomposition;

$$\alpha: X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} A = \operatorname{Alb}(X)$$

where g, h is finite, and g is purely inseparable, h is separable, Y, Z is normal.

We first see the map

$$\Phi_Y: \mathcal{P}_Y \to F_*\mathcal{O}_Y$$

. Pulling back by f, we have

$$\widetilde{\Phi}_Y: f^* \widetilde{\mathcal{P}}_Y \xrightarrow{f^* \Phi_Y} f^* F_* \mathcal{O}_Y \to F_* \mathcal{O}_X$$

where the second map is base change map. We also have

$$f^* \widetilde{\mathcal{P}}_Y \simeq f^* g^* \widetilde{\mathcal{P}}_{\operatorname{Alb}(X)} \simeq \alpha^* \widetilde{\mathcal{P}}_{\operatorname{Alb}(X)} \simeq \widetilde{\mathcal{P}}_X.$$

Hence, we see that $\Phi_Y = \Phi_X$. Hence, by calculating the rank of $F_*\mathcal{O}$, we have dim $X \leq \dim Y$. This implies dim $X = \dim Y = \dim \alpha(X)$.

3

AKIYOSHI SANNAI

Claim 0.9. If Φ_X is isomorphism, then Φ_Y is also isomorphism.

Proof. Since X has maximal albanese dimension, f is a birational contraction. Let U, V be the isomophic locus of f in X, Y respectively. Then U, V have codimension two in their ambient space. Here we have

$$F_*\mathcal{O}_Y|U \simeq F_*\mathcal{O}_X|V \simeq \mathcal{P}_X|V \simeq \mathcal{P}_Y|U|$$

Since all the sheaf above are reflexive and all the varieties above are normal, and U, V are codimension two subset, we get $\Phi_Y : \widetilde{\mathcal{P}_Y} \simeq F_* \mathcal{O}_Y$.

Claim 0.10. There is a decomposition

 $Y \to Z_1 \to \dots Z_i \to Z_{i+1} \dots \to Z$

such that $h_i: Z_i \to Z_{i+1}$ is a purely inseparable extension of height 1 of normal varieties. Furthermore, if Φ_Y is an isomorphism, then Φ_{Z_i} is also an isomorphism.

Proof. The first assersion follows by taking field extensions of height 1 and normalizations in the fields. We see the second assersion. Since Z_i is normal, $F_*\mathcal{O}_{Z_i}$ is reflexive. Hence we may assume Z_{i+1} is a spectrum of a DVR. Since torsion free module over DVR is faithfully flat, h_i^* is a faithfully flat functor. Hence by the induction starting from Y, we have the second assersion.

By standard calculation of Grothendiek duality and Kunz's theorem, we have the following proposition.

Proposition 0.11. Let X be normal projective variety over k. Assume that Φ_X is an isomorphism. Then X is smooth and $-(p-1)K_X$ is an effective divisor.

We prove the main theorem for purelu inseparable extension of height 1.

Proposition 0.12. Let $\alpha : Z \to A$ be the albanese map of normal variety Z. Assume that α is purely inseparable of height 1 and Φ_Z is an isomorphism. Then α is an isomorphism.

Proof. By [Eke], any purely inseparable of height 1 morphism can be described by a quotient of 1-foliation. Namely, there is a 1-foliation $\mathcal{F} \subset \mathcal{T}_A$ such that $Z \simeq A/\mathcal{F}$ and $\omega_Z^p \simeq \alpha^* \omega_A \otimes (det\mathcal{F})^{(1-p)}$ Since Ais an abelian variety, \mathcal{T}_A is trivial. This implies $det\mathcal{F} \subset \oplus \mathcal{O}_A$. Hence $det\mathcal{F}$) is negative line bundle, put $det\mathcal{F} \simeq \mathcal{O}(-D)$ for an effective divisor D. Then we have

$$\omega_Z^p \simeq \mathcal{O}_Z((p-1)D).$$

4

By claim 0.10 and Prop 0.12, h is an isomorphism. Next, we show g is an isomorphism.

Claim 0.13. g is an isomorphism.

Proof. Put

$$K_Y = g^* K_A + R$$

where R is the ramification divisor of separable morphism g. Since $K_A = 0$ and by Prop 0.11, we have R = 0.

Hence $\alpha : Y \to A$ is etale in codimension one. Then, by the Zariski– Nagata purity, α is etale. By [Mumford, Section 18, Theorem], Y is also an abelian variety and we are done.

Claim 0.14. f is an isomorphism

Proof. We can write

$$K_X = f^* K_A + E$$

where E is an f-exceptional divisor. Since A is terminal (cf. [KM, Section 2.3]), E is effective. By Prop 0.12, we have $K_X \equiv 0$. Since $K_X \equiv 0$, we see that E is f-nef. By the negativity lemma (cf. [KM, Lemma 3.39]), we see E = 0. Thus, the codimension of Ex(f) in X is at least two. Since A is smooth, f is an isomorphism. \Box

Acknowledgments. The author would like to thank Professors Taro Fujisawa, Takuzo Okada, Taro Sano, for their invitation to the symposium The author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 16K17581.

References

[Achinger]	P. Achinger, A characterization of toric varieties in characteristic p ,
	to appear in Int. Math. Res. Notices.
[Atiyah1]	M. F. Atiyah, On the Krull-Schmidt theorem with application to
	sheaves, Bulletin de la S. M. F., tome 84 (1956), 307–317.
[Atiyah2]	M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London
	Math. Soc, 7 (1957), 414–452.
[Eke]	T. Ekedahl, Canonical models of surfaces of general type in positive
	characteristic, Inst. Hautes Etudes Sci. Publ. Math. 67 (1988), 97
	144.
$[\mathrm{ES}]$	S. Ejiri, A. Sannai, A characterization of ordinary abelian varieties
	by the Frobenius push-forward of the structure sheaf II. to appear in
	Mathematical research notices.

5

AKIYOSHI SANNAI

[FGAex]	B. Fontechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nithure, A. Vistoli, <i>Fundamental Algebraic Geometry: Grothendieck's FGA Ex</i> -
	plained, Math. Surveys and Monographs, Vol. 123 (2005).
[HP]	C. D. Hacon, Z. Patakfalvi, On the characterization of abelian vari-
	eties in characteristic $p > 0$, arXiv:1602.01791
[Hirokado]	M. Hirokado, Zariski surfaces as quotients of Hirzebruch surfaces by
	1-foliations, Yokohama Math. J. vol. 47 (2000), 103–120.
[KS]	Y. Kitadai, H Sumihiro, Canonical filtrations and stability of di-
	rect images by Frobenius morphisms, Tohoku Math. J. 60 , 287–301
	(2008).
[KM]	J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cam-
	brigde Tracts in Mathematics, Vol. 134, 1998.
[Liedtke]	C. Liedtke, The Canonical Map and Horikawa Surfaces in Positive
	<i>Characteristic</i> , Int. Math. Res. Notices (2013) Vol. 2013 (2), 422–462.
[MeSr]	V. B. Mehta, V. Srinivas, Varieties in positive characteristic with
	trivial tangent bundle, Compositio Math., tome 64 no. 2, 191–212
	(1987).
[Mumford]	D. Mumford, Abelian varieties, Tata Institute of Fundamental Re-
	search Studies in Mathematics, No. 5, (1970).
[MuSr]	M. Mustață, V. Srinivas, Ordinary varieties and the comparison be-
	tween multiplier ideals and test ideals, Nagoya Math. J. Volume 204
I	(2011), 125-157
[Oda]	T. Oda, Vector bundles on an elliptic curve, Nagoya Math. J., Vol.
	43 , 41–72 (1971).
[SS]	K. Schwede, K. E. Smith, Globally F-regular and log Fano varieties,
	Adv. in Math., Vol. 224 Issue 3, 863–894, (2010).
[ST]	A. Sannai and H. Tanaka. A characterization of ordinary abelian
	varieties by the Frobenius push-forward of the structure sheaf. Math.
	Ann., 366 1067 1087, 2016.
[Sun]	X. Sun, Direct images of bundles under Frobenius morphism, J. Al-
ím '	gebra 226 (2000), no. 2, 865–874
[Thomsen]	J. F. Thomsen, Frobenius direct images of line bundles on toric va-
	rieties, J. Algebra 226 (2000), no. 2, 865–874

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: sannai@kurims.kyoto-u.ac.jp