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~The minimum finishing time of 
projective networks~

The tropical variety 𝐕 𝑓 defined by a tropical
polynomial 𝑓 ∈ 𝕋[𝑥 ,… , 𝑥 ] is
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For a tropical polynomial 𝑓 ∈ 𝕋[𝑥 ,… , 𝑥 ], the
tropical variety 𝐕 𝑓 ⊂ 𝕋 is the support of a
finite polyhedral complex in 𝕋 .

If we define the tropical variety 𝐕 𝐼 defined by
an ideal 𝐼 in 𝕋[𝑥 ,… , 𝑥 ] as

𝐕 𝐼 =
∈

𝐕 𝑓 ,

then the variety 𝐕 𝐼 is not always the support
of a finite polyhedral complex (Example 5.14 in
[1]). 

Maclagan and Rincón defined tropical ideals in
[1]. The tropical variety defined by a tropical
ideal is the support of a finite polyhedral com-
plex.

●Background
The tropical polynomial function semiring is the

quotient semiring 𝕋 𝑥 ,… , 𝑥 /~, where ~ is
defined as

𝑓~𝑔 ⇔ 𝑓 𝒂 = 𝑔 𝒂 ∀𝒂 ∈ ℝ .

●Definition

{                                   }.
The maximum of 𝑓(𝐚) is attained at 
least twice or 𝑓 𝐚 = −∞.𝐕 𝑓 = 𝐚 ∈ 𝕋

We may define the tropical variety 𝐕 𝜑 just for
a tropical polynomial function 𝜑.

We denote by 𝑓 𝐱𝐮 the coefficient of the mono-
mial 𝐱𝐮 in a tropical polynomial 𝑓.

The maximum representation 𝜑 of a tropical
polynomial function 𝜑 is the representation 𝑓 such
that

𝑓 𝐱𝐮 ≥ 𝑔 𝐱𝐮

for any representation 𝑔 of 𝜑 and any monomial 𝐱𝐮.

●Main Results

Each tropical polynomial function 𝜑 has a unique 
maximum representation.

Corollary 3. (intersect & generate)
Tropical ideals in 𝕋[𝑥]/∼ are closed under the

intersection. Hence for any set 𝑆 of tropical poly-
nomial functions, there is the minimum tropical
ideal including 𝑆.

⋅ Maclagan and Rincón’s definition of tropical ideals

An ideal 𝐼 in 𝕋[𝑥 ,… , 𝑥 ] is a tropical ideal if for
any 𝑓, 𝑔 ∈ 𝐼 and any monomial 𝐱𝐮 with 𝑓 𝐱𝐮 = 𝑔 𝐱𝐮

≠ −∞, there is a tropical polynomial
ℎ such that,

(1) ℎ ∈ 𝐼,
(2) ℎ 𝐱𝐮 = −∞,
(3) ℎ 𝐱𝐯 ≤ 𝑓 𝐱𝐯 ⊕ 𝑔 𝐱𝐯 for all 𝐯, and
(4) ℎ 𝐱𝐯 = 𝑓 𝐱𝐯 ⊕ 𝑔 𝐱𝐯 if 𝑓 𝐱𝐯 ≠ 𝑔 𝐱𝐯.

~Tropical Ideals~

Let 𝐶 be a projective curve over a valued field
𝐾.

●Motivations

𝐾 : an algebraic function field
𝐶 : an elliptic curve on 𝐾 with nonconstant 𝑗-
invariant.

●Theorem

Theorem.
In this situation, 

∃𝐾′ : a finite extension of 𝐾,
∃𝐶′ ↪ ℙ : an embedding, where 𝐶′ is the

scalar extension of 𝐶 to 𝐾′, and
∃𝑣 : a valuation on 𝐾′
such that the tropicalization of 𝐶′ via 𝑣 has the
genus 1.

Q. If 𝐾 has “many” valuations, can we find the
tropicalization whose genus is equal to the one
of 𝐶 by varying valuations?

A project network consists of some activities,
where each activity can be started after all the
preceding activities have nished. 

Theorem 1.
There is a one-to-one correspondence between the
set of 𝑃-polynomials 𝑓 𝑡 = 𝑓(𝑡 , … , 𝑡 ) having term
extendability and the set of simple graphs with the
vertex set [𝑛].

Theorem 2.
Let 𝑓(𝑡) be a 𝑃-polynomial of degree 𝑑 having term
extendability. Then 𝑓(𝑡) is realizable if and only if
there is a vertex coloring of TG(𝑓) with the color set
{1, … , 𝑑} such that if 𝑣 , 𝑣 , 𝑣 is colored by 𝑐 , 𝑐 , 𝑐
with 𝑐 < 𝑐 < 𝑐 and {𝑣 , 𝑣 }, {𝑣 , 𝑣 } are adjacent
respectively, then {𝑣 , 𝑣 } is also adjacent.  

In the above project network , let 𝑡 be the
time to complete the activity. Then the mini-
mum finishing time of this project network is
max{ 𝑡 + 𝑡 + 𝑡 , 𝑡 + 𝑡 + 𝑡 , 𝑡 + 𝑡 + 𝑡 , 𝑡 + 𝑡 + 𝑡 }
= 𝑡 𝑡 𝑡 ⊕ 𝑡 𝑡 𝑡 ⊕ 𝑡 𝑡 𝑡 ⊕ 𝑡 𝑡 𝑡 (in tropical notation),

which is a tropical polynomial of 𝑡 ’s.

Q. What kind of tropical polynomials can be
realized as the minimum finishing time of a
project network?

Definition
A 𝑃-polynomial 𝑓 𝑡 = 𝑓(𝑡 , … , 𝑡 ) has term exten-

dability if, for any subset 𝐼 ⊂ [𝑛] such that
∀𝑖, 𝑗 ∈ 𝐼, there is a term of 𝑓(𝑡) divisible by 𝑡 𝑡 ,

there is a term of 𝑓(𝑡) divisible by ∏ ∈ 𝑡 . 

~ Genera of tropicalization of curves ~

Definition
A 𝑷-polynomial is a tropical polynomial 𝑓 𝑡

such that 
(1) the degree on each variable is exactly one, 
(2) the coefficient of each term is a unity, 
(3) no term is divisible by any other terms.

We denote by TG(𝑓) the simple graph corresponding 
to 𝑓(𝑡). 
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It is difficult to treat tropical ideals like
classical one because they are not closed under
the addition, multiplication or intersection.
(We cannot even “generate” a tropical ideal from
an arbitrary set of tropical polynomials.)

●Motivations

●Notation
𝕋 : Tropical semifield.

i.e. the semifield ℝ ∪ −∞ ,⊕,⊙ , where
𝑎 ⊕ 𝑏 ≔ max 𝑎, 𝑏 (addition)
𝑎 ⊙ 𝑏 ≔ 𝑎 + 𝑏 (multiplication).

𝕋[𝑥 ,… , 𝑥 ] : Tropical polynomial semiring
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We want to make another “tropical
ideals” such that
(𝑎) The tropical variety defined by any of
them is the support of a finite polyhedral
complex, 
𝑏 They are closed under the addition,

multiplication and intersection.

An ideal 𝐼 in 𝕋[𝑥 ,… , 𝑥 ]/∼ is a tropical ideal if
for any 𝜑,𝜓 ∈ 𝐼 and any monomial 𝐱𝐮 with
𝜑 𝐱𝐮 = 𝜓 𝐱𝐮 ≠ −∞, there is a tropical poly-

nomial ℎ such that,
(1) the class of ℎ is in 𝐼,
(2) ℎ 𝐱𝐮 = −∞,
(3) ℎ 𝐱𝐯 ≤ 𝜑 𝐱𝐯 ⊕ 𝜓 𝐱𝐯 for all 𝐯, and
(4) ℎ 𝐱𝐯 = 𝜑 𝐱𝐯 ⊕ 𝜓 𝐱𝐯

if 𝜑 𝐱𝐯 ≠ 𝜓 𝐱𝐯.

Theorem 1. (principal ⇒ tropical)
For any tropical polynomial function 𝜑 ∈ 𝕋[𝑥]/∼,

the set 𝜑⊙𝕋[𝑥]/∼ ≔ 𝜑⊙𝜓 𝜓 ∈ 𝕋[𝑥]/∼} is a
tropical ideal in 𝕋[𝑥]/∼.

Theorem 2. (like PID)
Every tropical ideal in 𝕋[𝑥]/∼ is of the form

𝜑⊙𝕋[𝑥]/∼ for some 𝜑 ∈ 𝕋[𝑥]/∼.
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