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Abstract. We survey some recent results on the structure of log canon-

ical pairs (X,�) with �(KX +�) nef. In particular, we motivate and

explain a conjecture due to Shokurov concerning upper bounds for the

number of components of the divisor � and we illustrate the proof of

this conjecture given by Brown, McKernan, Zong, and the author.

Contents

1. Local and global singularities 3

2. Classical bounds 3

3. Shokurov’s conjecture 5

4. Main results 8

References 12

In order to classify algebraic varieties from a birational viewpoint, it is

unavoidable to deal with singularities. For example, this phenomenon can

already be observed in dimension two when constructing the canonical model

of a surface of general type: then ADE singularities make their appearance.

In dimension three and higher, this is an even more common phenomenon,

as singularities immediately appear when running the Minimall Model Pro-

gram, via divisorial contractions and flips.

When studying the structure of algebraic varieties, it is desirable to find

bounds for those numerical quantities that are naturally associated to the

geometric structures under scrutiny. These bounds can then be used to show

that certain structures are not attainable, or characterize those varieties that

attain certain special values of such quantities – usually those values closest

to the bounds.

In the context of the classification, actually, it is often more convenient

to work with a slightly more general type of objects, namely, pairs (X,�),

where X is an algebraic variety and � is a sum of prime divisors with
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coe�cients in (0, 1]. Such pairs appear quite naturally: for example, given

U a quasi-projective variety, taking X to be a smooth compactification with

� = X \U a simple normal crossing boundary at infinity – which exists, at

least in characteristic 0, by Hironaka’s resolution of singularities. Another

motivation for working with pairs comes form adjunction theory: when X is

a mildly singular hypersurface in a mildly singular variety Y , then often the

classical adjunction formula (KY +X)|X = KX fails to hold. One then needs

a correction term in the form of an e↵ective divisor, that is, the Adjunction

formula looks like (KY +X)|X = KX +�, for some � � 0 on X.

When working with pairs (X,�), we are usually interested in understand-

ing their singularities, that is, the singularities of the underlying variety X,

those of the components of � and the interaction of these two. It is then

natural to wonder what kind of restrictions di↵erent types of singularities

impose on the structure of (X,�). For example, one may ask the following

very basic set of questions.

Question 0.1. Is it possible to bound the number of components of � in

terms of the type of singularities that we impose?

Is it possible to understand anything about the way components of � interact

among themselves and with X just in terms of the type of singularities of

the pair? For example, is it possible to describe the combinatorial structure

of the components of � and their intersections (that is, its dual complex)?

These are fundamental questions in the study of birational geometry, since

in order to answer those we need to understand both the local and the global

structure of the singularities of a given pair.

It is not too hard to see that if we allow only mild singularities – of

kawamata log terminal or log canonical type (klt and lc, in short) – then

around a given closed point on X the sum of the coe�cients of � cannot be

greater than the dimension of X and when the bound is attained then � is

a sum of smooth components intersecting as transversely as possible – up

to passing to a quasi-étale cover, see Section 2.

In more generality, when we consider a projective variety X at large and

not just a local situation setting it is not possible to find analogous bounds.

This is already clear in dimension 1, as explained in Section 2. Nonetheless,

if we are willing to bound the positivity of the divisor KX + � then it

is actually possible to find a positive answer to the first part of Question

0.1 and also to partially describe the structure of those components of �

having coe�cient one, in any dimension. For a more general study of the
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combinatorial structure of b�c in a large class of cases, the reader can consult

[11].

The aim of this note is to explain what this positive answer actually is

and what are the reasons behind it. The material explained here originates

from the work in [3].

Acknowledgements. I am grateful to the organisers, participants, and

supporting institutions of the Kinosaki Symposium for the opportunity to

take part in the fine tradition of this meeting. My thanks also go to my

co-authors M. Brown, J. McKernan, and H.R. Zong, as our joint work forms

the subject of this note.

Conventions. We work over a field of characteristic zero, which is alge-

braically closed, unless otherwise stated.

Let X be a proper normal variety. ⇢(X) is the rank of the Picard group

of X. We denote the class group, the group of Weil divisors modulo linear

equivalence, by An�1(X).

We will follow the terminology from [13].

1. Local and global singularities

As we explained above, we want to describe some features of the structure

of certain types of singularities both in a local and global framework. What

we are actually going to do is using local information about the singularities

of pairs to draw conclusions about the global structure of pairs.

As a first task, we will define these two competing frameworks.

Local Setting: (x 2 X,�), where x 2 X is a (pointed) germ of a normal variety

and � =
P

i aiDi is a Weil divisor such that KX + � is R-Cartier
at x and (X,�) is log canonical at x.

Global Setting: (X,�) where X is a normal proper variety and � =
P

i aiDi is

a Weil divisor such that KX + � is R-Cartier and (X,�) is log

canonical.

For the definition of log canonical (klt, dlt) singularities of pairs, the

reader can consult [13, §2.3].

2. Classical bounds

We have seen in the introduction that one question property that we may

want to answer is whether or not we can bound the number of components

of log canonical divisors on a given variety X. An even simpler question is

whether we can do that locally around a point x 2 X. Given that when
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we work with log canonical pairs (X,�) the coe�cients of � may vary in

(0, 1], then rather than counting the components of � it is more convenient

to weight each component by its coe�cient in �.

Definition 2.1. Let (x 2 X,�) be the germ of a log pair. A local decompo-

sition of � is an expression of the form

X
aiDi  �,

where Di � 0 are Z-Weil, Q-Cartier divisors and ai � 0, 1  i  k. The

local complexity of this decomposition is n� d, where n is the dimension of

X and d is the sum of a1, . . . , ak.

Using the notion of local complexity, it is then not too hard to prove by

induction on the dimension, using Bertini and the adjunction formula, that

the local version of Question 0.1 has an a↵ermative answer. The following

result is a generalized adaptation of [12, 18.22].

Proposition 2.2. [3] Let (x 2 X,�) be the germ of a log canonical pair

where X has dimension n and let

P
aiDi  � be a local decomposition.

Assume that KX and D1, . . . , Dk are Cartier.

If � = n�P
ai = n� d is the local complexity then

(1) � � 0.

(2) If � < 1 then, possibly re-ordering D1, . . . , Dk, there is an integer

m � n� b2�c � 0 such that

(X,D1 + · · ·+Dm)

is log smooth, and

b�c  D1 + · · ·+Dm.

(3) If � < 3
2 then either X is smooth at x or has a cAl singularity at x.

More generally, when we consider a proper variety X and not just a local

setting, it is not possible to find analogous bounds. In fact, already starting

in dimension one and considering a pair (C,
Pn

1 pi), where C is a smooth

curve and the pi are n distinct points on C, then the sum of the coe�cients

tends to infinity with n. Nonetheless, if we are willing to bound the positivity

of the divisor KC +
Pn

1 pi then it is actually possible to find an immediate

bound. Looking at the Kodaira dimension of KC +
Pn

1 pi we get that:
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(KC+
nX

1

pi) =

8
><

>:

�1 if g(C) = 0 and n < 2,

0 if g(C) = 0 and n = 2, or g(X) = 1 and n = 0,

1 if else,

where g(C) denotes the genus of C.

Hence, we should restrict ourselves to consider pairs (X,�) whose Ko-

daira dimension is non-positive, at the very least, if we wish to have any

hope to prove that some kind of bound exists.

Let us first turn to a toy example, which naturally extends the above

remark for the one-dimensional case. Let (X,�) be a pair given by a smooth

Fano manifold of dimension n with ⇢(X) = 1 and a log canonical boundary

such that �(KX +�) is nef. Let H be a generator of the Picard group of X.

Writing � =
P

i aiDi, we know that for every i, Di ⇠ biH for some positive

integer bi. Hence, � ⇠ (
P

i aibi)H and the following classical estimate, due

to Kobayashi and Ochiai, immediately implies that
P

i ai  dimX + 1.

Theorem 2.3. [9] Let X be a smooth Fano manifold. Let H be an ample

Cartier divisor on X such that �KX ⇠ lH. Then l  n + 1 and equality

holds if and only if X is isomorphic to Pn
.

3. Shokurov’s conjecture

The above argument is not completely satisfactory from our point of view,

as we have not used at all the fact that (X,�) is log canonical. In fact, the

very same proof that we just explained would work for any divisor � � 0

such that �(KX +�) is nef, without restriction on the singularities of �.

Can we use the extra piece of information on the singularities of (X,�)

to come up with a di↵erent proof that may perhaps provide a strategy to

approach also the case of higher Picard rank?

It turns out that it is actually possible to do that.

Going back to our toy example, let H 0 ⇠ lH, l > 0 b be a very ample

Cartier divisor and let Y = C(X,H 0) be the a�ne cone over the embedding

X ! P(H0(X,H 0)) given by |H 0|. Let us denote by v 2 Y the vertex of

the cone. Using the a�ne cones C(Di, H
0) over the components Di of �,

we also have a natural choice of a divisor � =
P

aiC(Di) passing through

v. By blowing up v, we see immediately that (Y,�) is log canonical at v.

Hence, by using Proposition 2.2 we reprove that
P

ai = dimY = n + 1,

since each component of � is Q-Cartier, as ⇢(X) = 1.
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Modifying this argument a little, it is not hard to see that following state-

ment holds.

Theorem 3.1. [12, Cor. 18.23] Let (X,�),� =
P

i aiDi be a Q-factorial

log canonical pair with ⇢(X) = 1. Assume that �(KX +�) is nef.

Then

P
ai  dimX + 1.

Shokurov, cf. the discussion before Corollary 6.3 on [16, pg 3923], con-

jectured that a similar result should hold in any dimension. For simplicity,

we state in the

Conjecture 3.2 (Shokurov). Let (X,�),� =
P

i aiDi be a Q-factorial log

canonical pair. Assume that �(KX +�) is nef. Then

X

i

ai  dimX + ⇢(X).

Moreover, if equality holds, then X is a toric variety and there exists a choice

of an equivariant torus embedding GdimX
m ⇢ X such that the torus-invariant

divisor D = X \GdimX
m satisfies b�c  D.

It is an easy computation to show that every pair given by a proper

toric variety X and the sum of all torus-invariant divisors with coe�cient 1

satisfies the equality in Shokurov’s conjecture, see [4, §5.1].
It is also not hard to see that, in the conjecture, it is crucial that (X,�)

is log canonical.

Example 3.3. Take X = Fn, the unique P1-bundle over P1 with a curve

E1 of self-intersection �n. Let � = 2E1 +
P

Fi, where F1, . . . , Fn+2 are

n + 2 distinct fibres of the bundle. Then KX +� ⇠ 0 and the sum of the

coe�cients of � is arbitrarily large and negative while ⇢(X) = 2. Note

that if one contracts E1 then the image of � is a boundary, i.e., all the

coe�cients are not greater than 1, and the complexity is c = 1� n.

It is also impossible to relax the assumption on the nefness of �(KX+�).

Example 3.4. With the same notation of Example 3.3, if we replace �

by E1 +
P

Fi in (3.3) then (X,�) is log canonical and �(KX + �) is

pseudo-e↵ective but the sum of the coe�cients is again 1� n.

Unfortunately, the argument we explained above using a�ne cones does

not work when ⇢(X) > 1. Here the obstruction comes from the following

simple remark. When ⇢(X) > 1, using the same notation as above, then the

cone C(D,H 0) over a Q-Cartier prime Weil divisor D on X is Q-Cartier at
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v 2 C(X,H 0) if and only if D ⇠Q �H 0, for a very ample Cartier divisor H 0

on X. Hence, when ⇢(X) > 1, it may not be possible to use Proposition 2.2

to prove the bound on the coe�cients of � as before.

For certain classes of varieties, though, we can still use a similar strategy.

For this purpose, let us recall the notion of Cox ring.

LetX be a projective variety satisfying Pic(X)Q = N1(X)Q. Let L1, . . . , Lr

be a choice of Cartier divisors that provide a Z-basis for Pic(X)Q and whose

a�ne hull contains the pseudoe↵ective cone. Then the Cox ring of X is the

ring M

(a1,...,ar)2Nr

H0(X,OX(a1L1 + · · ·+ arLr)).

The Cox ring of a variety with finitely generated class group, as originally

defined in [7], is unique up to isomorphism but it ignores torsion in the class

group. Subsequently [6] gave a refined definition which takes into account

torsion in the class group. As we would like to allow torsion, in [3] we

actually use the latter definition of the Cox ring.

A normal projective Q-factorial variety X is a Mori dream space if and

only if the Cox ring is finitely generated. While this is not the original def-

inition of Mori dream space given in [7], it is an equivalent characterization

and it is the most useful one for our purpose.

Under the assumptions of Conjecture 3.2, when X is a Mori dream space,

instead of working with a cone we can work with the a�ne variety Y given

by the spectrum of the Cox ring of X. The Cox ring is naturally graded

by the class group, the group of Weil divisors modulo linear equivalence.

This grading corresponds to the action on Y of an algebraic group H, the

spectrum of the group algebra associated to the class group, which is the

product of a Y contains a special point p – analogous to the vertex of the

cone – corresponding to the maximal ideal
M

(a1,...,ar)2(Nr\(0,...,0))

H0(X,OX(a1L1 + · · ·+ arLr))

torus and a finite abelian group. We can recover X as the GIT quotient of

Y by H. In the case when the class group is isomorphic to Z (so that, in

particular, the Picard number is one), Y is a cone andH is a one dimensional

torus, acting in the usual way on the lines of the cone, hence this construction

automatically includes our original toy example. The dimension of Y is equal

to dimX + ⇢(X).
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As in the case of a cone, there is a natural log pair (Y,�) associated to

(X,�), every component of � passing through the point p: in fact, every

Weil divisor D on X corresponds to a Cartier divisor DY on Y , via its

tautological section. Hence if � =
P

aiDi, then � =
P

aiDi,Y .

The pair (Y,�) is log canonical if and only if (X,�) is log canonical

by [2], [5], and [8]. Hence, using Proposition 2.2, it is immediate to see

that for � =
P

i aiDi,
P

i ai  dimY = dimX + ⇢(X). Moreover, ifP
ai > dimY �1, then Y is smooth at p and that implies that the Cox ring

of X is polynomial, since the Cox ring is graded by the class group. Thus,

since a GIT quotient of an a�ne space by a torus action is toric, X is a toric

variety, cf. [7, Cor. 2.10]. Again using Proposition 2.2(2), it is also not hard

to see that there exists a choice of a toric-invariant divisor containing b�c.

4. Main results

In order to prove Conjecture 3.2, we need to introduce a global version of

the local complexity.

Definition 4.1. Let X be a proper variety of dimension n and let (X,�)

be a log pair. A decompositions of � is an expression of the form

kX

i=1

aiSi  �,

where Si � 0 are Z-divisors and ai � 0, 1  i  k. The complexity of this

decomposition is n+ r � d, where r is the rank of the vector space spanned

by S1, . . . , Sk in the space of Weil divisors modulo algebraic equivalence and

d is the sum of a1, . . . , ak.

The complexity c = c(X,�) of (X,�) is the infimum of the complexity of

any decomposition of �.

Using the complexity, we can prove a refined version of Shokurov’s Con-

jecture.

Theorem 4.2. [3] Let X be a proper variety of dimension n and let (X,�)

be a log canonical pair such that �(KX +�) is nef. Then,

(1) the complexity is non-negative;

(2) if the complexity is less than one then the components of � span the

Néron-Severi group;
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(3) if

P
aiSi is a decomposition of complexity c < 1 and there is a divisor

D such that (X,D) is a toric pair, where D � b�c and all but b2cc
components of D are elements of the set {Si | 1  i  k }.

Let us explain the proof of the theorem, at least in the case when X is

projective.

The first step is to replace (X,�) by a divisorially log terminal model

(Y,�). This means that Y is projective, Q-factorial and (Y,�) is divisorially

log terminal. There is a birational contraction map ⇡ : Y ! X and the

only exceptional divisors have log discrepancy zero. Then we can take ⇡ to

be a morphism – by a result of Hacon, see [10, Theorem 3.1] – and since

c(X,�) = c(Y,�) and X is toric if and only if Y is, we may then assume

that X is projective, Q-factorial and (X,�) is divisorially log terminal.

The next step is to proceed assuming that X is a Mori dream space. In

order to use the argument summarized at the end of the previous section,

we just need to show that if c(X,�) < 1 then the components Si of a

decomposition of low discrepancy span the class group of X. This property

is proven by induction on the number of components, using a very nice

construction of Brown involving vector bundles over X, cf. [2, §4]. Once we

know that the Si span the class group of X, then the argument from Section

2 shows that part (1) and (3) of Theorem 4.2 hold true.

To reduce to the case when X is a Mori dream space we have to pass to

a di↵erent model Y such that �(KY + �) is ample for some kawamata log

terminal pair (Y,�). In fact, by [1, Cor. 1.3.2], this condition guarantees that

Y is a Mori dream space. Note that in this case KY +B + � is numerically

trivial, where B = �(KY +�) is ample. So we look for divisors 0  �0  �

and ample divisors A such that KX +A+�0 has numerical dimension zero.

In this case Y is a log terminal model of (X,A + �0). If the numerical

dimension is not zero then there is a non-trivial fibration Y ! Z. Not every

component of � dominates Z, since otherwise the complexity of the general

fibre would be negative and by induction we would obtain a contradiction.

On the other hand, it is not hard to decrease the numerical dimension if

there is a component of D which does not dominate. To finish o↵, we

replace A+�0 by a convex linear combination of A+�0 and M +�, where

M = �(KX+�), and cancel o↵ common components of �0 and exceptional

divisors of f : X 99K Y so that the complexity of (X,A+�0) is close to the

complexity of (X,�) and f does not contract any components of �.
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To terminate the proof of the theorem, we can just show that if Y is toric

then so is X, by opportunely modifying the divisors � and �0.

Toric varieties are special as they are rational. We can further give a

rationality criterion using a slightly di↵erent version of the complexity.

Definition 4.3. Let X be a proper variety of dimension n and let (X,�) be

a log pair. The absolute complexity � = �(X,�) of (X,�) is n+⇢�d, where

⇢ is the rank of the group of Weil divisors modulo algebraic equivalence and

d is the sum of the coe�cients of �.

When X is Q-factorial then ⇢ is nothing but Picard number.

Theorem 4.4. [3] Let X be a proper variety. Suppose that (X,�) is log

canonical and �(KX +�) is nef.

If �(X,�) < 3
2 then there is a proper finite morphism Y ! X of degree

at most two, which is étale outside a closed subset of codimension at least

two, such that Y is rational.

In particular if An�1(X) contains no 2-torsion then X is rational.

Note that most rationality criteria are used to establish irrationality.

There are relatively few criteria to show rationality.

It is easy to see that to prove rationality we need to work with the absolute

complexity rather than with the complexity and that also Theorem 4.2 is

sharp:

Example 4.5. If X = E is an elliptic curve and we consider the pair (X, 0)

thenKX ⇠ 0 and c(X, 0) = 1, but E is not rational. In this case �(X, 0) = 2.

Moreover, when working with a non-algebraically closed field, it is easy

to see that we need to allow an extension of degree two for rationality:

Example 4.6. Consider the conic X given by the equation x2+y2+z2 = 0

in P2
R. It is a smooth conic over R without a real point. Let D be the sum

of two conjugated C-valued closed points. Then D is a divisor defined over

R such that KX +D ⇠ 0 and the absolute complexity �(X,D) (over R) is
one. On the other hand C is irrational but C becomes rational if we replace

R with C.

The condition on torsion in the class group is necessary and we give an

example of this in [3, §7]: we exhibit log canonical pairs (X,�) of abso-

lute complexity one such that X is irrational. The idea is to start with a
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conic bundle of relative Picard number two over P1 ⇥ P1 and take a Z/2Z-
quotient to achieve relative Picard number one. The key observation is that

the discriminant curve, the locus of reducible fibres, makes no contribution

in Kawamata’s canonical bundle formula. Thus we can arrange for the dis-

criminant curve to have arbitrarily large genus, in which case X is irrational

by a result of Shokurov, [15]. In [14], Okada has shown that 3
2 is a sharp

bound for the absolute complexity in the theorem.

As for the proof of Theorem 4.4, the first part of the argument in the

sketch of the proof of Theorem 4.2 applies unchanged to show that we can

reduce to the case that X is a Mori dream space. Performing the construc-

tion carried out at the end of the Section 2 and applying Proposition 2.2(3)

we can prove that the Cox ring of X is of the form

k[x1, . . . , xn]/(f)

where f is a polynomial whose quadratic part has rank two.

The action of H on Y , the spectrum of the Cox ring of X, extends to An.

Hence, via the GIT quotient of Y by the action of H, X is birational to

the image of Y which is a hypersurface in a toric variety. If, after possibly

reordering the variables, x1x2 is a monomial with non-zero coe�cient in f ,

then there is a one dimensional torus whose general orbit intersects X in a

single point. Thus X is birational to an invariant divisor and X is rational.

Otherwise after rescaling we may assume that the quadratic part of f has

the form x21+X2
2 . If x and y have the same multidegree then we may change

variable and reduce to the previous case. Otherwise there must be torsion

in the class group and there is a cover Z ! X of degree two.
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