
Relative cohomology for the sections

of a complex of fine sheaves

Tatsuo Suwa∗

This is a summary of an article in preparation under the same title. In the Kinosaki
AG Symposium 2017, I talked about relative Dolbeault cohomology and its application
to the Sato hyperfunction theory, whose contents can be seen in [10], [18] and [19]. The
idea is to represent the relative cohomology with coefficients in the sheaf of holomorphic
forms by the relative Dolbeault cohomology, which enables us to express the relative
cohomology in a simple explicit way. In this article we introduce a general theory of
Čech cohomology for a complex of fine sheaves, which naturally leads to the notion of
the relative cohomology of the associated complex of sections. In the case the complex
gives a resolution of a certain sheaf, the relative cohomology of sections of the complex is
canonically isomorphic with the relative cohomology of the sheaf.

I would like to thank N. Honda for stimulating discussions while working on this
and related subjects. Thanks are also due to T. Fujisawa and T. Terasoma for usuful
conversations during the symposium.

1 Introduction

Let S be a sheaf of Abelian groups on a topological space X. For an open set X ′ in X, the
relative cohomology Hq(X,X ′;S ) is defined, taking a flabby resolution 0 → S → F •,
as the cohomology of the complex F •(X,X ′) of sections that vanish on X ′. Theoretically
it works well as the flabbiness implies the exactness of the sequence

0 −→ F •(X,X ′)
j∗−→ F •(X)

i∗−→ F •(X ′) −→ 0. (1.1)

In practice we would like to have a concrete way of representing the cohomology. One
possibility is to use the relative Čech cohomology, however this can be rather complicated.
In this paper we present a systematical way of representing the cohomology using fine
resolutions. Traditionally this has been done successfully in the absolute case where
X ′ = ∅, as culminated in the de Rham and Dolbeault theorems. In the relative case, a
fine resolution is not directly applicable, as the morphism i∗ in (1.1) fails to be surjective.
However it is possible to remedy the situation by incorporating the Čech philosophy.

In general let K • be a complex of fine sheaves on X. Letting V0 = X ′ and V1 a
neighborhood of X∖X ′, consider the coverings V = {V0, V1} and V ′ = {V0} of X and X ′.
We replace K •(X) by the complex K •(V) of triples ξ = (ξ0, ξ1, ξ01) with ξ0, ξ1 and ξ01
sections of K • on V0, V1 and V01 = V0 ∩ V1, respectively, the differential being defined
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in an appropriate manner. The morphism i∗ corresponds to the assignment ξ 7→ ξ0 and
K •(X,X ′) is replaced by the subcomplex K •(V ,V ′) of triples ξ with ξ0 = 0 so that a
cochain is a pair (ξ1, ξ01). Then we have the exact sequence (cf. (5.2) below)

0 −→ K •(V ,V ′)
j∗−→ K •(V) i∗−→ K •(X ′) −→ 0.

It is shown that the cohomology of K •(V ,V ′) is determined uniquely modulo canonical
isomorphisms, independently of the choice of V1. It is denoted by Hq

DK
(X,X ′) and called

the relative cohomology of the sections of K •. In the case K • gives a resolution of a
sheaf S , Hq

DK
(X,X ′) is canonically isomorphic with Hq(X,X ′;S ) (Theorem 5.7). We

also note that the relative cohomology Hq
DK

(X,X ′) goes well with derived functors (cf.
Section 6).

We present the theory so that the isomorphisms are canonical and the correspondences
in them are trackable.

2 Cohomology of a complex of sheaves

In the sequel, by a sheaf we mean a sheaf with at least the structure of Abelian groups.
For a sheaf S on a topological space X and an open set V in X, we denote by S (V ) the
group of sections of S on V . Also, for an open subset V ′ of V , we denote by S (V, V ′)
the subgroup of S (V ) consisting of sections that vanish on V ′.

A complex K of sheaves is a collection (K q, dqK )q∈Z, where K q is a sheaf on X and
dqK : K q → K q+1 a morphism, called a differential, with dq+1

K ◦ dqK = 0. We omit the
subscript or superscript on d if there is no fear of confusion. The complex is also denoted
by (K •, d) or K •. We only consider the case K q = 0 for q < 0. We say that K is a
resolution of S if there is a morphism ι : S → K 0 such that the following sequence is
exact :

0 −→ S
ι−→ K 0 d−→ · · · d−→ K q d−→ · · · .

2.1 Cohomology via flabby resolutions

As reference cohomology theory, we adopt the one via flabby resolutions (cf. [5],[13]).
Recall that a sheaf F is flabby if the restriction F (X)→ F (V ) is surjective for any open
set V in X.

Let S be a sheaf on X. We may use any flabby resolution of S to define the
cohomology of S , however we take the Godement resolution, to fix the idea :

0 −→ S −→ C 0(S )
d−→ · · · d−→ C q(S )

d−→ · · · .

The q-th cohomology Hq(X;S ) of X with coefficients in S is the q-th cohomology of
the complex (C •(S )(X), d).

More generally, let X ′ be an open set in X. We denote by Hq(X,X ′;S ) the coho-
mology of (C •(S )(X,X ′), d). Note that Hq(X, ∅;S ) = Hq(X;S ). Setting S = X∖X ′,
it will also be denoted by Hq

S(X;S ). This cohomology in the first expression is referred
to as the relative cohomology of S on (X,X ′) (cf. [14]) and in the second expression the
local cohomology of S on X with support in S (cf. [8]).

2

114



Remark 2.1 The cohomology Hq(X,X ′;S ) is determined uniquely modulo canonical
isomorphisms, independently of the flabby resolution. Although this fact is well-known, we
indicate an outline below in order to make the correspondence explicit (cf. Corollary 2.5).

2.2 Cohomology of a complex of sheaves

Let K = (K q, dK ) be a complex of sheaves on a topological space X. For each q, we take
the Godement resolution 0 → K q → C •(K q) whose differential is denoted by δG. The
differential dK : K q → K q+1 induces a morphism of complexes C •(K q) → C •(K q+1),
which is also denoted by dK . Thus we have the double complex (C •(K •), δG, (−1)•dK ).
We consider the associated single complex (C (K )•, DG

K ), where

C (K )q =
⊕

q1+q2=q

C q1(K q2), DG
K = δG + (−1)q1dK .

Then there is an exact sequence 0→ K • → C (K )• of complexes.

Definition 2.2 Let X ′ be an open set in X. The cohomology Hq(X,X ′;K •) of K • on
(X,X ′) is the cohomology of (C (K )•(X,X ′), DG

K ).

If X ′ = ∅, we denote Hq(X,X ′;K •) by Hq(X;K •). We have H0(X,X ′;K •) =
S (X,X ′), where S is the kernel of d : K 0 → K 1.

In the above situation, we have a complex (K •(X,X ′), dK ), whose cohomology is
denoted by Hq

dK
(X,X ′). Let H q(K •) denote the q-th cohomology sheaf of the com-

plex K •. Considering the two spectral sequences associated with the double complex
C •(K •)(X,X ′), we have :

Proposition 2.3 1. Suppose Hq2(X,X ′;K q1) = 0 for q1 ≥ 0 and q2 ≥ 1. Then the
inclusion K q(X,X ′) ↪→ C 0(K q)(X,X ′) ⊂ C (K )q(X,X ′) induces an isomorphism

Hq
dK

(X,X ′)
∼−→ Hq(X,X ′;K •).

2. Suppose H q2(K •)) = 0 for q2 ≥ 1. Let S denote the kernel of d : K 0 → K 1.
Then the inclusion C q(S )(X,X ′) ↪→ C q(K 0)(X,X ′) ⊂ C (K )q(X,X ′) induces an iso-
morphism

Hq(X,X ′;S )
∼−→ Hq(X,X ′;K •).

In particular, the hypothesis of Proposition 2.3. 2 is satisfied if 0 → S → K • is a
resolution of S . Thus we have :

Theorem 2.4 For a resolution 0 → S → K • with Hq2(X,X ′;K q1) = 0, for q1 ≥ 0
and q2 ≥ 1, there is a canonical isomorphism :

Hq
dK

(X,X ′) ≃ Hq(X,X ′;S ).

Corollary 2.5 For any flabby resolution 0 → S → F •, there is a canonical isomor-
phism :

Hq
dF

(X,X ′) ≃ Hq(X,X ′;S ).
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Remark 2.6 1. The cohomology Hq(X,X ′;K •) in Definition 2.2 is sometimes referred
to as the hypercohomology of K •.

2. We may explicitly describe the correspondence in each of the above isomorphisms.
For example, in Theorem 2.4 we think of a cocycle s in K q(X,X ′) and a cocycle γ in
C q(S )(X,X ′) as being cocycles in C (K )q(X,X ′). The classes [s] and [γ] correspond in
the above isomorphism, if and only if s and γ define the same class in Hq(X,X ′;K •),
i.e., there exists a (q − 1)-cochain χ in C (K )q−1(X,X ′) such that

s− γ = DG
K χ,

see the remark after Theorem 3.4 and Remark 3.8 below.

3 Čech cohomology of a complex of sheaves

3.1 Čech cohomology of a sheaf

We briefly recall the usual Čech theory in order to fix the notation and conventions.
Let W = {Wα}α∈I be an open covering of X. We set Wα0...αq = Wα0 ∩ · · · ∩Wαq and

consider the direct product

Cq(W ;S ) =
∏

(α0,...,αq)∈Iq+1

S (Wα0...αq).

The q-th Čech cohomology Hq(W ;S ) of S onW is the q-th cohomology of the complex
(C•(W ;S ), δ) with δ : Cq(W ;S )→ Cq+1(W ;S ) defined by

(δσ)α0...αq+1 =

q+1∑
ν=0

(−1)νσα0...α̂ν ...αq+1 .

Let X ′ be an open set in X. Let W = {Wα}α∈I be a covering of X such that
W ′ = {Wα}α∈I′ is a covering of X ′ for some I ′ ⊂ I. We set

Cq(W ,W ′;S ) = {σ ∈ Cq(W ;S ) | σα0...αq = 0 if α0, . . . , αq ∈ I ′ }

The operator δ restricts to Cq(W ,W ′;S ) → Cq+1(W ,W ′;S ). The q-th Čech cohomol-
ogy Hq(W ,W ′;S ) of S on (W ,W ′) is the q-th cohomology of (C•(W ,W ′;S ), δ).

3.2 Čech cohomology of a complex of sheaves

Let (K •, dK ) be a complex of sheaves on a topological space X and W = {Wα}α∈I an
open covering of X. Also let X ′ be an open set in X and W ′ a subcovering of W as
before. Then we have a double complex (C•(W ,W ′;K •), δ, (−1)•dK ). We consider the
associated single complex (K •(W ,W ′), DK ). Thus

K q(W ,W ′) =
⊕

q1+q2=q

Cq1(W ,W ′;K q2), DK = δ + (−1)q1dK .
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Definition 3.1 The Čech cohomology Hq(W ,W ′;K •) of K • on (W ,W ′) is the coho-
mology of (K •(W ,W ′), DK ).

It will also be denoted by Hq
DK

(W ,W). In the case X ′ = ∅, we take ∅ as I ′ and denote
Hq(W ,W ′;K •) by Hq(W ;K •) or by Hq

DK
(W).

We have H0
DK

(W ,W ′) = S (X,X ′), where S is the kernel of dK : K 0 → K 1.
For a triple (W ,W ′,W ′′), we have the exact sequence

0 −→ K •(W ,W ′) −→ K •(W ,W ′′) −→ K •(W ′,W ′′) −→ 0

yielding an exact sequence

· · · −→ Hq−1
DK

(W ′,W ′′)
δ∗−→ Hq

DK
(W ,W ′)

j∗−→ Hq
DK

(W ,W ′′)
i∗−→ Hq

DK
(W ′,W ′′) −→ · · · .

(3.2)

Considering the two spectral sequences associated with C•(W ,W ′;K •), we have :

Proposition 3.3 1. Suppose Hq2(W ,W ′;K q1) = 0 for q1 ≥ 0 and q2 ≥ 1. Then the
inclusion K q(X,X ′) ↪→ C0(W ,W ′;K q) ⊂ K q(W ,W ′) induces an isomorphism

Hq
dK

(X,X ′)
∼−→ Hq

DK
(W ,W ′).

2. Suppose Hq2(K •(Wα0...αq1
)) = 0 for q1 ≥ 0 and q2 ≥ 1. Let S denote the kernel of

dK : K 0 → K 1. Then the inclusion Cq(W ,W ′;S ) ↪→ Cq(W ,W ′;K 0) ⊂ K q(W ,W ′)
induces an isomorphism

Hq(W ,W ′;S )
∼−→ Hq

DK
(W ,W ′).

From Proposition 3.3 we have :

Theorem 3.4 Let (K •, dK ) be a complex of sheaves on X and let S be the kernel of
dK : K 0 → K 1. Suppose Hq2(W ,W ′;K q1) = 0 and Hq2(K •(Wα0...αq1

)) = 0, for q1 ≥ 0
and q2 ≥ 1. Then there is a canonical isomorphism :

Hq
dK

(X,X ′) ≃ Hq(W ,W ′;S ).

In the above, we think of a cocycle s in K q(X,X ′) and a cocycle σ in Cq(W ,W ′;S )
as cocycles in K q(W ,W ′). The classes [s] and [σ] correspond in the above isomorphism, if
and only if s and σ define the same class inHq

DK
(W ,W ′), i.e., there exists a (q−1)-cochain

χ in K q−1(W ,W ′) such that
s− σ = Dχ.

The above correspondence may be illustrated in the following diagram. For simplicity,
we consider the absolute case (W ′ = ∅), the relative case being similar.
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K 0(X) d0 //
_�

��

K 1(X) d1 //
_�

��

· · · dq−1
//

s∈

K q(X) dq //
_�

��

· · ·

C0(W ;S ) �
�

//

δ0
��

C0(W ;K 0) d0 //

δ0
��

C0(W ;K 1) d1 //

δ0
��

· · · d
q−1

// C0(W ;K q) //dq //

δ0
��

· · ·

C1(W ;S ) �
�

//

δ1
��

C1(W ;K 0)
−d0 //

δ1
��

C1(W ;K 1)
−d1 //

δ1
��

· · ·−dq−1
// C1(W ;K q)

−dq //

δ1
��

· · ·

...

δq−1

��

...

δq−1

��

...

δq−1

��

...

σ ∈ Cq(W ;S ) �
�

//

δq
��

Cq(W ;K 0)
(−1)qd0

//

δq
��

Cq(W ;K 1)
(−1)qd1

//

δq
��

· · ·

...
...

... .
(3.5)

If we let K • = C •(S ), the Godement resolution of S , in Theorem 3.4, noting that
Hq2(C •(S )(Wα0...αq1

)) = Hq2(Wα0...αq1
,S ) we have :

Corollary 3.6 (Relative Leray theorem) If Hq2(Wα0...αq1
,S ) = 0 for q1 ≥ 0 and

q2 ≥ 1, there is a canonical isomorphism

Hq(X,X ′;S ) ≃ Hq(W ,W ′;S ).

Remark 3.7 We may use only “alternating cochains” in the above construction and the
resulting cohomology is canonically isomorphic with the one defined above, as in the usual
Čech theory.

Some special cases : I. In the caseW = {X}, we have (K •(W), DK ) = (K •(X), dK )
so that

Hq
DK

(W) = Hq
dK

(X).

II. In the case W consists of two open sets W0 and W1, we may write (cf. Remark 3.7)

K q(W) = C0(W ,K q)⊕ C1(W ,K q−1) = K q(W0)⊕K q(W1)⊕K q−1(W01).

Thus a cochain ξ ∈ K q(W) is expressed as a triple ξ = (ξ0, ξ1, ξ01) and the differential

D : K q(W)→ K q+1(W) is given by D(ξ0, ξ1, ξ01) = (dξ0, dξ1, ξ1 − ξ0 − dξ01).

If W ′ = {W0},

K q(W ,W ′) = { ξ ∈ K q(W) | ξ0 = 0 } = K q(W1)⊕K q−1(W01).

Thus a cochain ξ ∈ K q(W ,W ′) is expressed as a pair ξ = (ξ1, ξ01) and the differential

D : K q(W ,W ′)→ K q+1(W ,W ′) is given by D(ξ1, ξ01) = (dξ1, ξ1 − dξ01).
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The q-th cohomology of (K •(W ,W ′), D) is Hq
DK

(W ,W ′).

If we set W ′′ = ∅, then Hq−1
DK

(W ′,W ′′) = Hq−1
DK

(W ′) = Hq−1
dK

(W0) and the connecting
morphism δ∗ in (3.2) assigns to the class of a (q−1)-cocycle ξ0 on W0 the class of (0,−ξ0)
(restricted to W1) in Hq

DK
(W ,W ′).

We discuss this case more in detail in the subsequent sections.

Remark 3.8 It is possible to establish an isomorphism as in Theorem 3.4 without in-
troducing the Čech cohomology of a complex of sheaves, using the so-called Weil lemma
instead (cf. [11, Lemma 5.2.7]). The latter amounts to performing the “ladder diagram
chasing” in (3.5) with all the horizontal differentials with positive sign to find a corre-
spondence. However this correspondence is different from the one in Theorem 3.4, the

difference being the sign of (−1)
q(q+1)

2 .
Similar remarks as above apply to the isomorphism of Theorem 2.4, with K •(W ,W ′)

replaced by C (K )•(X,X ′).

4 Čech cohomology of a complex of fine sheaves

In this section we let X be a paracompact topological space and consider only locally
finite coverings.

Recall that if F is a fine sheaf on X, then Hq(X;F ) = 0 for q ≥ 1. Thus we see that
Hq(X,X ′;F ) = 0 for q ≥ 2. However H1(X,X ′;F ) ̸= 0 in general. In fact we have the
exact sequence

0 −→ F (X,X ′)
j∗−→ F (X)

i∗−→ F (X ′)
δ∗−→ H1(X,X ′;F ) −→ 0

and H1(X,X ′;F ) is the obstruction to i∗ being surjective.
We present various canonical isomorphisms that follow from the arguments in the

previous sections.
First from Theorem 2.4 with X ′ = ∅, we have :

Theorem 4.1 (de Rham type theorem) For a fine resolution 0 → S → K • of S ,
there is a canonical isomorphism :

Hq
dK

(X) ≃ Hq(X;S ).

Let K • be a complex of fine sheaves.

Definition 4.2 We say that a coveringW = {Wα} of X is good for K • if the hypothesis
of Proposition 3.3. 2 holds, i.e., Hq2(K •(Wα0...αq1

)) = 0 for q1 ≥ 0 and q2 ≥ 1.

Let S be the kernel of dK : K 0 → K 1.

Theorem 4.3 We have the following canonical isomorphisms :

1. For any covering W,
Hq

dK
(X)

∼−→ Hq
DK

(W).

2. For a good covering W for K •,

Hq
DK

(W ,W ′)
∼←− Hq(W ,W ′;S ).
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3. If W is good for K • and if 0→ S → K • is a resolution,

Hq(W ,W ′;S ) ≃ Hq(X,X ′;S ).

In the subsequent section, we introduce the missing piece, i.e., a relative version of the
cohomology Hq

dK
(X) which is canonically isomorphic with Hq(X,X ′;S ).

We finish this section by considering the following special case.

Case of coverings with two open sets : In the case W = {W0,W1},

K q(W) = K q(W0)⊕K q(W1)⊕K q−1(W01).

and the inclusion K q(X) ↪→ C0(W ;K q) ⊂ K q(W) is given by s 7→ (s|W0 , s|W1 , 0). It
induces the isomorphism in Theorem 4.3. 1 ; Hq

dK
(X)

∼→ Hq
DK

(W).

Proposition 4.4 The inverse of the above isomorphism is given by assigning to the class
of ξ = (ξ0, ξ1, ξ01) the class of s given by ξ0 + d(ρ1ξ01) on W0 and by ξ1 − d(ρ0ξ01) on W1.

Note that the two sections above coincide on W01 by the cocycle condition.

5 Relative cohomology for the sections of a complex

Let K • be a complex of fine sheaves on a paracompact space X and X ′ an open set
in X. Letting V0 = X ′ and V1 a neighborhood of the closed set S = X∖X ′, consider
the coverings V = {V0, V1} and V ′ = {V0} of X and X ′. We consider the cohomology
Hq

DK
(V ,V ′), which is the cohomology of the complex (K •(V ,V ′), DK ), where

K q(V ,V ′) = K q(V1)⊕K q−1(V01), V01 = V0 ∩ V1, (5.1)

and D : K q(V ,V ′)→ K q+1(V ,V ′) is given by D(ξ1, ξ01) = (dξ1, ξ1 − dξ01). Noting that
K q({V0}) = K q(X ′), we have the exact sequence

0 −→ K •(V ,V ′)
j∗−→ K •(V) i∗−→ K •(X ′) −→ 0, (5.2)

where i∗ assigns ξ0 to ξ = (ξ0, ξ1, ξ01). This gives rise to the exact sequence (cf. (3.2))

· · · −→ Hq−1
dK

(X ′)
δ∗−→ Hq

DK
(V ,V ′)

j∗−→ Hq
DK

(V) i∗−→ Hq
dK

(X ′) −→ · · · . (5.3)

By Theorem 4.3. 1, we have a canonical isomorphism Hq
DK

(V) ≃ Hq
dK

(X). In the
above, δ∗ assigns to the class of θ the class of (0,−θ), j∗ assigns to the class of (ξ1, ξ01)
the class of (0, ξ1, ξ01) or the class of ξ1 − d(ρ0ξ01) (cf. Proposition 4.4). From (5.3), we
have :

Proposition 5.4 The cohomology Hq
DK

(V ,V ′) is uniquely determined modulo canonical
isomorphisms, independently of the choice of V1.

In view of the above proposition, we introduce the following :
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Definition 5.5 We denote Hq
DK

(V ,V ′) by Hq
DK

(X,X ′) and call it the relative cohomol-
ogy for the sections of K • on (X,X ′).

In the case X ′ = ∅, it coincides with Hq
dK

(X).

Proposition 5.6 (Excision) Let S be a closed set in X. Then, for any open set V in
X containing S, there is a canonical isomorphism

Hq
DK

(X,X∖S)
∼−→ Hq

DK
(V, V ∖S).

In the case K • gives a resolution of a sheaf S , the cohomology Hq
DK

(X,X ′) shares
all the properties with the relative cohomology Hq(X,X ′;S ). In fact we have :

Theorem 5.7 (Relative de Rham type theorem) Suppose 0 → S → K • is a fine
resolution. Then there is a canonical isomorphism :

Hq
DK

(X,X ′) ≃ Hq(X,X ′;S ).

6 Relation with derived functors

After a brief review of basics on complexes, we introduce the notion of co-mapping cone.
We then see that the complex introduced in Section 5 is given as a co-mapping cone, which
leads to a statement of the isomorphism of Theorem 5.7 in terms of derived functors.

For derived categories and functors we refer to [12] and the literatures therein.

6.1 Category of complexes

Let C be an additive category. A complex K in C is a collection (Kq, dqK)q∈Z, where K
q is

an object in C and dqK : Kq → Kq+1 is a morphism with dq+1 ◦ dq = 0. Let C(C) denote
the additive category of complexes in C, where a morphism f : K → L is a collection
(f q) of morphisms f q : Kq → Lq such that dqL ◦ f q = f q+1 ◦ dqK . For a complex K and
an integer k, we denote by K[k] the complex with K[k]q = Kk+q and dqK[k] = (−1)kdk+q

K .

Considering an object K in C as the complex given by K0 = K, Kq = 0 for q ̸= 0 and
dq = 0, we may think of C as a subcategory of C(C). Identifying two morphisms in C(C)
that are “homotopic”, we have an additive category K(C).

Suppose C is an Abelian category. For a complex K in C, its q-th cohomology is
defined by

Hq(K) = Ker dqK/ Im dq−1
K .

Then it induces additive functors Hq : C(C)→ C and Hq : K(C)→ C.

Proposition 6.1 Let 0 → J
e→ K

f→ L → 0 be an exact sequence in C(C). Then there
exists an exact sequence

· · · −→ Hq(J)
e−→ Hq(K)

f−→ Hq(L)
δ−→ Hq+1(J) −→ · · · ,

where, e and f denotes Hq(e) and Hq(f), respectively, and δ assigns to the class of c ∈ Lq,
d(c) = 0, the class of a ∈ Jq+1 such that e(a) = d(b) for some b ∈ Kq with f(b) = c.
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6.2 Co-mapping cone

Let C be an additive category. For a morphism f : K → L of C(C), we define a complex
M∗(f) called the co-mapping cone of f . We set

M∗(f)q = Kq ⊕ Lq−1

and define the differential d : M∗(f)q = Kq ⊕ Lq−1 →M∗(f)q+1 = Kq+1 ⊕ Lq by

d(x, y) = (dx, fx− dy).

We define morphisms α∗ = α∗(f) : M∗(f)→ K and β∗ = β∗(f) : L[−1]→M∗(f) by

α∗ : M∗(f)q = Kq ⊕ Lq−1 −→ Kq, (x, y) 7→ x

β∗ : L[−1]q = Lq−1 −→M∗(f)q = Kq ⊕ Lq−1, y 7→ (0,−y).

Then we have a sequence of morphisms

L[−1] β∗
−→M∗(f)

α∗
−→ K

f−→ L.

We have α∗ ◦ β∗ = 0 in C(C). Moreover, we may prove that β∗ ◦ f [−1] and f ◦ α∗ are
homotopic to 0 so that β∗ ◦ f [−1]=0 and f ◦ α∗ = 0 in K(C).

A co-triangle in K(C) is a sequence of morphisms

L[−1] −→ J −→ K −→ L.

The co-triangle is distinguished if it is isomorphic to

L′[−1] β∗
−→M∗(f)

α∗
−→ K ′ f−→ L′

for some f in C(C).

Proposition 6.2 Let C be an Abelian category. Then, for any distinguished cotriangle
L[−1]→ J → K → L in K(C), there is an exact sequence

· · · −→ Hq−1(L) −→ Hq(J) −→ Hq(K) −→ Hq(L) −→ · · · .

Remark 6.3 The co-mapping cone defined above is dual to the mapping cone as defined
in [12] in the following sense. Namely, while the mapping cone is a notion extracted from
the complex of singular chains of the mapping cone of a continuous map of topological
spaces, the co-mapping cone is the one corresponding to the complex of singular cochains.
In this context, we may also think of a cotriangle as a notion dual to a triangle.

6.3 Derived categories and derived functors

Let C be an Abelian category. A morphism f : K → L in K(C) is a quasi-isomorphism,
qis for short, if the induced morphism Hq(K) → Hq(L) is an isomorphism for all q.
The derived category D(C) is the category obtained from K(C) by regarding a qis as an
isomorphism. We have the functors

[k] : D(C) −→ D(C) and Hq : D(C) −→ C.
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Proposition 6.4 Let C be an Abelian category and

0 −→ J
e−→ K

f−→ L −→ 0 (6.5)

an exact sequence in C(C). Let M∗(f) be the co-mapping cone of f and let

φq : Jq −→M∗(f)q = Kq ⊕ Lq−1 be defined by z 7→ (e(z), 0).

Then the following diagram is commutative and φ is a qis :

0 // J
e //

φ≀
��

K
f

// L // 0

L[−1] β∗(f)
// M∗(f).

α∗(f)

;;wwwwwwwww

In the above situation, the distinguished cotriangle

L[−1] h−→ J −→ K −→ L

is called the distinguished cotriangle associated with (6.5), where h = β∗(f) ◦ φ−1. The
above distinguished cotriangle gives rise to a long exact sequence (cf. Proposition 6.2)

· · · −→ Hn−1(L)
Hn(h)−→ Hn(J) −→ Hn(K) −→ Hn(L) −→ · · ·

and Hn(h) = δ, δ being defined in Proposition 6.1.

For an Abelian category C, we donote by D+(C) the full subcategory of D(C) consisting
of complexes bounded below.

Let F : C → C ′ be a left exact functor of Abelian categories. If there exists an
“F -injective” subcategory I, we may define the right derived functor

RF : D+(C) −→ D+(C ′) by RF (K) = F (I), K
∼−→
qis

I.

We define a functor RqF : C → C ′ as the composition

C −→ D+(C) RF−→ D+(C ′) Hq

−→ C ′, i.e., RqF (K) = Hq(RF (K)) = Hq(F (I)).

Cohomology of sheaves : For a topological spaceX, we denote by Sh(X) the category
of sheaves of Abelian groups on X. We also denote by A the category of Abelian groups.
For an open set X ′ in X, we have the functor

Γ (X,X ′; ) : Sh(X) −→ A

defined by Γ (X,X ′;S ) = S (X,X ′). The subcategory of flabby sheaves is injective for
this functor. For S in Sh(X),

RΓ (X,X ′;S ) = Γ (X,X ′;F •) and

RqΓ (X,X ′;S ) = Hq(Γ (X,X ′;F •)) ≃ Hq(X,X ′;S ),

where S
∼−→
qis

F • is a flabby resolution.
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6.4 Relative cohomology for sections as a co-mapping cone

Let f : Y → X be a continuous map of topological spaces and K = (K •, dK ) a complex
of sheaves on X. Then we have the complex of sheaves (f−1K •, f−1dK ) on Y . We define
a complex K (f) as the co-mapping coneM∗(f−1) of f−1 : K •(X)→ (f−1K •)(Y ). Thus

K q(f) = K q(X)⊕ (f−1K q−1)(Y )

and the differential d = dK : K q(f)→ K q+1(f) is given by

d(s, t) = (ds, f−1s− (f−1d)t).

Definition 6.6 The q-th cohomology Hq
dK

(f) of f for K is the q-th cohomology of
(K •(f), dK ).

We have the exact sequence (cf. the proof of Proposition 6.2)

0 −→ K •(Y )[−1] β∗
−→ K •(f)

α∗
−→ K •(X) −→ 0,

where β∗(t) = (0,−t) and α∗(s, t) = s. From this we have the exact sequence

· · · −→ Hq−1
f−1dK

(Y )
β∗
−→ Hq

dK
(f)

α∗
−→ Hq

dK
(X)

δ∗−→ Hq
f−1dK

(Y ) −→ · · · ,

where δ∗ = f−1.

Remark 6.7 A similar construction is done in [3] for the de Rham complex, except the
morphism β∗, which is denoted by α there, is defined as t 7→ (0, t).

Suppose X is paracompact and K • is a complex of fine sheaves on X. In the above,
let Y = X ′ be an open set in X and f = i : X ′ ↪→ X the inclusion. Then setting
V = {V0, V1}, V ′ = {V0}, V0 = X ′ and V1 = X, we have (cf. (5.1)) :

K •(i) = K •(V ,V ′) and Hq
dK

(i) = Hq
DK

(X,X ′). (6.8)

For a sheaf S on X and an open set X ′ in X, we have an exact sequence

0 −→ RΓ (X,X ′;S ) −→ RΓ (X;S ) −→ RΓ (X ′;S ) −→ 0.

Suppose 0 → S → K • is a fine resolution. Then by Theorem 4.1, RΓ (X;S ) and
RΓ (X ′;S ) are quasi-isomorphic with Γ (X;K •) and Γ (X ′;K •), respectively. By Propo-
sition 6.4 and (6.8), we have :

Theorem 6.9 In the above situation, it holds that

RΓ (X,X ′;S ) ≃
qis

K •(V ,V ′) and Hq(X,X ′;S ) ≃ Hq
DK

(X,X ′).

Remark 6.10 This way we recover an isomorphism as in Theorem 5.7 without referring
to coverings of X. However, to find out the actual correspondence, we need to go through
the Čech theory.
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7 Some particular cases

The manifolds we consider below are assumed to have countable basis, thus paracompact.
Also the coverings are assumed to be locally finite.

I. de Rham complex
Let X be a C∞ manifold of dimension m and E (q) the sheaf of C∞ q-forms on X. By

the Poincaré lemma, we have a fine resolution of the constant sheaf C :

0 −→ C −→ E (0) d−→ E (1) d−→ · · · d−→ E (m) −→ 0.

The de Rham cohomology Hq
d(X) of X is the cohomology of (E (•)(X), d). By Theo-

rem 4.1, there is a canonical isomorphism (de Rham theorem) :

Hq
d(X) ≃ Hq(X;C). (7.1)

Let X ′ be an open set in X and (W ,W ′) a pair of coverings for (X,X ′). The Čech-
de Rham cohomology Hq

D(W ,W ′) on (W ,W ′) is the cohomology of (E (•)(W ,W ′), D),
D = δ + (−1)•d (cf. Definition 3.1).

We say that W is good if every non-empty finite intersection Wα0...αq is diffeomorphic
with Rm. IfW is good, then it is good for E (•). From Theorem 4.3, we have the following
canonical isomorphisms :

(1) For any covering W , Hq
d(X)

∼→ Hq
D(W).

(2) For a good covering W ,

Hq
D(W ,W ′)

∼←− Hq(W ,W ′;C) ≃ Hq(X,X ′;C).

Note that X always admits a good covering and the good coverings are cofinal in the
set of coverings.

The relative de Rham cohomology Hq
D(X,X ′) is defined as in Section 5 and, from

Theorem 5.7, we have :

Theorem 7.2 (Relative de Rham theorem) There is a canonical isomorphism

Hq
D(X,X ′) ≃ Hq(X,X ′;C).

For more about Čech-de Rham cohomology and applications, we refer to [3], [15] and
[16] and references therein.

II. Dolbeault complex
Let X be a complex manifold of dimension n and E (p,q) the sheaf of C∞ (p, q)-forms

on X. By the Dolbeault-Grothendieck lemma, we have a fine resolution of the sheaf O(p)

of holomorphic p-forms :

0 −→ O(p) −→ E (p,0) ∂̄−→ E (p,1) ∂̄−→ · · · ∂̄−→ E (p,n) −→ 0.
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The Dolbeault cohomologyHp,q

∂̄
(X) ofX is the cohomology of the complex (E (p,•)(X), ∂̄).

By Theorem 4.1, there is a canonical isomorphism (Dolbeault theorem) :

Hp,q

∂̄
(X) ≃ Hq(X;O(p)). (7.3)

Let (W ,W ′) be as above. The Čech-Dolbeault cohomology Hp,q

ϑ̄
(W ,W ′) on (W ,W ′) is

the cohomology of (E (p,•)(W ,W ′), ϑ̄), ϑ̄ = δ + (−1)•∂̄ (cf. Definition 3.1).
We say thatW is Stein if every non-empty finite intersection Wα0...αq is biholomorphic

with a domain of holomorphy in Cn (cf. [6]). If W is Stein, then it is good for E (p,•).
From Theorem 4.3, we have the following canonical isomorphisms :

(1) For any covering W , Hp,q

∂̄
(X)

∼→ Hp,q

ϑ̄
(W).

(2) For a Stein covering W ,

Hp,q

ϑ̄
(W ,W ′)

∼←− Hq(W ,W ′;O(p)) ≃ Hq(X,X ′;O(p)).

Note that X always admits a Stein covering and the Stein coverings are cofinal in the
set of coverings.

The relative Dolbeault cohomology Hp,q

ϑ̄
(X,X ′) is defined as in Section 5 and, from

Theorem 5.7, we have :

Theorem 7.4 (Relative Dolbeault theorem) There is a canonical isomorphism

Hp,q

ϑ̄
(X,X ′) ≃ Hq(X,X ′;O(p)).

For more about Čech-Dolbeault cohomology we refer to [17] and [18]. Applications
are given in [1] for localization of Atiyah classes, [2] for the Hodge decomposition problem
and [10] for the Sato hyperfunction theory.

Remark 7.5 The seemingly standard proof in textbooks, e.g., [7], [9], of the isomorphism
as in Theorem 4.1 (thus (7.1) and (7.3)) gives a correspondence same as the one given by
the Weil lemma. Thus there is a sign difference as explained in Remark 3.8.

III. Mixed complex
Let X be a complex manifold. We set

E (p,q)+1 = E (p+1,q) ⊕ E (p,q+1)

and consider the complex

· · · d−→ E (p−2,q−2)+1 ∂̄+∂−→ E (p−1,q−1) ∂̄∂−→ E (p,q) d−→ E (p,q)+1 ∂̄+∂−→ E (p+1,q+1) ∂̄∂−→ · · · . (7.6)

From this we have the Bott-Chern, Aeppli and third cohomologies and their relative
versions. For details and applications to the localization problem of Bott-Chern classes,
we refer to [4].

IV. Others
Another type of complex is considered in [10].
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