Yuya Matsumoto (matsumoto.yuya@math.nagoya-u.ac.jp)
Kinosaki Algebraic Geometry Symposium 2017
2017/10/23-27
http://arxiv.org/abs/1710.07158

Abstract: We study μ_{p}-actions on K3 surfaces in char p.

NB: Smooth K3 surfaces admit no μ_{p}-actions since they admit no global derivations. However RDP K3 surfaces may admit some.

Preliminaries

- A K3 surface is a proper smooth (algebraic) surface X over a field with $\Omega_{X}^{2} \cong \mathcal{O}_{X}$ and $H^{0}\left(X, \mathcal{O}_{X}\right)=0$.
- An RDP K3 surface is a proper surface X with only RDP (rational double point) singularities whose resolution \tilde{X} is a K3.
Definition. An automorphism of a K3 X is symplectic if it acts on the (1-dim vector space) $H^{0}\left(X, \Omega_{X}^{2}\right)$ trivially.

Nikulin: actions in char 0

G : finite abelian group, X : K3
$G \curvearrowright X$: a symplectic action.
Then • $\operatorname{Fix}(G)$ is isolated.

- X / G is an RDP K3.
- If $G=\mathbb{Z} / n \mathbb{Z}$ with $n>1$, then $n \leq 8$ and
$\# \operatorname{Fix}(G)=\frac{24}{n} \prod_{l: \text { prime }, l \mid n} \frac{l}{l+1}$
$=8,6,4,4,2,3,2 \quad(n=2,3,4,5,6,7,8)$.

Non-symplectic quotients

are either birational to Enriques, or rational.

Actions in char p ?

Nikulin's results hold in char $p>0$ provided the order of G is prime to p.
However, automorphisms of order p are automatically symplectic, since there are no nontrivial p-th root of unity in char p.

- \exists order p auto with 1-dim fixed locus,
- \exists order p auto with non-K3 quotient.

Remark. \exists order p auto only if $p \leq 11$.
For more discussions see Dolgachev-Keum.

Keum: Orders of auto.

$S_{\mathrm{cyc}}(p):=\{n \mid \mathbb{Z} / n \mathbb{Z} \curvearrowright \exists X \mathrm{~K} 3$ in char $p\}$. Keum determined this set for $p \neq 2,3$.

- $S_{\mathrm{cyc}}(0)=\{n \mid \phi(n) \leq 20\}$

$$
=\{1, \ldots, 22,24,25,26,27,28,30,
$$

- $S_{\mathrm{cyc}}(p)=S_{\mathrm{cyc}}(0) \backslash E_{p}$ if $p \geq 5$, where
$E_{p}= \begin{cases}\{p, 2 p\} & \text { if } p=13,17,19, \\ \{44\} & \text { if } p=11, \\ \{25,50,60\} & \text { if } p=5, \\ \emptyset & \text { if } p=7 \text { or } p \geq 23 .\end{cases}$
- Moreover the prime-to- p elements of $S_{\text {cyc }}(p)$ coincide with those of $S_{\mathrm{cyc}}(0)$, for all $p \geq 2$.

References

Main Def: symplecticness

Action $\mu_{n} \curvearrowright \operatorname{Spec} B$ (affine scheme)
\longleftrightarrow a decomposition $B=\bigoplus_{i \in \mathbb{Z} / n \mathbb{Z}} B_{i}$ of vector spaces satisfying $B_{i} B_{j} \subset B_{i+j}$
\longrightarrow a decomp. $\Omega_{B / k}^{*}=\bigoplus_{i \in \mathbb{Z} / n \mathbb{Z}}\left(\Omega_{B / k}^{*}\right)_{i}$. We say that $\mathrm{wt}(b)=i$ if $b \in B_{i}$.
Similar for μ_{n}-actions on schemes.
Remark. If $p \nmid n$, then μ_{n}-action is equivalent to the action of the cyclic group $\mu_{n}(k)$, and B_{i} is the eigenspace for the $\mu_{n}(k)$-action with eigenvalue $i: \mu_{n}(k) \ni g \mapsto g^{i} \in k^{*}$
Definition. We call an action $\mu_{n} \curvearrowright X$ on an RDP K3 to be symplectic if the decomposition of (1-dim vector space) $H^{0}\left(X^{\mathrm{sm}}, \Omega_{X}^{2}\right)$ is concentrated on $i=0 \in \mathbb{Z} / n \mathbb{Z}$.
Remark. $H^{0}\left(X^{\mathrm{sm}}, \Omega_{X}^{2}\right) \cong H^{0}\left(\tilde{X}, \Omega_{\tilde{X}}^{2}\right)$ for an RDP K3 X (hence 1-dim).
Remark. Equivalent to the classical definition if $p \nmid n$ (in which case $\mu_{n} \cong \mathbb{Z} / n \mathbb{Z}$).

Theorem A

X : RDP K3, with an action $\mu_{n} \curvearrowright X$.

- symplectic $\Longrightarrow X / \mu_{n}$: RDP K3.
- non-symplectic
$\Longrightarrow X / \mu_{n}$: RDP Enriques or rational.
- $n=p$, non-symplectic, fixed-point-free
$\Longrightarrow X / \mu_{p}$: RDP Enriques $\Longrightarrow p=2$.
- $n=p$, non-symplectic, not fixed-point-free
$\Longrightarrow X / \mu_{p}$: rational surface.

Theorem B

X : RDP K3.
$\mu_{n} \curvearrowright X$: symplectic action, $n>1$.
Then $\bullet n \leq 8, \bullet \operatorname{Fix}(G)$ is isolated,

- \# $\operatorname{Fix}(G)=$ same as in Nikulin's theorem,
when counted with suitable multiplicity.

Theorem C

$S_{\mu}(p):=\left\{n \mid \mu_{n} \curvearrowright \exists X\right.$ RDP K3 in char $\left.p\right\}$.

- $S_{\mu}(0)=S_{\text {cyc }}(0)=\downarrow$.
$33,34,36,38,40,42,44,48,50,54,60,66\}$,
- $S_{\mu}(p)=S_{\mu}(0) \backslash E_{p}^{\prime}$, where
$E_{p}^{\prime}= \begin{cases}\{33,66\} & \text { if } p=11, \\ \{25,40,50\} & \text { if } p=5, \\ \{27,33,48,54,66\} & \text { if } p=3, \\ \{34,40,44,48,50,54,66\} & \text { if } p=2, \\ \emptyset & \text { otherwise. }\end{cases}$
- In particular, \exists RDP K3 with a μ_{p}-action in char $p \Longleftrightarrow p \leq 19$.

[^0]
[^0]: [1] V. V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75-137 (Russian). English translation: Trans. Moscow Math. Soc. 1980, no. 2, 71-135.
 [2] Shigeyuki Kondō, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992), no. 1, 75-98.
 [3] Igor V. Dolgachev and JongHae Keum, Finite groups of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. (2) 169 (2009), no. 1 269-313.
 [4] JongHae Keum, Orders of automorphisms of K3 surfaces, Adv. Math. 303 (2016), 39-87
 [5] Yuya Matsumoto, μ_{n}-actions on K3 surfaces in positive characteristic (2017), available at http://arxiv.org/abs/1710.07158.

