
RELATIVE EMBEDDINGS OF DEL PEZZO FIBRATIONS

OF DEGREE SIX

TAKERU FUKUOKA

Abstract. The aim of this report is to give an outline of my talk about
sextic del Pezzo fibrations in Kinosaki Algebraic Symposium 2017.

1. Introduction

Let X be a smooth projective 3-fold over C. By virtue of Mori theory, if
KX is not nef, then we have an extremal contraction

φ : X → C,

that is, φ is a surjective morphism onto a normal projective variety C such
that OC ≃ φ∗OX , ρ(X/C) = 1 and −KX is φ-ample. If dimC = 1, then C
is a smooth and we call φ a del Pezzo fibration. A general φ-fiber F is a del
Pezzo surface and the degree of φ is defined to be d = (−KF )

2.
It is well-known that every del Pezzo surface F is a complete intersection

of a Fano variety. For example, if d = 3 (resp. 4), then F is a cubic surface
in P3 (resp. a complete intersection of two quadrics in P4). To study del
Pezzo fibrations, we want to relativize these description. The main problem
of this report is the following.

Problem 1.1. For every del Pezzo fibration φ : X → C, construct another
extremal contraction φY : Y → C such that Y contains X as a relative
(weighted) complete intersection.

If φ is not of degree 6, this problem was mostly solved by using a part of
works due to H. D’Souza, M. L. Fania, T. Fujita, S. Mori and K. Takeuchi.
Some answers to this problem has been applied for classifying the singular
fibers of φ [4], weak Fano 3-folds with del Pezzo fibrations [12], and so on.

In this report, we focus on sextic del Pezzo fibrations, which are del Pezzo
fibrations of degree 6. Roughly speaking, the main results show that every
sextic del Pezzo fibration is a relative hyperplane section of a (P1)3-fibration
and a relative codimension 2 linear section of a (P2)2-fibration. As an appli-
cation, we give a classification of singular fibers of sextic del Pezzo fibrations.

I am now writing a paper including the results on this report and I will
submit it to ArXiv soon.
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2 TAKERU FUKUOKA

2. Known results and main results

2.1. Previous research. We recall a part of previous research. Let φ : X →
C be a del Pezzo fibration of degree d. In 1982, Mori established the follow-
ing results in his paper [10].

• It holds that d ∈ {1, 2, 3, 4, 5, 6, 8, 9}．
• If d = 9, then φ is a P2-bundle.
• If d = 8, then every φ-fiber is a reduced irreducible quadric surface
in P3. Moreover, there exists a P3-bundle F→ C containing X with
a relation X ∼C 2ξF as divisors on F, where ξF denotes a tautological
divisor on F.

Let us assume that d ≤ 6. D’Souza [1], D’Souza-Fania [2] and Fujita [4]
proved that there exists a bundle p : P → C containing X. Here, P is the Pd-
bundle PC(φ∗O(−KX)) (resp. a P(1, 1, 1, 2)-bundle, a P(1, 1, 2, 3)-bundle)
if d ≥ 3 (resp. d = 2, d = 1). Moreover, if d ∈ {3, 4} (resp. d ∈ {1, 2}), then
X is a relative (resp. weighted) complete intersection in P .

Example 2.1. To make sense of the sentence “relative complete intersection”,
let us check the precise statement when d = 4. In this case, X is embedded
in the P4-bundle P . Let OP (1) denote the tautological line bundle. D’Souza
and Fujita proved that there exists a rank 2 bundle E on C and a section
s ∈ H0(P,OP (2) ⊗ p∗E) such that X = (s = 0). In particular, every fiber
Xt is a complete intersection of two quadrics in P4. Note that if C = P1,
then X is a scheme-theoretic complete intersection in P .

When d ∈ {5, 6}, X is not a relative complete intersection in P . Takeuchi
however proved that if d = 5, then X is defined by Pfaffians in P relatively
[12].

2.2. Singular fibers of del Pezzo fibrations. A classification of singu-
lar fibers of del Pezzo fibrations of degree d ̸= 6 was given by Fujita [4].
Especially, he proved the following theorem.

Theorem 2.2 ([4, (4,10)]). Let φ : X → C be a del Pezzo fibration of degree
d. If d ̸= 6, then every fiber of φ is normal.

On the other hand, when d = 6, a classification of singular fibers was yet
to be known. In particular, Fujita proposed a following question.

Question 2.3 ([4, (3,7)]). Does there exist sextic del Pezzo fibrations con-
taining non-normal fibers?

2.3. Main results. Suppose that d = 6. It is known that every sextic del
Pezzo surface S is a hyperplane section of (P1)3 with respect to the Segre
embedding (P1)3 ↪→ P7 and also a codimension 2 linear section of (P2)2 with
respect to the Segre embedding (P2)2 ↪→ P8. The main results relativize
these descriptions.

Theorem 2.4. Let φ : X → C be a sextic del Pezzo fibration. Then there
exists a smooth projective 4-fold Y and an extremal contraction φY : Y → C
satisfying the following properties.

• Every smooth fiber of φY is isomorphic to (P1)3.
• It holds that KY + 2X ∼C 0 as divisors on Y .
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RELATIVE EMBEDDINGS OF DEL PEZZO FIBRATIONS OF DEGREE SIX 3

Theorem 2.5. Let φ : X → C be a sextic del Pezzo fibration. Then there
exists a smooth projective 5-fold Z and an extremal contraction φZ : Z → C
satisfying the following properties.

• Every smooth fiber of φZ is isomorphic to (P2)2.
• There exists a divisor H on Z such that KZ + 3H ∼C 0.
• There exists a rank 2 vector bundle E on C and a section s ∈
H0(Z,φ∗

ZE ⊗ OZ(H)) such that X = (s = 0).

We can apply these theorems to classify singular fibers of sextic del Pezzo
fibrations. As a result, we will give an affirmative answer to Question 2.3,
i.e., there exists sextic del Pezzo fibrations containing non-normal fibers.

3. 2-ray games for sextic del Pezzo fibrations

3.1. 2-ray games. A key point of our proof of Theorems 2.4 and 2.5 is a
2-ray game for a sextic del Pezzo fibration. This is a relativization of the
following birational transformation.

Observation 3.1. Let S be a sextic del Pezzo surface and x ∈ S a point.
Since S is a hyperplane section of (P1)3, we can find three conic bundles
pi : S → P1. If we take x ∈ S as a general point, then li = p−1

i (pi(x)) is a
smooth conic for each i. Thus the blowing-up of S at x contains the proper
transform of li as a (−1)-curve for each i. By blowing them down, we have a
smooth quadric surface Q2, i.e., Blx S ≃ Bly1,y2,y3 Q2, where y1, y2, y3 ∈ Q2

are three different points:

S ← Blx S ≃ Bly1,y2,y3 Q2 → Q2.(3.1)

The curve extracted by Blx S → S is transformed into a conic on Q2 con-
taining the three points y1, y2, y3. Therefore, y1, y2, y3 are non-colinear.

Next we recall the following theorem.

Theorem 3.2 ([9, Theorem (4.2)], [11], [6]). Every del Pezzo fibration
φ : X → C has a section.

More precisely, the existence of sections of sextic del Pezzo fibrations was
proved by Manin [9, Theorem (4.2)]. Using this theorem, we can relativize
the geometry in Observation 3.1 over a curve.

Proposition 3.3 (2-ray game). Let φ : X → C be a sextic del Pezzo fibra-

tion and take a φ-section C0. Let µ : X̃ := BlC0 X → X be the blowing-up
along C0 and E = Exc(µ). Then there exists the following diagram

BlC0 X = X̃
µ

yyttt
ttt

ttt
tt

χ
//___ Q̃ = BlT Q

σ

$$I
II

II
II

II
I

C0 X⊂

φ
%%KK

KKK
KKK

KKK
K Q

q
zztt
tt
tt
tt
tt
t

⊃ T

C C,

(3.2)

where

• χ is an isomorphism or a flop over C,
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4 TAKERU FUKUOKA

• Q is smooth and σ is the blowing-up along a smooth curve T , and
• q is a quadric fibration and q|T : T → C is a triple cover.

When EQ ⊂ Q denotes the proper transform of E on Q, EQ contains T and
KQ + 2EQ ∼C 0. Moreover, we have the following equality:

(−KQ)
3 =

1

3

(
4(−KX)3 + 16g(T )− 48g(C) + 32

)
.(3.3)

Remark 3.4. In this report, a quadric fibration q : Q → C is defined to be
an extremal contraction whose general fibers are quadric surfaces.

4. Proof of Theorem 2.4

In this section, we see a sketch of a proof of Theorem 2.4. A main idea
to prove this theorem is the following birational transformation.

As in Observation 3.1, let S be a sextic del Pezzo surface with a general
point x. We consider an embedding S ↪→ (P1)3 and the blowing up Blx(P1)3.
Then we can show that Blx(P1)3 flops into Bly1,y2,y3 P3:

(P1)3 ← Blx(P1)3
flop99KBly1,y2,y3 P3 → P3.(4.1)

Now we obtain the birational transform (3.1) by chasing the proper trans-
formations of a hyperplane section of (P1)3 containing x. Therefore, we may
regard this transformation (4.1) as an “extension” of (3.2). We will prove
Theorem 2.4 by relativizing (4.1).

Sketch of a proof of Theorem 2.4. Let φ : X → C be a sextic del Pezzo fi-
bration and we fix a φ-section C0. Then Proposition 3.3 produces a quadric
fibration q : Q→ C with a trisection T . Let EQ be as in Proposition 3.3 and
set F := PC(q∗OQ(EQ)), which is a P3-bundle over C. Note that F contains
Q since EQ is q-very ample.

To relativize (4.1) over the base C, we investigate a flop over C of the
blowing-up BlT F. To make this flop explicitly, we consider a sub P2-bundle
E ⊂ F such that Et is the linear span of Tt in Ft = P3 for every t ∈ C. Let

• σF̃ : F̃ = BlT F→ F be the blowing-up of F along T ,

• σẼ : Ẽ = BlT E→ E the blowing-up of E along T ,
• LF̃ := σ∗(2ξF)−Exc(σF), where ξF is a tautological divisor of F, and
• LẼ := LF̃|Ẽ.

Then we can check that LF̃ and LẼ are free over C. Let

• ψF̃ : F̃→ F be the Stein factorization of the morphism over C given
by LF̃ and

• ψẼ : Ẽ→ E the Stein factorization of the morphism over C given by
LẼ.

Then we can show that E is also a P2-bundle over C and ψẼ is the blowing

up of E along a smooth curve T such that T → C is also of degree 3. In

other words, E ← Ẽ → E is nothing but a family of quadratic Cremona
transformations.

Since LF̃ ∼C Ẽ+σ∗
F̃
ξF , we have Exc(ψF̃) = Exc(ψẼ). Noting that 2LF̃ ∼C

−KF̃, we can show that the contraction ψF̃ is a family of Atiyah flopping

contractions. Therefore, if F̃ 99K F̃+ denotes the flop, then F̃+ is also smooth.
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RELATIVE EMBEDDINGS OF DEL PEZZO FIBRATIONS OF DEGREE SIX 5

On F̃+, the proper transform Ẽ+ of Ẽ is isomorphic to E. Then there exists

a morphism µY : F̃+ → Y over C such that µY blows Ẽ+ down to C0,Y ,
which is a section of Y → C. In particular, Y is a smooth 4-fold.

BlC0,Y
Y = F̃+

µY

yyrrr
rrr

rrr
rr

F̃ = BlT F
flop
oo_ _ _

σF

##H
HH

HH
HH

HH
H

Y

φ
&&MM

MMM
MMM

MMM
MM F

zzttt
ttt

ttt
tt

⊃ T

C C.

(4.2)

Ẽ+ = E
µY |Ẽ+

P2-bundle
{{vv
vv
vv
vv
vv

BlT E = Ẽ = BlT Eoo

σE

&&NN
NNN

NNN
NNN

NN

C0,Y

φ|C0,Y

≃

$$J
JJJ

JJJ
JJJ

E

wwooo
ooo

ooo
ooo

ooo
⊃ T

C C.

(4.3)

The birational transformation (4.2) is nothing but a relativization of (4.1).
Every smooth fiber of φY is isomorphic to (P1)3 and ρ(Y ) = 2. This Y
contains X which we took in the beginning of this argument. Moreover,
under this embedding X ↪→ Y , the section C0,Y coincides with C0. This is
a sketch of a proof of Theorem 2.4. □

5. Proof of Theorem 2.5

A main idea to Theorem 2.5 is similar to that of Theorem 2.4. Consider
a sextic del Pezzo surface S with a general point x and an embedding S ↪→
(P2)2. Then the blowing up Blx(P2)2 flops into PQ2(FQ2), which is a P2-

bundle over Q2:

(P2)2 ← Blx(P2)2
flop99KPQ2(FQ2)→ Q2.(5.1)

Moreover, we have
FQ2 = SQ3 |Q2 ⊕OQ2(1),

where SQ3 denotes the Spinor bundle on Q3 and OQ2(1) denotes the po-

larization with respect to Q2 ↪→ P3. The transformation (5.1) is another
“extension” of the transformation (3.1).

To prove Theorem 2.5, we want to relativize the transformation (5.1) over
the base C. For this purpose, we need a family of this bundle on a quadric
fibration Q→ C with a trisection. We construct such a vector bundle F on
Q by using the following proposition.

Proposition 5.1. Let q : Q → C be a quadric fibration and T ⊂ Q be a
smooth curve such that deg(q|T ) = 3. Then there exists a locally free sheaf
F on Q such that F fits into the following exact sequence

0→ q∗(R1q∗IT/Q(−KC))
∨ → F → IT/Q(−KQ)→ 0(5.2)

and there are no surjections F|Qt ↠ OQt for every t ∈ C.
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6 TAKERU FUKUOKA

The exact sequence (5.2) tells us that T is a zero locus of a certain locally
free sheaf. For a proof, we do not use the Hartshorne-Serre correspondence
since it does not give the extension (5.2), but use a “universal extension” of
coherent sheaves. In general, for a coherent sheaf E on a projective variety
V , we can define the universal extension of E by O as the exact sequence

0→ Ext1(E ,O)∨ ⊗O → F → E → 0

corresponding to the element

Ext1(E ,Ext1(E ,O)∨ ⊗O) ≃ Ext1(E ,O)⊗ Ext1(E ,O)∨ ∋ id .

The “universality” of F implies that there are no surjections F ↠ O.
In the setting of Proposition 5.1, we can obtain the exact sequence (5.2)

as a “relative universal extension”. Note that the restriction of the se-
quence (5.2) to Qt is the universal extension of ITt/Qt

(−KQt) by OQt for
each t ∈ C.

Let F be as in Proposition 5.1. Then we need to check that the vector
bundle F|Qt is the desired one for each t ∈ C. To do this, we use the following
characterization of the bundle SQ3 |Q0 ⊕ OQ0(1) on a reduced irreducible
quadric surface Q0.

Proposition 5.2. Let Q0 be a reduced irreducible quadric surface and F0 a
vector bundle of rank 3. If F0 is nef, detF0 ≃ O(−KQ0), c2(F0) = 3 and
h0(F∨

0 ) = 0, then F0 ≃ SQ3 |Q0 ⊕OQ0(1).

We omit proofs of Propositions 5.1 and 5.2.

Sketch of a proof of Theorem 2.5. Let φ : X → C be a sextic del Pezzo fi-
bration and take a φ-section C0. Let q : Q → C be the quadric fibration
with the trisection T as in Proposition 3.3. By Proposition 5.1, we have
the exact sequence (5.2). By Proposition 3.3, −KBlT Q is globally generated
over C. Thus IT/Q(−KQ) is also globally generated over C and so is F .
For each t ∈ C, F|Qt has no trivial bundles as quotients, which implies that
h0(F|∨Qt

) = 0 since F|Qt is globally generated. Therefore, by Proposition 5.2,

we have F|Qt ≃ SQ3 |Qt ⊕OQt(1) for each t ∈ C.
Set π : PQ(F) → Q. Note that PQ(F) contains BlT Q. In analogy with

the proof of Theorem 2.4, we have the following commutative diagram:

Z̃

µZ

����
��
��
��

PQ(F)
Ψoo_ _ _

π

""D
DD

DD
DD

DD

Z

φZ
��
>>

>>
>>

>>
Q

||xx
xx
xx
xx
x

C C,

where Ψ is a family of Atiyah flops and µZ is a blowing-up along a φZ-
section C0,Z . Hence Z is smooth projective 5-fold and general fibers of φZ

are isomorphic to (P2)2. We can show that Z contains X and C0 = C0,Z .
This is a sketch of a proof of Theorem 2.5. □

134



RELATIVE EMBEDDINGS OF DEL PEZZO FIBRATIONS OF DEGREE SIX 7

6. Singular fibers

Every fiber of a del Pezzo fibration φ : X → C is a Gorenstein del Pezzo
surface. Roughly speaking, Gorenstein del Pezzo surfaces S with (−KS)

2 =
6 are classified into the following 3 cases.

(1) S has only Du Val singularities. In this case, let S̃ → S denote the

minimal resolution. Then S̃ has a birational morphism ε : S̃ → P2,
where ε is the blowing up of P2 at three (possibly infinitely near)
points. If Σ ⊂ P2 denotes the 0-dimensional subscheme of length
3 corresponding the three (possibly infinitely near) points, then the
isomorphism classes of S was determined by Σ as follows:

Type Σ Is Σ colinear? # of lines Singularity

(2,3) reduced non-colinear 6 smooth
(2,2) SpecC ⊔ SpecC[ε]/(ε2) non-colinear 4 A1

(2,1) SpecC[ε]/(ε3) non-colinear 2 A2

(1,3) reduced colinear 3 A1

(1,2) SpecC ⊔ SpecC[ε]/(ε2) colinear 2 A1 +A1

(1,1) SpecC[ε]/(ε3) colinear 1 A1 +A2

(2) S is non-normal and the normalization S is isomorphic to a Hirze-
bruch surface Fk with k ∈ {2, 4}. We say that S is of type (nk) for
such S.

(3) S is a cone over a curve C ⊂ P5 of degree 6 and arithmetic genus 1.

A smooth projective 3-fold never includes S belonging to case (3) since
dimTvS = 6, where v denotes the vertex of S. In other words, every fiber
of a sextic del Pezzo fibration belongs to (1) or (2).

In order to give a complete classification of singular fibers, we need to care
whether each surface really appears as a fiber of a sextic del Pezzo fibration.
The following theorem enables us to reduce this problem to a problem about
quadric fibrations with trisections.

Theorem 6.1. Let φ : X → C be a sextic del Pezzo fibration and take a
φ-section C0. Let q : Q→ C be the quadric fibration with the trisection T as
in Proposition 3.3. For any point t ∈ C, we set Xt = φ−1(t), Qt = q−1(t)
and Tt = (q|T )−1(t).

Then the following assertions hold for each t ∈ C.
(1) For j ∈ {1, 2, 3}, Xt is of type (2, j) if and only if Qt is smooth and

#(Tt)red = j.
(2) For j ∈ {1, 2, 3}, Xt is of type (1, j) if and only if Qt is singular,

#(Tt)red = j and SingQt ∩ Tt = ∅.
(3) Xt is of type (n2) if and only if Qt is singular, #(Tt)red = 2 and the

double point of Tt is supported at the vertex of Qt.
(4) Xt is of type (n4) if and only if Qt is singular, #(Tt)red = 1 and

SingQt = (Tt)red.

Using this Theorem 6.1, we can deduce the following corollary by con-
structing such quadric fibrations q : Q→ C with trisections T explicitly.
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8 TAKERU FUKUOKA

Corollary 6.2. Let S be a Gorenstein sextic del Pezzo surface. If S is not
a cone over a curve, then there exists a sextic del Pezzo fibration containing
S as a fiber.

In particular, in contrast with Theorem 2.2, non-normal sextic del Pezzo
surfaces really appear as singular fibers of sextic del Pezzo fibrations.

Sketch of a proof of Theorem 6.1. We use Theorem 2.4 to prove Theorem 6.1.
We proceed in 3 steps.

Step 1. Classify singular fibers of φY : Y → C as in Theorem 2.4. As a
result, every fiber Yt is isomorphic to one of the following:

• (P1)3,
• P1 × P1,1, where P1,1 denotes the cone over a conic, or
• P1,1,1, which denotes the del Pezzo variety of type (si31i) in the sense
of [3].

Step 2. Classify hyperplane sections of (P1)3, P1 × P1,1 and P1,1,1.
Step 3. Let Yt 99K P3 be the birational map in the diagram (4.2).

Chasing the proper transform of a hyperplane section of Yt on P3, we have
Theorem 6.1. □
Remark 6.3. The classification of singular fibers of φZ : Z → C as in Theo-
rem 2.4 was done by Fujita [4]. As a result, every singular fiber is isomorphic
to P2,2, which is defined to be the anti-canonical model of the weak Fano
manifold PP2(O(2)⊕ ΩP2(2)).

7. (2, 3)-coverings

Finally, we construct the coverings associated with a sextic del Pezzo
fibration. The following lemma is well-known for experts:

Lemma 7.1. Let q : Q → C be a quadric fibration. Then there exists a
smooth curve B with a double covering structure qB : B → C such that

(1) qB branches at {t ∈ C | Qt = q−1(t) is singular},
(2) the intermediate Jacobian J (Q) is isomorphic to the Jacobian J(B)

as complex tori, and
(3) it holds that (−KQ)

3 = 40− (8g(B) + 32g(C)).

We call this qB : B → C the double covering associated with q.

By using Proposition 3.3 and Lemma 7.1, we define coverings associated
with φ as follows:

Definition 7.2. Let φ : X → C be a sextic del Pezzo fibration. When we
fix a φ-section C0, Proposition 3.3 gives a quadric fibration q : Q→ C with
a trisection T . Set φB : B → C be the double covering associated with q
and φT = q|T : T → C. We call the pair (φB : B → C,φT : T → C) the
(2,3)-covering associated with φ : X → C.

As a corollary of Proposition 3.3 and Lemma 7.1, we have equalities for
invariants of sextic del Pezzo fibrations.

Corollary 7.3. The following assertions hold.

(1) J (X)× J(C) ≃ J(B)× J(T ) as complex tori.
(2) (−KX)3 = 22− (6g(B) + 4g(T ) + 12g(C)).
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RELATIVE EMBEDDINGS OF DEL PEZZO FIBRATIONS OF DEGREE SIX 9

Proof. (1) follows from the diagram (3.2). (2) follows from the equality (3.3)
and Lemma 7.1 (3). □

By definition, the (2, 3)-covering may depend on the choice of φ-sections
C0. In fact, however, the following corollary implies the (2, 3)-covering is
independent of the choice of them.

Corollary 7.4. For each t ∈ C, the pair of number

(#Bt,#Tt) := (#φ−1
B (t),#φ−1

T (t))

is determined from the isomorphism class of Xt.
Moreover, if Xt has only Du Val singularities, then Xt is of type (#Bt,#Tt).

Proof. This immediately follows from Theorem 6.1 and Lemma 7.1 (1). □
Remark 7.5. Corollary 7.3 has an application to classifying weak Fano sextic
del Pezzo fibrations φ : X → P1. In particular, we can easily enumerate the
possible value of ((−KX)3, h1,2(X)) for such X.

For example, if (−KX)3 = 2, then it is obvious that h1,2(X) ∈ {4, 5}.
In fact, there exist two weak Fano del Pezzo fibrations X1 and X2 such
that (−KX1)

3 = (−KX2)
3 = 2, h1,2(X1) = 4 and h1,2(X2) = 5. For each

i, Xi has a flopping contraction and the flop X+
i is also a sextic del Pezzo

fibration over P1. Hence the classification result due to Jahnke-Peternell-
Radloff [7],[8] and Fukuoka [5] can not distinguish X1 from X2. Therefore,
the classification of them up to deformation equivalence is still open.
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