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The Invariant Hilbert Scheme

Question (general case).
Does the Hilbert—Chow morphism

v Hilb$ (X) — X/G (%)

give a desingularization of X /G ?

Popov’s S L(2)-varieties as a GIT Quotient

Batyrev and Haddad proved that Popov’s
variety has a description as an affine quotient.

Theorem (Batyrev—Haddad).

e F,,: 3-dim. affine normal quasihomog. SL(2)-var.;
e C’ D Hy = (X{7 = X1 Xu — X0 X3).

Then,

Bi & Hyp)(C* X i)

Definition (Alexeev-Brion).
The invariant Hilbert scheme is defined as follows:

Z is a closed G-subscheme of X; }

el _
Hllb}l (X) = {Z cX (C[Z] ~ @;‘[EIl'l'((;)]\//[q)h(i\]) as a G-module

e (i: areductive algebraic group;
e X: an affine G-variety;

e /- Irr(G) — N: a Hilbert function.

Remark.
Hilb§(X) is a generalization of G-Hilb(X) for a finite group G.

e 1 : X — X//G: the quotient morphism.

e h ;= Hilbert function of the flat locus W — W//G of 7.

- {o H™4" .= 4=1(W): the main component of Hilb{(X).
® Y|gmain : H™" — X /G = Spec C[X]%: proj. birat.

Popov’s SL(2)-varieties
|

Popov gave a complete classification of 3-dim.
affine normal quasihomog. SL(2)-varieties.

Theorem (Popov).
There is a one to one correspondence:
{B-dim. affine normal quasihomog.

SL(2)-var. with a fixed point } (A

Im — (I,m)

E; ,,, contains three SL(2)-orbits: Ey,, = U U DU{O}.
e U: the dense open orbit;
e D: a2-dim. orbit;

e O: aunique SL(2)-inv. singular point.

Remark. Actions of SL(2), C*, and y,,, on C° are given as follows:
e SL(2) >V,

ac) (¢ X1 X3\ X aXi+cXo aXz+cXy\) |

bd "X, X)) T\ X 4 dXo bXs + dXy) )
o TV t-(Xo, X1, Xo, X, Xy) = (tXo, tPX), tPXs, 19X, 11X));
o umdVE (X, X1, Xo, Xs, Xy) = (X0, £71X, £71X, £X5, £X)).

Question (our case). Apply (&) with
X=H, p, G=C" x py:

v : Hilby **(H,_,) — Eppm

Spherical Geometry

We use the spherical geometry of E; ,, and Bl§(E;,,) to study
~ - Hilby **(H,_,) — Ejm.

Theorem (Batyrev—Haddad).
E; , and BIg(E,,) are spherical SL(2) x C*-varieties w.r.t. B x C*.

o [Batyrev-Haddad] also computed the colored fan of £ ,,,, BIS(E) ).
+

o [Brion—Pauer] Local structure th. for toroidal spherical varieties.
4

Theorem (Batyrev—Haddad).

(i) 3' C = P aclosed SL(2)-orbit of BIE(Ej ).

(ii) Along C, BI%(E ) is locally isomorphic to C x C2/ .

({iii))b=1 < Ej,,: toric.

Main Results

The Hilbert-Chow morphism decomposes as follows:
Hmu/,n ELY Bl?ﬁ(Ezm)

Vlggmain ‘

I,m

Main Theorem

(i) £} ,: toric

v HM —s F, is a resol
v 1O) = P! x PL.

(ii) ¢ : H™" = BIE(E) )
<= L, toric.

=

Outline of the Proof
Step 1. Determine the generators of ideals in v~ (U).
Step 2. Construct ¢ (use Step 1. + irred. decomp. of C[H,_,]):
Hmein By x P x PL
Step 3. Use the spherical geometry of Ej,, and Blg(E; ;) to show
Y(H™) = BIE(Eym) < B x P! x PL

Step 4. E,: toric = 1 is a cl. imm. [".") Description of generators for VI, € H™"".

Step 5. E),,: non-toric = H™"“" 2% BI%(E),,) [-.") Calculation of flat limits of ideals.

Work in Progress

[Main Theorem] E} ,,: non-toric = H"*" £ Bl§(E),).
~~ We need a further blow-up.

o [Batyrev-Haddad] £ ,,: non-toric = BI§(E),,) is sing. along C.
o C?/, has a minimal resol. described by Hirzebruch-Jung continued fraction.

Conjecture

E, ,,: non-toric

— Jmein __y BIl§(E),,) is a minimal resol
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